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High order discretization schemes for stochastic volatility models.

- Introduction

Stochastic volatility model

Asset price (St)icp0,1] solving

dSt = rStdt +f(Yt)St(det + 1-— pdet); SO =S50 > 0
dYt = b(Yt)dt + a(Yt)th; Y() =Yo

where
@ ris the instantaneous interest rate,

@ (Bt)tepo,r] and (Wi)sepo,1] are independent standard
one-dimensional Brownian motions,

@ p € [—1,1] is the correlation,

o f.b,o :R—R.
Much attention has been paid to the discretization of the Heston
model (f(y) = /¥, b(y) = (0 —y) and o (y) = v\/Y).
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L Introduction &

Aim

dSt = rStdt +f(Yt)St(det + 1-— Pdet)
dYt = a(Yt)th + b(Yt)dt

We are interested in the case of smooth coefficients o,b : R — R
where far less has been done.
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- Introduction

Aim

dSt = rStdt +f(Yt)St(,0th + AV 1-— pdet)
dYt = O'(Yt)dwt + b(Yt)dt

We are interested in the case of smooth coefficients o,b : R — R
where far less has been done.

o Kahl & Jackel 2006 propose a scheme with a Milstein
discretization of the integrals wrt dW; and a trapezoidal
discretization of the integral wrt dB; — order of strong
convergence 1/2 and, according to numerical experiments,
smaller multiplicative constant than the Euler scheme.
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High order discretization schemes for stochastic volatility models.

L Introduction
.
Aim

dSt = rStdt +f(Yt)St(det + v 1-— pdet)
dYt = U(Yt)th + b(Yf)dt

We are interested in the case of smooth coefficients o, : R — R
where far less has been done.

o Kahl & Jackel 2006 propose a scheme with a Milstein
discretization of the integrals wrt dW; and a trapezoidal
discretization of the integral wrt dB; — order of strong
convergence 1/2 and, according to numerical experiments,
smaller multiplicative constant than the Euler scheme.

@ Our aim : take advantage of the structure of the model to
construct performant schemes both for vanilla and
path-dependent options.

Keep the possibility to replace the discretization of Y by exact
simulation in the Ornstein Uhlenbeck case.
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High order discretization schemes for stochastic volatility models.
L ntroduction &

Transformation of the SDE (1)

Logarithmic change of variable for the asset : X, & log( t) solves

4, = (r - Efzm) 4t + FY)(pdW; + /T~ 2dBy).

Removal of the term pf (Yt)th if f o are C! and o does not vanish,
def
for F(y) & [V £
Yo o

AF(Y;) = F(Y)dW, + [1 %(af — fo)| (v

Hence for (y) % r — () L+ Lof —fo")),

dX; = pdE(Yy) + h(Y:)dt + /T — p2f(Y:)dB, )
dYt = O'(Yt)th + b(Yt)dt ( )

In the stochastic integral in dX indep. of f(Y;) and dB;.

Benjamin
.

q

Modelir\rg and Managing Financial Risks

5/24



High order discretization schemes for stochastic volatility models.
|—Vam'lla options &

© Vanilla options
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High order discretization schemes for stochastic volatility models.
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Vanilla option
We want to compute the price E(e~"T¢(Sr)) = E(e~"Tg(eX7)) of the
option with
© maturity T
@ payoff g : R} — Ry

Weak approximation problem
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High order discretization schemes for stochastic volatility models.
L Vanilla options &

Vanilla option
We want to compute the price E(e~"T¢(Sr)) = E(e~"Tg(eX7)) of the
option with
© maturity T
@ payoff g: R} — Ry

Weak approximation problem

Recently schemes which do not involve iterated Brownian integrals

and achieve an order of weak convergence greater than one have

been developped.

Moment like families : Kusuoka 01 04, Ninomiya 03 03,...

Cubatures : Lyons & Victoir 04,...

Splitting and integration of ODEs : Ninomiya & Victoir 08,
Ninomiya & Ninomiya 09, Tanaka & Kohatsu-Higa 09,
Alfonsi 09,...
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High order discretization schemes for stochastic volatility models.
L Vanilla options &

Splitting for (2)
If Z, & X — pE(Y}), one has

dYt = J(Yt)th + b(Yt)dt
dZt = h(Yt)dt + vV 1- pzf(Yt)dBt

2 _ 2\
Associated operator £ = UT(}/)GW + b(y)9, + (1+)<y)azz + h(y)0,

Ly Ly

where the coefficients of £; do not depend on z — for fixed y, exact
simulation of the associated SDE possible
Strang splitting with weak order 2 for (Y, Z) : at each time-step of
length T/N, one

@ solves the SDE for Z with fixed Y up to time T/2N,

@ integrate the SDE for Y with a scheme of weak order 2 on a

time-interval with length T/N,
@ solves the SDE for Z with fixed Y up to time T/2N.
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High order discretization schemes for stochastic volatility models.
[ Vanilla options &

Specific scheme with weak order 2 for Y

ForOﬁkﬁN,lettk(i:ef’%.

We choose the Ninomiya-Victoir scheme for Y :

YN =
0o = Yo - )
v0 < k < N — 1, YN = e%be(wfkﬂ_wtk)ae%b(YN )

by tit1

where

® b(y) € b(y) -~ hoo' ),
o forv: R — R, e!”(y) denotes the solution £(t) of the ODE

{8@)=0@U»
§0)=y
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High order discretization schemes for stochastic volatility models.
[ Vanilla options &

Specific scheme with weak order 2 for Y

ForOSng,lettkd:ef’;]—T.

We choose the Ninomiya-Victoir scheme for Y :

YN =
0o = Yo - )
v0 < k < N — 1 YN = e%be(wfkﬂ_wtk)"e%h(YN )

by

where

® b(y) = bly) — Joo'(y),
o forv: R — R, e!”(y) denotes the solution £(t) of the ODE

{é’(t) = o(&(1))
§0)=y

If n(z) def foz v(l—x)dx, one has e (y) = n~(t + n(y)).
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High order discretization schemes for stochastic volatility models.
L Vanilla options &

Convergence result

Theorem 1
Assume that
° |pl #1,
@ FeC feChhedC
@ o € C° b e C* with bounded derivatives, o does not vanish,
@ infgf? >0,

@ g is measurable and such that
Jc >0, Iuec[0,2), ¥y >0, |g(y)| < cellosWI”,

Then there is a constant C not depending on N such that

C

WN € N*, [E(3(51)) — Eg())] < 15

Convergence for all measurable payoff functions ¢ with polynomial
growth.
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© Path dependent options
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High order discretization schemes for stochastic volatility models.
[ Path dependent options &

Discretization bias

Let g : C([0, T],R) — R be a Lipschitz function (Asian or lookback
option payoff) :

[EQ((St)e<r)) — EQ(EM)i<n)|<E [g((Sisr) — (B )sr))|

< 8llLipE (SUP IS¢ — §?JI> :
t<T
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High order discretization schemes for stochastic volatility models.
LPath dependent options &

Discretization bias

Let g : C([0, T],R) — R be a Lipschitz function (Asian or lookback
option payoff) :

E(g((Sir)) — BB <) <E [3((S)isr) — (5N )icr))|
< lIglluipE (SUPISt —’SVtN|> :
t<T
< : very rough. Preferably use Wasserstein metric W,

IE(g((S0)e<1)~EQ((SN)i<r)) < llglip sup [E(v((Se<r)) — E(v((SN)i<r).

llvIluip <1

WI(L(S),L(SV))

Dual formulation : Wi (£(S), £(SV)) = inf_. E (suptST 1S — gﬂ)
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High order discretization schemes for stochastic volatility models.
[ Path dependent options &

Existing schemes
dXt = (7’ -1 Z(Yt)) dt +f(Yt)(det + 1-— Pdet)
dYt = O'(Yt)th + b(Yt)dt

Milstein scheme : strong order of convergence 1 but the
commutativity condition writes of = 0 i.e. holds for
deterministic volatility
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High order discretization schemes for stochastic volatility models.
LPath dependent options Z@

Existing schemes

dXt = (7’ — %fz(yt)) dt +f(Yt)(det + 4/ 1-— Pdet)
dYt = G(Yt)th + b(Yt)dt

Milstein scheme : strong order of convergence 1 but the
commutativity condition writes of = 0 i.e. holds for
deterministic volatility

Cruzeiro Malliavin & Thalmaier 2004 : under ellipticity — scheme
with order one of convergence for W (very clever
rotation of the Brownian motion). But

@ if Y is OU, not possible to preserve order one
convergence for YW, when replacing YMT by Y in
the evolution of XMT,

@ in the perspective of statistical Romberg extrapol.
(Kebaier 05) or multi-level Monte Carlo (Giles & al
07 08 09), no coupling with strong order 1 between

. the schemes with N and 2N steps.
enjomin
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High order discretization schemes for stochastic volatility models.
L Path dependent options
P P!

Our scheme
We look for a simple scheme with order one of convergence for W;
and overcoming the previous restrictions.
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High order discretization schemes for stochastic volatility models.
I—Path dependent options &

Our scheme
We look for a simple scheme with order one of convergence for W;
and overcoming the previous restrictions.

Milstein scheme for Y : 172)’ =yoandfor0 <k <N -1

= = T | 5 1, T
b = Yo 0O 5 + o (Vi) AWei + So0’ (V) (AW,%H - N) :
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High order discretization schemes for stochastic volatility models.
LPath dependent options &

Our scheme
We look for a simple scheme with order one of convergence for W;
and overcoming the previous restrictions.

Milstein scheme for Y : ?I:J’ =yoandfor0 <k <N -1

- ~ o T ~ 1, =~ T
Yien = Yi +b() 5 + o (V) AW + 500’ (V) (AW,%H - N) :
dXt = de(Yt) + h(Yt)dt + v/ 1-— pzf(Yt)dBt
fr1 b1 2 b1
Var( F(Ys)dBs|W) = FA(Ys)ds ~ Mw 2'(v,) Ws— W, ds
ty ty N tr

XN XN (BN )~ EPY)) +h(TY) &

N =X (PO — (YY) + (W)~

tk

o (YN g1
+/1— pz\l (fz(f/al) + W/ (W, — Wtk)ds> \/]L2 ABjiq
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High order discretization schemes for stochastic volatility models.
LPath dependent options &

Convergence

Theorem 2

Assume that YN, R2N+1) is endowed with the supremum norm,
e be C}ando € Cf with infycr o(y) > 0,

o f e Ctwith 2 ¥ infyer f2(y) > 0.
N = C
3C >0, YN € N', Wi (£((Xi, Yiesn) (XY, Vi) < 5

Moreover, it is possible to couple the schemes with N and 2N steps by

‘ . > . L5
simulating (X, X;N )<y with (X} )<y = (X )k<n and

<

" N _ 2N |2p
Vp>1,3C>0, VN e N ,E(Org}ca<>§\1|th X, | ) < N

The coupling is usefull in the perspective of multi-level Monte Carlo.
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High order discretization schemes for stochastic volatility models.
LPath dependent options &

Coupling of the schemes with N and 2N steps
Let § = ;& be the step size of the scheme with 2N steps.

X5 = X+ p (F(Y05) — FYA)) + (V)3

T
TS

+V1-p2 ( 2(YA) ) (Ws — Wj&)d5> Vf? (B(s1)s — Bis)

ABN
i

2N
U5
]

Because of the independence of Y2V and B, (XN )een £ (X} )k<n where

- - T
XN =XN+p (F(Yfk’+1) - P(Y{j)) + ()
UZN A BZN 4 UZN A BZN
+ m @ % \/E 2k 2k 2k+1 2k+1
/UZN + UZN
2k 2k+1

~Ni(0,T/N) indep of w
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© Numerical results
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High order discretization schemes for stochastic volatility models.
L Numerical results &

Framework

Numerical experiments are performed with Scott’s model (f(y) = ¢’,
Y OU)

dS; = rS,dt + "1 S, (pdW; + /1 — p?dBy)
dY: = k(0 — Yy)dt + vdW;
= fly) =, bly) = x(0 —y) and o (y) = v
with the parameters found in Kahl & Jackel 2006 :
@ so = 100, yo = log(0.25),

@ r=20.05

o n:1,9=0,uz72—‘§,
o p=-02,

o T=1.
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High order discretization schemes for stochastic volatility models.
L Numerical results &

Coupling at terminal time

[6— WeakTraj_1 (C)
[— Weak_2 (C)
pk— OU_Improved (C)
IA—A 1K (€)

-14- [B— Euler (C)
AP&--Xemt

2
Figure: log (IE ((exl%l - eX%N) )> in function of log(N). Except for CMT, X}
and X7 are generated using the same single normal r.v. for the integral wrt B.

Benjamin

Model'mrg and Managing Financial Risks

19/24



High order discretization schemes for stochastic volatility models.

- Numerical results

Coupling at terminal time

OU Improved

WeakTraj 1

Weak 2

UK

Euler

CMT

-2.97

-2.02

-1.98

-1.95

-1.34

-1.08

2
Table: Slope of the regression of log <E ((ex¥ — eX%N) ) ) in terms of log(N)

@ order 3/2 for OU Improved,

® order 1 for WeakTraj 1, Weak 2 and Kahl Jackel scheme IJK,

@ order 1/2 CMT, slightly better for Euler.
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High order discretization schemes for stochastic volatility models.
L Numerical results &

Multi-level computation for the ATM Call

[®—® WeakTraj_1
—% Weak_2
pk—k OU_Improved
A=Ak

- Euler

Computation time

T T
10 3 -2 -1
10 10 10 10

Epsilon

Figure: Computation time in function of the required precision ¢
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High order discretization schemes for stochastic volatility models.
L Numerical results &

Strong convergence with coupling

- [0—# weakTraj_1 (C)
[>—% Weak_2 (C)
pk—% OU_improved (C)
IA—A 1k ()

B— Euler (C)

N 2N

2
Figure: log (IE (maxongN (eX’k — & ) >> in function of log(N). Modified

Benjamin iNcrements of B for the scheme with N steps.
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High order discretization schemes for stochastic volatility models.
L Numerical results &

Strong convergence with coupling

OU Improved | WeakTraj1 | Weak2 | IJK | Euler
-1.99 -1.92 -091 | -0.95 | -0.85

. XN X2 .
Table: Slope of the regression of log | E [ maxo<i<n (e ke — e ) in
terms of log(N). Modified increments of B for the scheme with N steps.

@ order 1 for OU Improved and WeakTraj 1,
@ order 1/2 for Weak 2, IJK and Euler,
@ No coupling possible for CMT.
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High order discretization schemes for stochastic volatility models.

[ Numerical results

A

Multi-level computation for the Lookback Call

Computation time x Epsilon’f

[ weaxtraj_t

0—0 weak_2

—* ou_tmproved
13K

p— culer
pe—x_cur

—_— ]

Epsilon

Figure: Computation time multiplied by the square of the required precision
¢ in in function of € (payoff St — min;c[o, 1 )
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