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THE FRAMEWORK

X = log price of a stock / index / foreign exchange rate, or

X = spot interest rate, univariate in this talk

AOA consistent model ⇒ X SM

most SM mds used in finance: Itô SM

dXt = atdt + σtdWt + dJt, t ∈ [0, T ], X0 ∈ IR

W standard Brownian motion

J pure jump SM with possibly IA jumps

J is said of finite activity (FA) if the paths jump finitely many times

on each finite time interval, e.g. Compound proc. Poisson

J is said of infinite activity (IA) otherwise, e.g. α-stable proc.
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Jt ≡ J1t + J̃2t

.
=

∫ t

0

∫

x∈IR,|γs(x)|>1
γs(x)µ(ds, dx) +

∫ t

0

∫

x∈IR,|γs(x)|≤1
γs(x)µ̃(ds, dx),

µ̃(dt, dx) = µ(dt, dx)− νω,t(dx)dt compensated µ.
µ Poisson random measure, ν Lévy measure of J

X Ito SM: absolutely continuous characteristics/Lebesgue dt

Property: J1t always FA, J̃2t possibly IA

Special case where J Lévy jumps: γx(x) ≡ x, νω,t(dx) ≡ ν(dx)

Observations: {x0, Xt1, ..., Xtn−1, XT}, {ti = i∆}i, partition of [0, T ],
T = n∆ fixed

PROBLEM
Estimation of IV

.
=

∫ T
0 σ2

s ds
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FIRST ISSUE: Model class uncertainty

has the drift part a specific feature (mean reverting/parametric ...)?

has the volatility coeff. e.g. exponential mean reverting dynamics?

have the jump sizes a specific law?

is the jump component necessary? numerous tests devised in the

literature in this framework (starting from Barndorff-Nielsen & Shep-

hard 2006) find empirical evidence of jumps in some assets

is the IA jump component necessary? Lee & Hannig (2010), Ait-

Sahalia & Jacod (in press) find empirical evidence of IA jumps in

some assets

is the Brownian component necessary? Cont & Mancini (in press),

Ait-Sahalia & Jacod (2010) find empirical evidence of it in some

assets, CGMY (2002) estimate W is absent in some others
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NONPARAMETRIC ESTIMATORS are desirable

Our approach: any a, σ nonanticipative cadlag processes

these include most of the models used in finance (diffusions, jump-

diffusions, stochastic volatility models with jumps, Lévy models,

etc.)

exclude e.g. fractional BM (no SM), Multi fractal models (SM no

Itô )



Fine measure of the amount of activity of the jump part J

For any Lévy process we have
∫

|x|≤1
x2ν(dx) < +∞

however for powers η < 2 the integral can be ∞, meaning many

jumps less than 1 in absolute value.

Blumenthal-Getoor index (BG) of J:

α
.
= inf{η :

∫

|x|≤1
xην(dx) < +∞} ∈ [0,2]

α measures the amount of jump activity

α > 0 ⇒ IA jumps, meaning
∫
|x|≤1 ν(dx) = +∞ jump frequency per

unit time

The only Lévy process with FA jumps is compound Poisson
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Examples

compound Poisson pr., Gamma pr., Variance Gamma pr. ⇒ α = 0

α-stable pr. ⇒ BG index = α

NIG pr., Generalized Hyperbolic Lévy motion ⇒ α = 1.

CGMY model ⇒ BG index = Y

α < 1 ⇒ J finite variation (fV), meaning
∫
|x|≤1 |x|ν(dx) < +∞

α > 1 ⇒ J infinite variation (iV)

Generalizations of BG index for SM have been devised in the recent

literature (Woerner 2006, Ait-Sahalia & Jacod 2009, Todorov &

Tauchen 2010)
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Notation.

∆iZ
.
= Zti − Zti−1 increment of Z on ]ti−1, ti]

∆Jt
.
= Jt − Jt− size of the jump (eventually) occurred at time t

IV =
∫ T
0 σ2

udu integrated variance

IQ
.
=

∫ T
0 σ4

udu integrated quarticity

7



ESTIMATING IV

When no jumps

dXt = atdt + σtdWt

then as ∆ → 0
n∑

i=1

(∆iX)2
P→

∫ T

0
σ2

udu.

However when

dXt = atdt + σtdWt + dJt

then
∑

i

(∆iX)2
P→

∫ T

0
σ2

udu +
∑

t≤T

(∆Jt)
2.

How to disentangle diffusion part / jump part?
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MOTIVATION

∑
i(∆iX)2 is a measure of the global risk affecting the asset. Sep-

arating is needed for:

1. Hedging

Bjork, Kabanov & Runggaldier (1997), Andersen, Bollerslev & Diebold

(2007): show that, in the dynamics of a pf, Brownian risk and jump

risk are amplified by different coeff. ⇒ need of capturing them sep-

arately

consequently

* different risk premiums for W and J risks: ÎV allows premiums

assessment Wright & Zhou (2007)

* portfolio selection (Mykland & Zhang, 2006)

* derivatives pricing (Duffie, Pan & Singleton, 2000)
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2. Model selection

* ÎV used for testing the presence of jumps (Barndorff-Nielsen &

Shephard (2006))

* ÎV used for testing the presence of σ.W (Cont & Mancini, in press)

3. Volatility forecasting

* including separate IV and [J]T contributions in econometric mod-

els for X evolution improves the forecasting ability (Andersen, Boller-

slev & Diebold, 2007, Corsi, Pirino & Renò, 2010)



LITERATURE

Non-parametric ÎV estimators based on discrete observations in our

framework

In the presence of only FA jumps

* Quantile based Bipower variation (Christensen, Oomen & Podol-

skij, 2010)

* MinRV, MedRV (Andersen, Dobrev & Schaumburg, 2009)

* Realized outlyingness weighted variation (Boudt, Croux & Lau-

rent, 2010)

* Range based estimation (Christensen & Podolskij, 2009)

* Generalized range (Dobrev, 2007)
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* Duration based estimation (Andersen, Dobrev & Schaumburg,

2009)

* Wavelet method (Fan & Wang, 2008)

In the presence of also IA jumps

bipower or multipower variations of Barndorff-Nielsen & Shephard

(2006)

threshold estimator of Mancini (2001)

threshold-bipower estimator: Corsi Pirino Renò (2010), Vetter

(2010)



The only efficient estimator (minimal asymptotic variance) in the

presence of IA fV jumps is the Threshold estimator

Simulations

MODEL 1. FA J, stochastic σ correlated with W :

dXt = σtdW
(1)
t + dJt,

Jt =
∑Nt

j=1 Zj, Zj ∼ N (0,0.62), N Poisson, λ = 5

σt = eHt, dHt = −k(Ht− H̄)dt+νdW
(2)
t , d < W (1), W (2) >t= ρdt.

ρ = −0.7 (SVJ1F model of Huang & Tauchen, 2005)

a path of σ within [0, T ] varies most between 10% and 50%

relative amplitudes of the jumps of S, in absolute value, most be-

tween 0.01 and 0.60
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MODEL 2. IA and fV J, constant σ

dXt = 0.3dWt + dJt,

Jt = cGt + ηBGt
Variance Gamma process: B std BM ⊥ G Gamma

process

b = V ar(G1) = 0.23, c = −0.2, η = 0.2, Madan (2001) model
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Threshold method basic tool:

Identification of the jump times

1) FINITE JUMP ACTIVITY: Jt ≡ J1t =
∑Nt

j=0 γτj

KEY THEOREM

r(∆) deterministic function of the step ∆ such that

lim
∆→0

r(∆) = 0, and lim
∆→0

∆log 1
∆

r(∆)
= 0, then

P-a.s. ∃∆̄(ω) > 0 s.t. ∀∆ ≤ ∆̄(ω) we have ∀i = 1, ..., n,

I{∆iN=0}(ω) = I{(∆iX)2≤r(∆)}(ω)

a jump occurred iff I{(∆iX)2>r(∆)}(ω).
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Why? (idea)

the increments of a BM tend a.s. to zero as the deterministic
function

√
2∆ ln 1

∆:

a.s. lim
∆→0

sup
i∈{1,...,n}

|∆iW |√
2∆ log 1

∆

≤ 1.

The stochastic integral σ.W is a time changed BM ⇒

a.s. sup
i∈{1,...,n}

|∆iσ.W |√
2∆ log 1

∆

≤ M(ω) < ∞, M(ω) = sup
s∈[0,T ]

|σ(ω)|+ 1

drift part negligible

⇓
a.s. for small ∆, if (∆iX)2 is larger than r(∆) > 2∆ ln 1

∆, it is likely
that some jumps occurred.
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2) INFINITE ACTIVITY JUMPS

Jt ≡ J1t + J̃2t

.
=

∫ t

0

∫

x∈IR,|γ(x)|>1
γ(x)µ(ds, dx) +

∫ t

0

∫

x∈IR,|γ(x)|≤1
γ(x)µ̃(ds, dx),

we have

I{(∆iX)2≤r(∆)} ≈ I{∆iJ1=0,(∆iJ̃2)2≤4r(∆)}

I{(∆iX)2>r(∆)} accounts for

the FA jumps and the IA jumps bigger than 2
√

r(∆)
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Estimate of IV, general SM jumps

ÎV n =
n∑

i=1

(∆iX)2I{(∆iX)2≤r(∆)}

THEOREM

As soon as
∫
x∈IR 1 ∧ γ2(x, ω, t)dx is locally bounded, then as ∆ → 0

ÎV
P→

∫ T

0
σ2

t dt.
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Remarks.

• r(∆) = ∆β for any β ∈]0,1[ satisfies the conditions on r(∆)

• not evenly spaced observations: (∆iX)2 vs r(maxi ∆ti) or, equiv-

alently, (∆iX)2 vs r(∆ti)

• When J FA, we estimate the jump times

N̂
(n)
t

.
=

∑

i: ti≤t

I{(∆iX)2>r(∆)},

consistent as T →∞ and ∆ → 0, and jump sizes

γ̂(i) .
= ∆iXI{(∆iX)2>r(∆)}

∀i is a consistent estimate of γ(i), the first jump size (if ∆iN ≥ 1)

on ]ti−1, ti]
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Speed of convergence of ÎV n

J Lévy process, jump measure µ(dx, dt), Lévy measure ν(dx)

Assume Let ∃α ∈ [0,2] :
∫

|x|≤ε
x2ν(dx) ∼ ε2−α, as ε → 0,

Then α BG index of J

compound Poisson, Gamma, VG, NIG, Stable, CGMY processes

satisfy the condition

Assume σ 6≡ 0, r(∆) = ∆β, β ∈]0,1[

then
18



• if α < 1 then for β sufficiently large
(
β > 1

2−α ∈ [1/2,1[
)

ÎV − ∫ T
0 σ2

t dt√
2∆ÎQ

d→ N (0,1) ;

where for any α ∈ [0,2]

ÎQ
.
=

1

3

∑
i(∆iX)4I{(∆iX)2≤r(∆)}

∆
P→ IQ =

∫ T

0
σ4

t dt.

Thus AV ar = 2IQ

• if α ≥ 1 then, for any β ∈]0,1[,

ÎV − ∫ T
0 σ2

t dt√
2∆ÎQ

P→ +∞,
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Remark. Consistent result with Jacod (2008) where J more general

jump component but σ Itô SM

However: Ait-Sahalia & Jacod (2008) find Fisher information for

IV in the case J Lévy and argue that minimal converging rate to

estimate IV still is
√

∆ when J has iV

Thus: for α > 1 inefficient estimator

How far is the Threshold estimator form efficiency?



Assumption J is symmetric α-stable.

Theorem Take r(∆) = c∆β, β ∈]0,1[, c ∈ IR. Then as ∆ → 0

ÎV − IV
P∼
√

∆Z∆ + r(∆)1−α/2, (1)

where Z∆
st→ N , and N denotes a standard normal random variable.

Remark. The term
√

∆Z∆ is due to the presence of W within X

r(∆)1−α/2 is led by the sum of the jumps of X smaller in absolute

value than
√

r(∆).
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COMPLETE PICTURE

ÎV ∆−IV√
2∆ IQ

st→ N if σ 6≡ 0 and α < 1, β > 1
2−α

ÎV ∆ − IV
P∼ r(∆)1−α/2

if σ ≡ 0 or
if σ 6≡ 0 and α < 1, β ≤ 1

2−α or

if σ 6≡ 0 and α ≥ 1

OPEN PROBLEM

finding non-parametric efficient estimator of IV in the presence of

iV jumps

It is important because:

* we have empirical findings that iV jumps can occur

* much more precise risks estimates would be available
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IF NEEDED

bipower variation of X

Vr,s(X) :=
n∑

i=2

|∆iX|r|∆i−1X|s

THEOREM (Woerner, 2006)

if α < 1; X has no drift part; σ is càdlàg, a.s. strictly positive,
has paths regular enough and is independent of W ; if r, s > 0,
max(r, s) < 1 and r + s > α/(2− α) then as ∆ → 0

∆1−r/2−s/2Vr,s(X)− µsµr
∫ T
0 σr+s

u du
√

∆
√

CBPV
∫ T
0 σ2r+2s

u du

d→ N (0,1),

where CBPV = µ2rµ2s+2µrµsµr+s −3µ2
rµ2

s , µr = E[|Z|r], Z ∼ N (0,1)

e.g. r = s = 1 ⇒ CBPV = 2.6
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infr,s≤2 CBPV = 2 when r = 0, s = 2 (but then BPV does not

estimate IV in the presence of jumps)



multipower variation

Vr1,..,rk(X) :=
n∑

i=k

|∆iX|r1|∆i−1X|r2...|∆i−kX|rk.

THEOREM

if α < 1; if ri > 0 for all i = 1..k, maxi ri < 1 and
∑

i ri > α/(2 − α)

then as ∆ → 0

∆1−∑
i ri/2 Vr1,..,rk(X)− µr1µr2 · · · µrk

∫ T
0 σ

∑
i ri

u du

√
∆

√
CMPV

∫ T
0 σ

2
∑

i ri
u du

d→ N (0,1),

CMPV =
k∏

p=1
µ2rp+2

k−1∑
i=1

i∏
p=1

µrp

k∏
p=k−i+1

µrp

k−i∏
p=1

µrp+rp+i
−(2k−1)

k∏
p=1

µ2
rp
.

The integrals at denominators can be estimated using in turn the

multipower variations.
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Statistics of the considered normalized biases: MD1

pct is the percentage of the 5000 realizations for which the nor-

malized bias is in absolute value larger than 1.96 (asymptotic value

0.05).

mean and StDev are the mean and the standard deviation of the

5000 values assumed by the normalized bias of each estimator

(asymptotic values 0 and 1).

Threshold V1,1-Log V1/3,1/3 V2/3,2/3,2/3 V0.99,0.02,0.99

pct 0.0558 0.9586 0.4122 0.8056 0.9624
mean -0.1260 -10.1758 1.6686 3.6479 11.3959
StDev 1.0235 6.9555 1.1895 2.0914 12.1050
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MD2
Threshold V1,1-Log V1/3,1/3 V2/3,2/3,2/3 V0.99,0.02,0.99

pct 0.0536 0.5402 0.1606 0.2760 0.5126
mean 0.2570 -2.1264 0.9677 1.3172 2.0289
StDev 0.9850 1.3110 1.0143 1.0433 1.3096
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