Modelling Extreme Dependence for Multivariate Data

Damien Bosc, joint work with Alfred Galichon

Département d'Economie Ecole Polytechnique & Axa-IM

11/1/2011

Investigate notion of 'multivariate' dependence and extreme multivariate dependence.

- univariate dependence = dependence between real r.v \rightarrow copula framework applies.
- multivariate dependence = dependence between two random vectors / multivariate laws of probability.

As with bivariate copulas, marginals laws p and q are fixed; but they are multivariate, i.e. laws on \mathbb{R}^n . A *coupling* between p and q is a law of a couple (X, Y) with $X \sim p, Y \sim q$. The set of all couplings between p and q is denoted $\Pi(p, q)$. In the univariate case, the strongest dependence between two random variables is given by upper Fréchet Copula:

$$C(u_1, u_2) = \min(u_1, u_2)$$

A couple (X, Y) exhibiting upper Fréchet dependence maximizes the covariance

$$\mathsf{E}(XY) = \sup_{\substack{ ilde{X} \sim X \\ ilde{Y} \sim Y}} \mathsf{E}(ilde{X} \, ilde{Y})$$

In higher dimensions, there is no notion of copula between multivariate vectors: no 'natural' notion of Fréchet multivariate dependence exists. One possible extension: maximum correlation coupling is the coupling π s.t.

$$\mathsf{E}_{\pi}(X'Y) = \sup_{\substack{ ilde{X} \sim X \ ilde{Y} \sim Y}} \mathsf{E}(ilde{X}' ilde{Y})$$

When p and q do not charge small sets, there exists a unique gradient of convex function $\nabla \varphi$ such that $Y = \nabla \varphi(X) a.s.$ In general, there exists a convex l.s.c function φ such that $Y \in \partial \varphi(X)$ a.s.

This is not fully satisfactory as it involves only component-wise covariances; the notion of cross dependence is not accounted for. Our goal is to define a more general notion of extreme dependence that yields more extremally dependent couplings. As with the maximum correlation coupling, our solution involves second order cross-moments of X and Y: the object of interest is the cross-covariance matrix of (X, Y). As a single vector in \mathbb{R}^{2n} , its covariance matrix is

$$Cov((X, Y)) = \left(\begin{array}{c|c} Cov(X) & \mathbf{E}(XY') \\ \hline \mathbf{E}(XY')' & Cov(Y) \end{array} \right)$$

- The diagonal blocks are known (they do not depend on the coupling).
- For convenience we write $\sigma_{X,Y} = \mathbf{E}(XY') = (\mathbf{E}(X_iY_j))_{i,j}$.

• Example: if
$$p = q = \mathcal{N}(0, Id_2)$$
, $X = Y \Rightarrow \sigma_{X,Y} = Id_2$.

- A simple example is to consider two bivariate laws $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ and $Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$.
- One can project any coupling between X and Y in the plane by considering the coordinates $(\mathbf{E}(X_1Y_1), \mathbf{E}(X_2Y_2))$.
- We obtain the image of $\Pi(p,q)$: this is the set of attainable covariances, called the *covariogram*.

Attainable covariances and Covariogram

More generally, the *covariogram* C(p, q) is the set $\{\sigma_{\pi} : \pi \in \Pi(p, q)\}$.

Definition of Extreme Couplings

A coupling π has extreme dependence if σ_{π} lies on the boundary $\partial C(p, q)$ of the covariogram.

A variational characterization of extremal couplings

The following conditions are equivalent: i) $(X, Y) \sim \pi \in \Pi(p, q)$ have extreme dependence; ii) there exists $M \in \mathbf{M}_n(\mathbb{R}) \setminus \{0\}$ such that

$$Tr\left(M'\sigma_{\pi}\right) = \sup_{\pi' \in \Pi(p,q)} Tr\left(M'\sigma_{\pi'}\right) \tag{1}$$

or equivalently $\mathbf{E}_{\pi}(X'MY) = \sup_{\pi' \in \Pi(p,q)} \mathbf{E}_{\pi'}(X'MY)$ iii) there exists $M \in \mathbf{M}_n(\mathbb{R}) \setminus \{0\}$ and a convex function u on \mathbb{R}^n such that $M.Y \in \partial u(X)$ holds almost surely.

 \rightarrow There are thus many extremally dependent couplings.

If C is a compact *basis* (convex set such that $0 \notin C$) in $M_n(\mathbf{R})$ then

$$\mathcal{K}(\mathcal{C}) = \{y \in \mathbf{M}_n(\mathbb{R}) | \operatorname{Tr}(x'y) \ge 0, \forall x \in \mathcal{C} \}$$

is a closed convex cone.

A conic strict (partial) order is defined on $\mathbf{M}_n(\mathbb{R})$ by

$$A \succ_C B$$
 if $A - B \in Int(K(C))$

Example: Positive Definite Order

 $C = \{S \in S_n^+(\mathbb{R}) | Tr(S) = 1\}, K(C) \text{ is the set of matrices } M$ whose symmetric part, $\frac{M+M'}{2}$ is semi-definite positive. **Problem: Which couplings** π yield a σ_{π} maximal for \succ_C ? We say that these couplings exhibit *positive extreme dependence* with respect to \succ_C .

 \rightarrow for instance the maximal correlation coupling has positive extreme dependence with respect to \succ_C whenever $Id \in C$.

Variational characterization of positive extreme dependence

The following conditions are equivalent: i) $(X, Y) \sim \pi \in \Pi(p, q)$ have extreme positive dependence with respect to \succ_C ;

ii) there exists $M \in C$ such that

$$Tr(M'\sigma_{\pi}) = \sup_{\pi' \in \Pi(\rho,q)} Tr(M'\sigma_{\pi'})$$
(2)

or equivalently $\mathbf{E}_{\pi}(X'MY) = \sup_{\pi' \in \Pi(p,q)} \mathbf{E}_{\pi'}(X'MY)$; iii) there exists $M \in C$ and a convex function u such that $M.Y \in \partial u(X)$ holds almost surely.

Example: $p = \mathcal{N}(0, I_2)$ and $q = \mathcal{N}(0, 1) \otimes \mathcal{U}_{(0,1)}$. (X, (X₁, U)), $U \sim \mathcal{U}_{(0,1)}$ independent from (X₁, X₂) is not the maximum correlation coupling but satisfies (2) with $M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Covariogram and positive extreme couplings

Figure: Positive orthant order

Covariogram and positive extreme couplings (2)

Figure: Location of positive extreme couplings

Damien Bosc, joint work with Alfred Galichon Modelling Extreme Dependence for Multivariate Data

Finding extreme couplings: entropic relaxation

The problem $\mathbf{E}_{\pi}(X'MY) = \sup_{\pi' \in \Pi(p,q)} \mathbf{E}_{\pi'}(X'MY)$ is relaxed by entropic penalization:

$$W(M,T) = \max_{\pi} \mathbf{E}(X'MY) + TEnt(\pi)$$
(3)

 $Ent(\pi)$ is the *entropy* of π , defined as $-\mathbf{E}_{\pi}(\log(\pi(X, Y)))$. Homogeneity in (M, T): we set the temperature at 1. We then aim at finding \hat{M} s.t

 $\sigma_{\hat{\pi}} = \sigma_{\pi(\widehat{M})}$ where $\pi(M)$ is a solution of solution of (3)

 \hat{M} is called the *affinity matrix* of $\hat{\pi}$. As $\nabla_M W(M, 1) = \sigma_{\pi(M)}$, it thus amounts to solve :

$$\min_{M} W(M,1) - \sigma_{\hat{\pi}} \cdot M \tag{4}$$

which is a convex minimization problem.

Filled covariogram

Algorithm : Iterative Proportional Fitting Procedure

The solution π of (3) can be shown to take the form:

$$\log \pi(x, y) = x'My + u(x) + v(y), \quad u \in L^1(dp), v \in L^1(dq)$$

u and *v* must be adjusted so that $\pi \in \Pi(p, q)$. This is the purpose of IPFP (Deming & Stephan 1940, Von Neumann 1950). Recursion scheme :

$$\begin{cases} e^{u_{n+1}(x)} = \frac{p(x)}{\int e^{x'My+v_n(y)}dy} \\ e^{v_{n+1}(x)} = \frac{q(y)}{\int e^{x'My+u_{n+1}(x)}dx} \end{cases}$$

We consider the time series of daily returns on S&P 500 and DJ EUROSTOXX subsectors: construction, health care and financials.

We introduce
$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$
, $Y = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix}$ with,

$X_1 =$	return on the S&P 500 construction sector
$X_2 =$	return on the S&P 500 health care sector
$X_3 =$	return on the S&P 500 financial sector

Y is defined in the same manner for the DJ Eurostoxx.

Multivariate discrete laws are defined from historical data X_t and Y_t :

$$p = rac{1}{N}\sum_{t=1}^N \delta_{X_t} \quad , \quad q = rac{1}{N}\sum_{t=1}^N \delta_{Y_t}$$

For historical data spanning 5 years between september 2004 and september 2009 one gets the following results :

# of components	2	3
Â	$\left(\begin{smallmatrix} 0.23 & -0.14 \\ -0.10 & 0.40 \end{smallmatrix}\right)$	$\left(\begin{array}{rrr} 0.25 & -0.139 & -0.37 \\ -0.39 & 0.44 & -0.80 \\ -0.57 & -0.15 & 0.86 \end{array}\right)$
error = $\frac{ \sigma_{\hat{M}} - \sigma_{\hat{\pi}} }{ \sigma_{\hat{\pi}} }$	pprox 0.1%	< 0.2 %

Example of trajectory

Damien Bosc, joint work with Alfred Galichon Modelling Extreme Dependence for Multivariate Data

The empirical coupling $\hat{\pi}$ is thus associated with a $\pi(\widehat{M}, T = 0)$ which maximizes

$$\mathbf{E}_{\pi}(X'\hat{M}Y), \ \pi\in\Pi(p,q)$$

Singular value decomposition on \hat{M} yields $\hat{M} = USV'$ where U, V are unitary and S diagonal nonnegative. $(\tilde{X}, \tilde{Y}) = (\sqrt{S}U'X, \sqrt{S}VY)$ has maximum correlation. **Ex:** with 3 components, we obtain

$$\begin{split} \tilde{X} &= \begin{pmatrix} -0.42X_1 + 0.95X_2 - 0.019X_3\\ -0.64X_1 - 0.27X_2 + 0.26X_3\\ 0.11X_1 + 0.06X_2 + 0.35X_3 \end{pmatrix} \\ \tilde{Y} &= \begin{pmatrix} -0.30Y_1 + 0.99Y_2 - 0.13Y_3\\ -0.67Y_1 - 0.16Y_2 + 0.28Y_3\\ 0.12Y_1 + 0.08Y_2 + 0.34Y_3 \end{pmatrix} \end{split}$$

 \rightarrow two indices most correlated to one another.

Application to dependence stress testing

The dependence between two set of assets X and Y, with cross-covariance matrix σ , can be stressed:

- **1** based on empirical data, the dependence between X and Y is stressed by building a sequence σ_T with $T \rightarrow 0$.
- 2 by considering the maximum correlation coupling
- 3 by considering the cross-correlation matrices $corr_{\rho} = \begin{pmatrix} \rho & \dots & \rho \\ \vdots & \vdots \\ \rho & \dots & \rho \end{pmatrix}$ yielding cross-covariance matrices σ_{ρ} and letting $\rho \to 1$.

Example: An investor solves the mean-variance allocation problem

$${\sf max}_\omega\mu'\omega-{\lambda\over 2}\omega'\Sigma\omega$$

yielding $w_{opt} = \frac{1}{\lambda} \Sigma^{-1} \mu$. The matrix Σ is stressed into $\tilde{\Sigma}$, generating the unexpected variance $w'_{opt} \tilde{\Sigma} w_{opt}$.

Results

- **1** The investor faces a 7.5% increase of the variance as $T \rightarrow 0$.
- 2 Maximum Correlation coupling: the variance is 12% lower than the expected variance $w'_{opt} \Sigma w_{opt}$.
- **3** σ_{ρ} : admissibility problem. The resulting covariance matrix $\begin{pmatrix} Cov(X) & \sigma_{\rho} \\ \sigma'_{\rho} & Cov(Y) \end{pmatrix}$ is not necessarily semidefinite positive. In this example, $\rho_{max} = 74\%$ and it yields a variance that is 13% lower than the maximal variance found with the first method.

 \rightarrow The maximum correlation coupling might not be a proper means to increase dependence as it disregards the cross dependence.

 \rightarrow The proposed method has the advantage of providing admissible covariance matrices.

The same ideas apply to pricing of multi-underlyings european options.

- We proposed a new notion of extreme dependence in the multivariate case.
- It is linked to the maximization of cross-covariance matrices with respect to conic orders.
- To every coupling between multivariate laws (historical, simulated ...) we can associate an extremal coupling.
- It yields a natural construction of indices of maximum correlation.
- It can be applied to build scenarios where the dependence becomes extreme.