Valuation of credit derivatives in LIBOR models

Antonis Papapantoleon

QP Lab & TU Berlin

Joint work with Zorana Grbac and David Skovmand

Modeling and Managing Financial Risks Paris, France, 10–13 January 2011

Outline

1 Introduction

- Markets
- LIBOR rates
- 2 LIBOR models
 - The driving process
 - Default-free LIBOR model
 - Defaultable LIBOR model
- 3 Approximations methods
 - Log-normal approximation
 - Numerical example
- 4 Summary and Outlook

Market size

According to the Bank for International Settlements:

	Jun 2006	Jun 2007	Jun 2008	Jun 2009
Foreign exchange	38,127	48,645	62,983	48,775
Interest rate	262,526	347,312	458,304	437,198
Equity-linked	6,782	8,590	10,177	6,619
Commodity	6,394	7,567	13,229	3,729
Credit default swaps	20,352	42,581	57,403	36,046
Unallocated	35,997	61,713	81,719	72,255
Total	370,178	516,408	683,815	604,622

Table: Notional amounts outstanding for OTC derivatives in billions of US\$

Introduction

Markets

Interest rates

Figure: Term structure of interest rates, Feb 17 2004

Introduction

Markets

Credit spreads

Figure: Term structure of Euro corporate spreads, Dec 20 2002

Evolution of interest rates

Figure: Evolution of interest rate term structure, 2003-2004

LIBOR rates

Default-free rates

Tenor: $0 < T_1 < T_2 < \cdots < T_N < T_{N+1} = T_*$, tenor length δ **B**(t, T): value of a zero coupon bond for T, B(T, T) = 1**L**(t, T): forward LIBOR rate for $[T, T + \delta]$

$$L(t, T) = rac{1}{\delta} \left(rac{B(t, T)}{B(t, T + \delta)} - 1
ight)$$

• F(t, T, U): forward price for T and U; $F(t, T, U) = \frac{B(t,T)}{B(t,U)}$

"Master" relation

$$F(t, T, T+\delta) = \frac{B(t, T)}{B(t, T+\delta)} = 1 + \delta L(t, T)$$
(1)

Defaultable bonds

- B⁰(t, T): value of a defaultable zero coupon bond with zero recovery and maturity T
- τ: time of default
- **\overline{B}(t,T): pre-default** value of the defaultable bond

$$\implies B^{0}(t,T) = \mathbb{1}_{\{\tau > t\}}\overline{B}(t,T), \quad \overline{B}(T,T) = \mathbb{1}$$

Defaultable rates and spreads

• The defaultable forward LIBOR rate for $[T_k, T_{k+1}]$ is

$$\overline{L}(t, T_k) := rac{1}{\delta} \left(rac{\overline{B}(t, T_k)}{\overline{B}(t, T_{k+1})} - 1
ight)$$

The forward LIBOR spread is

$$S(t, T_k) := \overline{L}(t, T_k) - L(t, T_k)$$

The (discrete-tenor) forward default intensity is

$$H(t,T_k) := \frac{S(t,T_k)}{F(t,T_k,T_{k+1})} = \frac{1}{\delta} \left(\frac{\overline{B}(t,T_k)}{\overline{B}(t,T_{k+1})} \frac{B(t,T_{k+1})}{B(t,T_k)} - 1 \right)$$

Aim: consistent modeling of default-free and defaultable rates

Lévy processes

- A time-inhomogeneous Lévy process $X = (X_t)_{0 \le t \le T_*}$
- R-valued stochastic process with independent increments
- the law of X_t is

$$\mathbb{E}\left[e^{iuX_t}\right] = \exp\left(\int_0^t \kappa_s(iu) \mathrm{d}s\right) \tag{2}$$

where

$$\kappa_s(iu) = iub_s - \frac{u^2c_s}{2} + \int_{\mathbb{R}} (e^{iux} - 1 - iux)F_s(dx)$$
(3)

with $b_s \in \mathbb{R}$, $c_s \in \mathbb{R}_{\geq 0}$ and F_s are Lévy measures, $\forall s \in [0, T_*]$ Assumptions: exponential moments, abs. continuous characteristics

Lévy processes

X is a special semimartingale

$$X_t = \int_0^t b_s \mathrm{d}s + \int_0^t \sqrt{c_s} \mathrm{d}W_s + \int_0^t \int_{\mathbb{R}} x(\mu^X - \nu)(\mathrm{d}s, \mathrm{d}x) \quad (4)$$

- *W*: ℙ-Brownian motion
- μ^X : random measure of jumps of X
- ν : \mathbb{P} -compensator of μ^X
- The predictable characteristics (B, C, ν) are deterministic

$$B_t = \int_0^t b_s \mathrm{d}s, \quad C_t = \int_0^t c_s \mathrm{d}s, \quad
u([0, t] imes A) = \int_0^t \int_A F_s(\mathrm{d}x) \mathrm{d}s$$

The Lévy LIBOR model (BGM, ..., Eberlein & Özkan)

- \blacksquare Tenor: 0 < $T_1 <$ $T_2 < \cdots <$ $T_N <$ $T_{N+1} =$ $T_*,$ tenor length δ
- Associate forward measures \mathbb{P}_{T_k} to tenor dates T_k

Relations:

$$\frac{\mathrm{d}\mathbb{P}_{T_k}}{\mathrm{d}\mathbb{P}_{T_{k+1}}}\Big|_{\mathcal{F}_t} = \frac{F(t, T_k, T_{k+1})}{F(0, T_k, T_{k+1})}$$
(5)

• Model: dL = L dX

The Lévy LIBOR model (BGM, ..., Eberlein & Özkan)

- Tenor: 0 < T_1 < T_2 < \cdots < T_N < T_{N+1} = T_* , tenor length δ
- Associate forward measures \mathbb{P}_{T_k} to tenor dates T_k

Relations:

$$\frac{\mathrm{d}\mathbb{P}_{T_k}}{\mathrm{d}\mathbb{P}_{T_{k+1}}}\Big|_{\mathcal{F}_t} = \frac{F(t, T_k, T_{k+1})}{F(0, T_k, T_{k+1})}$$
(5)

• Model: dL = L dX

• Problem: $F = 1 + \delta L$ yields

$$dF = \delta dL = \delta L dX = F \frac{\delta L}{1 + \delta L} dX$$
$$\iff F = F_0 \mathcal{E} \left(\int \frac{\delta L}{1 + \delta L} dX \right)$$
(6)

The Lévy LIBOR model

Backward induction construction

The dynamics of the LIBOR rate $L(\cdot, T_k)$ under $\mathbb{P}_{T_{k+1}}$ is

$$L(t, T_k) = L(0, T_k) \exp\left(\int_0^t b^L(s, T_k) ds + \int_0^t \lambda(s, T_k) dX_s^{T_{k+1}}\right)$$
(7)

where $X^{T_{k+1}}$ is a $\mathbb{P}_{T_{k+1}}$ -semimartingale

$$X^{T_{k+1}} = \int_0^{\cdot} \sqrt{c_s} dW_s^{T_{k+1}} + \int_0^{\cdot} \int_{\mathbb{R}} x(\mu^X - \nu^{T_{k+1}}) (ds, dx)$$
(8)

and

$$b^{L}(s,T_{k})=-\frac{1}{2}\lambda^{2}(s,T_{k})c_{s}-\int_{\mathbb{R}}\left(e^{\lambda(s,T_{k})x}-1-\lambda(s,T_{k})x\right)F_{s}^{T_{k+1}}(dx).$$

The Lévy LIBOR model

The $\mathbb{P}_{\mathcal{T}_{k+1}}$ -Brownian motion is

$$W_t^{T_{k+1}} = W_t^{T_*} - \int_0^t \left(\sum_{l=k+1}^N \frac{\delta L(t-,T_l)}{1+\delta L(t-,T_l)} \lambda(t,T_l) \right) \sqrt{c_s} \mathrm{d}s, \quad (9)$$

and the $\mathbb{P}_{\mathcal{T}_{k+1}}$ -compensator of μ^X is

$$\nu^{T_{k+1}}(\mathrm{d} s, \mathrm{d} x) = \prod_{l=k+1}^{N} \underbrace{\left(1 + \frac{\delta L(s-, T_l)}{1 + \delta L(s-, T_l)} \left(\mathrm{e}^{\lambda(s, T_l)x} - 1\right)\right)}_{:=\beta(s, x, T_l)} \nu^{T_*}(\mathrm{d} s, \mathrm{d} x).$$

Problem 1: X has state-dependent characteristics under $\mathbb{P}_{T_{k+1}}$ **Problem 2:** The product term grows exponentially fast

The defaultable LIBOR model

(Eberlein, Kluge & Schönbucher)

Aim: model default intensities (prespecification)

$$H(t,T_k) = H(0,T_k) \exp\left(\int_0^t b^H(s,T_k) \mathrm{d}s + \int_0^t \gamma(s,T_k) \mathrm{d}X_s^{T_{k+1}}\right). \quad (10)$$

The defaultable LIBOR model (Eberlein, Kluge & Schönbucher)

Aim: model default intensities (prespecification)

$$H(t,T_k) = H(0,T_k) \exp\left(\int_0^t b^H(s,T_k) \mathrm{d}s + \int_0^t \gamma(s,T_k) \mathrm{d}X_s^{T_{k+1}}\right). \quad (10)$$

However, we cannot choose ${\it H}$ and τ independently

• time-*t* price of claim paying $B^0(T_k, T_k) = \mathbb{1}_{\{\tau > T_k\}}$ at T_k :

$$B(t, T_k)\mathbb{E}_{\mathbb{P}_{T_k}}[1_{\{\tau > T_k\}} | \widetilde{\mathcal{F}}_t];$$

• on the other hand: $B^0(t, T_k) = \mathbb{1}_{\{\tau > t\}}\overline{B}(t, T_k).$ • Hence, on $\{\tau > t\}$

$$\overline{B}(t, T_k) = B(t, T_k) \mathbb{E}_{\mathbb{P}_{T_k}}[1_{\{\tau > T_k\}} | \widetilde{\mathcal{F}}_t]$$

while

$$H(t, T_k) = \frac{1}{\delta} \left(\frac{\overline{B}(t, T_k)}{B(t, T_k)} \frac{B(t, T_{k+1})}{\overline{B}(t, T_{k+1})} - 1 \right).$$

Defaultable LIBOR model

The defaultable LIBOR model

- Canonical construction of τ such that $H(\cdot, T_k)$ meets (10)
- X remains a Lévy process on the extended space
- Arbitrage-freeness determines the drift $b^H(\cdot, T_k) \dots$
- ... which leads to an SDE $(G := \log H)$

$$G(t, T_k) = G(0, T_k) + \int_0^t g(\omega; s, G(s-, T_k)) \mathrm{d}s + \int_0^t \gamma(s, T_k) \mathrm{d}X_s^{T_{k+1}}$$

- g: locally Lipschitz + growth condition \Rightarrow E & U of solution
- The SDE must be solved numerically!

The defaultable LIBOR model

Forward induction construction

The dynamics of default intensities $H(\cdot, T_k)$ under $\mathbb{P}_{T_{k+1}}$ is

$$H(t, T_k) = H(0, T_k) \exp\left(\int_0^t b^H(s, T_k) \mathrm{d}s + \int_0^t \gamma(s, T_k) \mathrm{d}X_s^{T_{k+1}}\right), \quad (11)$$

where $X^{T_{k+1}}$ is a $\mathbb{P}_{T_{k+1}}$ -semimartingale

$$X^{T_{k+1}} = \int_0^{\cdot} \sqrt{c_s} \mathrm{d} W_s^{T_{k+1}} + \int_0^{\cdot} \int_{\mathbb{R}} x(\mu^X - \nu^{T_{k+1}}) (\mathrm{d} s, \mathrm{d} x)$$
(12)

and

$$b^{H}(s, T_{k}) = \text{function of} \left(\sum_{l=1}^{k} \frac{\delta H(t-, T_{l})}{1 + \delta H(t-, T_{l})}, \sum_{i=k}^{N} \frac{\delta L(t-, T_{i})}{1 + \delta L(t-, T_{i})} \right)$$

Complexity of the problem

Table: Matrix of dependencies for defaultable LIBOR rates

Forward–Backward dependence in rates and intensities!

What does this mean in practice?

Consequences for LIBOR models

- 1 caplets can be priced in closed form \rightsquigarrow Black's formula
- 2 swaptions and multi-LIBOR products cannot be priced in closed form
- 3 Monte-Carlo pricing is very time consuming ~> coupled high dimensional SDEs!

Consequences for defaultable LIBOR models

- 1 even "caplets" cannot be priced in closed form!
- 2 Monte-Carlo pricing is even more time consuming.

Log-normal approximation I

(Schoenmakers et al)

Terminal measure dynamics

$$H(t, T_k) = H(0, T_k) \exp\left(\int_0^t \overline{b}(s, T_k) \mathrm{d}s + \int_0^t \gamma(s, T_k) \sqrt{c_s} \mathrm{d}W_s\right), \quad (13)$$

where

$$\overline{b}(s, T_k) = -\frac{1}{2}\gamma(s, T_k)^2 c_s - \gamma(s, T_k) c_s \sum_{l=k+1}^N V_s^l \lambda(s, T_l)$$

$$+ \gamma(s, T_k) c_s \sum_{l=1}^k \frac{Y_s^l \gamma(s, T_l)}{Y_s^l \gamma(s, T_l)} + \lambda(s, T_k) c_s \frac{V_s^k}{Y_s^l} \sum_{l=1}^{k-1} \frac{Y_s^l \gamma(s, T_l)}{Y_s^l \gamma(s, T_l)},$$
(14)

with

$$Y_s^l = rac{\delta H(s,T_l)}{1+\delta H(s,T_l)}$$
 and $V_s^l = rac{\delta L(s,T_l)}{1+\delta L(s,T_l)}.$

Aim: normal approximation for the drift term $\overline{b}(\cdot, T_k)$.

Log-normal approximation II

We describe how to treat the terms

$$\lambda(s,T_k)c_sV_s^k\frac{1}{Y_s^k}\sum_{l=1}^{k-1}Y_s^l\gamma(s,T_l).$$

Step 1: Introduce the process $M = (L^k, H^l, H^k) \in (0, \infty)^3$ and the function $C^2 \ni f : (0, \infty)^3 \to \mathbb{R}$ by

$$f(x) = \frac{\delta x_1}{1 + \delta x_1} \frac{\delta x_2}{1 + \delta x_2} \frac{1 + \delta x_3}{\delta x_3}.$$
 (15)

Thus

$$f(M_s) = V_s^k Y_s^{\prime} \frac{1}{Y_s^k}.$$
 (16)

Log-normal approximation III

Apply Itô's formula to f (and after some calculations):

$$f(M_t) = f(M_0) + \int_0^t \Gamma_s(H(s), L(s)) ds + \int_0^t \Delta_s(H(s), L(s)) dW_s, \quad (17)$$

where

$$\Gamma_{s}(H(s), L(s)) = \sum_{i \leq 3} \partial_{i} f(M_{s}) M_{s}^{i} A_{s}^{i} + \frac{1}{2} \sum_{i,j \leq 3} \partial_{ij} f(M_{s}) M_{s}^{i} M_{s}^{j} B_{s}^{i} B_{s}^{j}, \quad (18)$$

and

$$\Delta_{s}(H(s), L(s)) = \sum_{i \leq 3} \partial_{i} f(M_{s}) M_{s}^{i} B_{s}^{i}.$$
(19)

Here A^i = function of (H, L) and B^i = deterministic.

Log-normal approximation IV

Step 2: Apply Picard iteration to f(M).

The first Picard iterate is

$$f^{(1)}(M_t) = f(M_0) + \int_0^t \Gamma_s(H(0), L(0)) ds + \int_0^t \Delta_s(H(0), L(0)) dW_s,$$

where

$$\Gamma_{s}(H(0), L(0)) = \sum_{i \leq 3} \partial_{i} f(M_{0}) M_{0}^{i} A_{0}^{i} + \frac{1}{2} \sum_{i,j \leq 3} \partial_{ij} f(M_{0}) M_{0}^{i} M_{0}^{j} B_{s}^{i} B_{s}^{j},$$

and

$$\Delta_s(H(0), L(0)) = \sum_{i\leq 3} \partial_i f(M_0) M_0^i B_s^i.$$

Hence $f^{(1)}(M_t)$ is normally distributed.

Log-normal approximation V

Step 3: Approximating the terms

$$c\lambda_{k}\sum_{l=1}^{k-1}V_{s}^{k}Y_{s}^{l}\frac{1}{Y_{s}^{k}}\gamma_{l} = c\lambda_{k}\sum_{l=1}^{k-1}f_{l}(M_{s})\gamma_{l}$$
$$\approx c\lambda_{k}\sum_{l=1}^{k-1}f_{l}^{(1)}(M_{s})\gamma_{l} =:\sum_{l=1}^{k-1}f_{l}^{(1)}(M_{s})\xi_{l}, \qquad (20)$$

and applying integration by parts

$$\int_{0}^{t} \xi_{l}(s) f_{l}^{(1)}(M_{s}) ds = \int_{0}^{t} f_{l}^{(1)}(M_{s}) d\Xi_{l}(s)$$

= $f_{l}(M_{0}) \Xi_{l}(t) + \int_{0}^{t} (\Xi_{l}(t) - \Xi_{l}(s)) \Gamma_{s}(H(0), L(0)) ds$
+ $\int_{0}^{t} (\Xi_{l}(t) - \Xi_{l}(s)) \Delta_{s}(H(0), L(0)) dW_{s}.$ (21)

Log-normal approximation VI

Step 4: Finally, we arrive at the log-normal approximation $(G = \log H)$

$$G(t, T_{k}) \approx G(0, T_{k})$$

$$- \int_{0}^{t} \left(\frac{1}{2} c_{s} \gamma^{2}(s, T_{k}) + \sum_{l=k+1}^{N} \Xi_{l} \cdot E_{s}^{0}(L^{l}; H, L) - \sum_{l=1}^{k} \Xi_{l} \cdot E_{s}^{0}(H^{l}; H, L) - \sum_{l=1}^{k-1} \Xi_{l} \cdot \Gamma_{s}^{0}(H, L) \right) ds$$

$$+ \int_{0}^{t} \left(\sqrt{c_{s}} \gamma(s, T_{k}) + \sum_{l=k+1}^{N} \Xi_{l} \cdot Z_{s}^{0}(L^{l}; H, L) - \sum_{l=1}^{k} \Xi_{l} \cdot E_{s}^{0}(H^{l}; H, L) - \sum_{l=1}^{k-1} \Xi_{l} \cdot \Delta_{s}^{0}(H, L) \right) dW_{s}.$$

$$(22)$$

Data for the example

- **1** Tenor structure: 10 years, semi-annual (N = 20)
- 2 flat volatilities: $\lambda(\cdot, T_i) = 25\%$, $\gamma(\cdot, T_i) = 8\%$
- **3** flat term structure of interest rates:

$$\overline{B}(0, T_i) = \exp(-0.04T_i)$$
 and $B(0, T_i) = \exp(-0.02T_i)$

- 4 Brownian motion
- 5 Credit derivatives:
 - Reference risk: defaultable FRA, CDS
 - Counterparty risk: vulnerable call

Defaultable FRA

Reference risk

Defaultable FRA

Payoff:
$$\overline{L}(T_k, T_k) - K$$

• Model-free price: $\overline{L}(\cdot, T_k) \in \mathcal{M}(\overline{\mathbb{P}}_{T_{k+1}})$

D-FRA: numerical results

Numerical example

Credit default swap (CDS)

- Credit event: default of fixed coupon bond C
- In case of default: A receives $1 \pi(1 + c)$ from B
- Time-0 value of payments: $S \sum_{k=1}^{n} \overline{B}(0, T_{k-1})$
- CDS rate

$$\mathcal{S} = \frac{1 - \pi(1 + c)}{\sum_{k=1}^{n} \overline{B}(0, T_{k-1})} \sum_{k=1}^{n} \left(\overline{B}(0, T_k) \delta \mathbb{E}_{\overline{\mathbb{P}}_{T_k}}[H(T_{k-1}, T_{k-1})] \right).$$

CDS: numerical results

Vulnerable call option

Counterparty risk

Vulnerable call

Call option written by default-prone issuer:

$$C_{T_k} 1_{\{\tau > T_k\}} + q C_{T_k} 1_{\{\tau \le T_k\}},$$
(23)

where $C_{T_k} = (B(T_k, T_m) - K)^+$, q = recovery rate

V-Call: numerical results

Summary and Outlook

1 We have presented . . .

- approximation methods for LIBOR models
- closed, or semi-closed, form solutions
- applicable for many driving processes
- empirical evidence supportive more work needed

Summary and Outlook

1 We have presented . . .

- approximation methods for LIBOR models
- closed, or semi-closed, form solutions
- applicable for many driving processes
- empirical evidence supportive more work needed
- Z. Grbac, A. Papapantoleon, D. Skovmand Valuation of derivatives with reference and counterparty default risk in LIBOR models.

In preparation, 2011

Thank you for your attention!