
Forward equations for option prices
A forward PIDE for option prices

Exemples and Applications

Forward equations for option prices in
semimartingale models

Amel Bentata and Rama Cont

Laboratoire de Probabilités et Modèles Aléatoires
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Backward Kolmogorov equations for option prices

Consider an asset price/risk factor whose dynamics under a pricing
measure is described by a Markov process X with generator L.

The value Vt = EQ [h(XT )|Ft ] at t for a maturity T of
European options on X can then be characterized as the
solution to the backward Kolmogorov PDE or “generalized
Black Scholes” pricing equation

Vt = f (t,Xt) where

∂f

∂t
+ Lf = 0 f (T , .) = h(.)
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Dupire equation for call options

In the case where X is a scalar diffusion

dXt = b(t,Xt)dt + σ(t,Xt)dWt

Bruno Dupire (1994) showed that the prices of call options

Ct(T ,K ) = E [(XT − K )+|Ft ]

solves another PDE, in the forward variables K ,T , the Dupire

PDE:
∂Ct

∂T
=

K 2σ(T ,K )2

2

∂2Ct

∂K 2
− rK

∂Ct

∂K

on [t,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct(t,K ) = (St − K )+.
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“Unified Theory of Volatility” (Dupire 1993)

Dupire also extended the forward PDE to (non Markovian) models:
if X writes

dXt = δtdWt

then, under appropriate conditions on the adapted process (δt)t≥0

the prices of call options

Ct(T ,K ) = E [(XT − K )+|Ft ]

solve
∂Ct

∂T
=

K 2σ(T ,K )2

2

∂2Ct

∂K 2
− rK

∂Ct

∂K

where σ(T ,K ) is the effective volatility given by

σ(T ,K )2 = E [δ2T |XT = K ]
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Forward equations: extensions

Forward equations are quite useful as a computational/
theoretical tool.

But...to price n options with payoffs (hi , i = 1..n) this requires
solving n PDEs with different boundary conditions.

If X is a Markov jump-diffusion process, then the forward
PDE becomes an integro-differential equation. The Dupire
equation has been extended in various directions:

1 Jump-diffusion model with compound Poisson jumps
(Andersen-Andreasen)

2 Exponential Lévy processes (Carr & Hirsa, Jourdain)
3 CDO expected tranche notionals (Cont & Minca)
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Outline

We derive a partial integrodifferential equation for call options
in a general semimartingale model, generalizing the result of
Dupire (1994), unifying in particular the existing extensions of
Dupire equation:

We allow the case of degenerate (or zero) volatility processes
and discontinuities (jumps):

As an application, we derive a one-dimensional approach to
price basket options;
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Multi-asset jump-diffusion model

Consider an asset S whose price under the pricing measure P

follows a “stochastic volatility model with random jumps”

ST = S0+

∫ T

0
r(t)St−dt+

∫ T

0
St−δtdWt+

∫ T

0

∫ +∞

−∞
St−(ey−1)M̃(dtdy)

where r(t) is the discount rate, δt the spot volatility process and
M̃ is a compensated random measure with compensator

µ(ω; dt dy) = m(ω; t, dy) dt;

Both the volatility δt and m(t; dy) (which represents the intensity
of jumps of size y at time t) are allowed to be stochastic. In
particular, we do not assume the jumps to be driven by a Lévy
process or a process with independent increments.
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The value Ct0(T ,K ) at time t0 of a call option with expiry T > t0
and strike K > 0 is given by

Ct0(T ,K ) = e
−

R T
t0

r(t) dt
EP[max(ST − K , 0)|Ft0 ];

The discounted asset price

ŜT = e−
R T
0 r(t)dt ST ,

is the stochastic exponential of the martingale U defined by

UT =

∫ T

0
δt dWt +

∫ T

0

∫

(ey − 1)M̃(dt dy).
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Hence, under the assumption

∀T > 0, E

[

exp

(

1

2

∫ T

0
δ2t dt +

∫ T

0
dt

∫

R

(ey − 1)2m(t, dy)

)]

<∞

(H)
we have

∀T > 0, E

[

exp

(

1

2
〈Uc ,Uc〉T + 〈Ud ,Ud〉T

)]

<∞

which implies that (ŜT ) is a P-martingale.
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Let ψt be the exponential double tail of the compensator m(t, dy)

ψt(z) =

{

∫ z

−∞ dx ex
∫ x

−∞ m(t, du) z < 0
∫ +∞
z

dx ex
∫∞
x

m(t, du) z > 0

and define






σ(t, z) =
√

E
[

δ2t |St− = z
]

;

χt,y (z) = E [ψt (z) |St− = y ]
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Theorem (Forward PIDE for call options)

Under assumption (H), the call option price (T ,K ) 7→ Ct0(T ,K ),
as a function of maturity and strike, is a solution (in the sense of
distributions) of the partial integro-differential equation:

∂Ct0

∂T
= −r(T )K

∂Ct0

∂K
+

K 2σ(T ,K )2

2

∂2Ct0

∂K 2

+

∫ +∞

0
y
∂2Ct0

∂K 2
(T , dy)χT ,y

(

ln

(

K

y

))

on [t0,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (St0 − K )+.
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Some remarks

The proof of the theorem is essentially based on the application of
the Tanak-Meyer formula to (St − K )+ between T and T + h in
the case of general semimartingales. If LK

t = LK
t (S) is the

semimartingale local time of S at K under P, then for all h > 0

(ST+h − K )+ = (ST − K )+ +

∫ T+h

T

1{St−>K}dSt +
1

2
(LK

T+h − LK
T )

+
∑

T<t≤T+h

(St − K )+ − (St− − K )+ − 1{St−>K}∆St .

Amel Bentata and Rama Cont Forward equations for option prices



Forward equations for option prices
A forward PIDE for option prices

Exemples and Applications

Taking expectations, we get:

e
R T+h

0
r(t) dtC (T + h,K ) − e

R T

0
r(t) dtC (T ,K )

= E

[
∫ T+h

T

r(t)St 1{St−>K}dt +
1

2
(LK

T+h − LK
T )

]

+ E





∑

T<t≤T+h

(St − K )+ − (St− − K )+ − 1{St−>K}∆St



 .
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Let focus on the jump part of the last expression...

E





∑

T<t≤T+h

(St − K )+ − (St− − K )+ − 1{St−>K}∆St





=

∫ T+h

T

dtE
[

∫

m(t, dx)
(

(St−ex − K )+

−ex(St− − K )+ − K1{St−>K}(e
x − 1)

)]

=

∫ T+h

T

dt E

[

St− ψt,St−

(

ln

(

K

St−

))]

=

∫ T+h

T

dt E

[

St−E

[

ψt,St−

(

ln

(

K

St−

))

|St−

]]

=

∫ T+h

T

dt E

[

St−χt,St−

(

ln

(

K

St−

))]
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Where does it come from? One oberves that:
∫

R

[(yex−K )+−ex(y−K )+−K (ex−1)1{y>K}]m(t, dx) = y ψt,y

(

ln

(

K

y

))
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It shows that, any arbitrage-free profile of option prices across
strike and maturity may be parameterized by a local volatility
function σ(t,St−) and a local exponential double tail
χt,St−

(z).

Intuitively, we would have defined a local Lévy measure
mloc(t, dy ,St−) by : for t ≥ 0, z ∈ R

d ,A ∈ B(Rd) − {0}

mloc(t,A, z) = E [m(t,A)|St− = z ] .

which would have meant to project all the parameters of (St),
that is proceed to the Markovian projection of (St) but it is
not obvious that such a projection is well-posed, at least if
one doesn’t make stronger hypotheses on these parameters.

We observe that it is sufficient to define the local exponential
double tail to price the call option.
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Itô diffusions
Markovian jump-diffusion models
Pure jump processes
Time changed Lévy processes
Index options in a multivariate jump-diffusion model

Itô diffusions

Killing the jump part, (H) writes

E

[

exp
(

1
2

∫ T

0 δ2t dt
)]

<∞ a.s, and one recovers the Dupire

PDE.

This result can be derived from the mimicking theorem of
Gyöngy 1986 in the case where the volatility process δt
verifies a non-degeneracy (i.e. uniform ellipticity) condition.

In this case our result gives an alternative set of assumptions
under which the Dupire equation holds, which do not require
this non-degeneracy condition.
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Itô diffusions
Markovian jump-diffusion models
Pure jump processes
Time changed Lévy processes
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Consider the price process S whose dynamics under the pricing
measure P is given by:

St = S0 +

∫ T

0
r(t)St−dt +

∫ T

0
St−σ(t,St−)dBt

+

∫ T

0

∫ +∞

−∞
St−(ey − 1)Ñ(dtdy)

where Bt is a Brownian motion and N a Poisson random measure
on [0,T ] × R with compensator ν(dz) dt, Ñ the associated
compensated random measure. Assume:

{

σ(., .) is bounded
∫

y>1 e2yν(dy) <∞
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Proposition

The call option price Ct0(T ,K ) is a solution (in the sense of
distributions) of the partial integro-differential equation:

∂Ct0

∂T
= −r(T )K

∂Ct0

∂K
+

K 2σ(T ,K )2

2

∂2Ct0

∂K 2

+

∫

R

ν(dz) ez

[

Ct0(T ,Ke−z ) − Ct0(T ,K ) − K (e−z − 1)
∂Ct0

∂K

]

on [t0,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (St0 − K )+.
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Indeed...in this particular case:

∫ +∞

0
y
∂2C

∂K 2
(T , dy)χT ,y

(

ln

(

K

y

))

=

∫

R

ez

[

C (T ,Ke−z ) − C (T ,K ) − K (e−z − 1)
∂C

∂K

]

ν(dz)
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We now consider price processes with no Brownian component.
It is convenient to use the change of variable: v = ln y , k = lnK ,
c(k,T ) = C (ek ,T ). Define:

χT ,v (z) = E [ψT (z)|ST− = ev ]

with:

ψT (z) =

{

∫ z

−∞ dx ex
∫ x

−∞ m(T , du) z < 0
∫ +∞
z

dx ex
∫∞
x

m(T , du) z > 0

Amel Bentata and Rama Cont Forward equations for option prices



Forward equations for option prices
A forward PIDE for option prices

Exemples and Applications
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Proposition

If

∀T > 0, E

[

exp

(
∫ T

0
dt

∫

(ey − 1)2m(t dy)

)]

<∞

then the call option price c(T , k) is a solution (in the sense of
distributions) of the partial integro-differential equation:

∂c

∂T
+ r(T )

∂c

∂k
=

∫ +∞

−∞
e2(v−k)

(

∂2c

∂k2
−
∂c

∂k

)

(T , dv)χT ,v (k − v)
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In the case considered in Carr, Geman, Madan and Yor 2004,
where the Lévy density mY has a deterministic separable form:

mY (t, dz , y) dt = α(y , t) k(dz) dz dt

The previous PIDE allows us to recover their result becoming:

∂c

∂T
+r(T )

∂c

∂k
=

∫ +∞

−∞
κ(k−v)e2(v−k)α(ev ,T )

(

∂2c

∂k2
−
∂c

∂k

)

d(v)

where κ is defined as the exponential double tail of k(u) du, i.e:

κ(z) =

{

∫ z

−∞ dx ex
∫ x

−∞ k(u) du z < 0
∫ +∞
z

dx ex
∫∞
x

k(u) du z > 0
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Itô diffusions
Markovian jump-diffusion models
Pure jump processes
Time changed Lévy processes
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Time changed Lévy processes were proposed in Carr, Geman,
Madan and Yor 2003, in the context of option pricing. Consider
the price process S whose dynamics under the pricing measure P is
given by:

(

St ≡ e
R t
0 r(s) ds Xt

)

Xt = exp (LΘt
) Θt =

∫ t

0
θsds

where Lt is a Lévy process with characteristic triplet (b, σ2, ν), (θt)
is a locally bounded positive semimartingale. We assume L and θ
are Ft -adapted.

Xt ≡ (e−
R t

0
r(s) ds St) is a martingale under the pricing measure P if

exp (Lt) is a martingale which requires the following condition on
the characteristic triplet of (Lt):

b +
1

2
σ2 +

∫

R

(ez − 1 − z 1|z |≤1)ν(dy) = 0
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Define
α(t, x) = E [θt |Xt− = x ]

and χ the exponential double tail of ν(du)

χ(z) =

{

∫ z

−∞ dx ex
∫ x

−∞ ν(du) z < 0
∫ +∞
z

dx ex
∫∞
x
ν(du) z > 0
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Proposition

If
∫

y>1 e2yν(dy) <∞ then the call option price Ct0(T ,K ) at date

t0, as a function of maturity and strike, is a solution (in the sense
of distributions) of the partial integro-differential equation:

∂C

∂T
= −rα(T ,K )K

∂C

∂K
+

K 2α(T ,K )σ2

2

∂2C

∂K 2

+

∫ +∞

0
y
∂2C

∂K 2
(T , dy)α(T , y)χ

(

ln

(

K

y

))

on [t,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (St0 − K )+.
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Note that the same adjustment factor α(t,Xt−) is applied to
the drift, diffusion coefficient and the double exponential tail
of the Lévy measure.

(bα(t,Xt−), σ2α(t,Xt−), α(t,Xt−)χ)
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Consider a multivariate model with d assets:

S i
T = S i

0+

∫ T

0
r(t)S i

t−dt+

∫ T

0
St−δ

i
tdW i

t +

∫ T

0

∫

Rd

S i
t−(eyi−1)Ñ(dt dy)

where δi is an adapted process taking values in R representing the
volatility of asset i , W is a d-dimensional Wiener process, N is a
Poisson random measure on [0,T ] × R

d with compensator
ν(dy) dt, Ñ denotes its compensated random measure.
The Wiener processes W i are correlated: for all 1 ≤ (i , j) ≤ d ,
〈W i ,W j〉t = ρi ,jt, with ρij > 0 and ρii = 1.
An index is defined as a weighted sum of the asset prices:

It =
d
∑

i=1

wiS
i
t
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The value Ct0(T ,K ) at time t0 of an index call option with expiry
T > t0 and strike K > 0 is given by

Ct0(T ,K ) = e
−

R T
t0

r(t) dt
EP[max(IT − K , 0)|Ft0 ]

Let k(., t, dy) be the random measure:

k(t, dy) =

∫

ln

(

∑

1≤i≤d−1 wiS
i
t−eyi + wdSd

t−ey

It−

)

ν(dy1, .., dyd−1, dy)

and ηt(z) its exponential double tail:

ηt(z) =

{

∫ z

−∞ dx ex
∫ x

−∞ k(t, du) z < 0
∫ +∞
z

dx ex
∫∞
x

k(t, du) z > 0
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Define:

σ(t, z) =
1

z

√

√

√

√

√E









d
∑

i ,j=1

wiwjρij δ
i
tδ

j
t S i

t−S j
t−



 |It− = z



;

χt,y (z) = E [ηt (z) |It− = y ]
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Assume



















∀T > 0 E

[

exp
(

1
2

∫ T

0 ‖δt‖
2 dt
)]

<∞
∫

Rd (1 ∧ ‖y‖) ν(dy) <∞
∫

‖y‖>1 e2‖y‖ν(dy) <∞
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Theorem

Under these assumptions, the index call price (T ,K ) 7→ Ct0(T ,K ),
as a function of maturity and strike, is a solution (in the sense of
distributions) of the partial integro-differential equation:

∂C

∂T
= −r(T )K

∂C

∂K
+
σ(T ,K )2

2

∂2C

∂K 2

+

∫ +∞

0
y
∂2C

∂K 2
(T , dy)χT ,y

(

ln

(

K

y

))

on [t0,∞[×]0,∞[ with the initial condition:
∀K > 0 Ct0(t0,K ) = (It0 − K )+.
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Forward PIDE as dimension reduction

The following result generalizes the forward PDE studied by
Avellaneda et al. 2003 for the diffusion case to a setting with
jumps.

The conditional expectations in the expressions of the
effective volatility σ(., ) and effective jump intensity j() may
be efficiently computed (without simulation) using a steepest
descent approximation proposed by (Avellaneda Busca Friz
Boyer-Olson) in the diffusion case.

This enables to price index options in a (smile-consistent)
multidimensional jump-diffusion model without Monte Carlo
simulation, by solving a one-dimensional forward PIDE.
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Itô diffusions
Markovian jump-diffusion models
Pure jump processes
Time changed Lévy processes
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Conclusion

Allows for degenerate/ zero volatility and jumps.

Extension of the Dupire/forward equation for option prices to
a large class of non Markovian models with jumps.

Allows dimension reduction and use of P(I)DE methods when
computing call option prices.
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