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Motivation

Investigate notion of ‘multivariate’ dependence and extreme
multivariate dependence.

univariate dependence = dependence between real r.v →
copula framework applies.

multivariate dependence = dependence between two random
vectors / multivariate laws of probability.

As with bivariate copulas, marginals laws p and q are fixed ; but
they are multivariate, i.e. laws on Rn.
A coupling between p and q is a law of a couple (X ,Y ) with
X ∼ p, Y ∼ q.
The set of all couplings between p and q is denoted Π(p, q).
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Introduction

In the univariate case, the strongest dependence between two
random variables is given by upper Fréchet Copula:

C (u1, u2) = min(u1, u2)

A couple (X ,Y ) exhibiting upper Fréchet dependence maximizes
the covariance

E(XY ) = sup
X̃∼X
Ỹ∼Y

E(X̃ Ỹ )

In higher dimensions, there is no notion of copula between
multivariate vectors: no ’natural’ notion of Fréchet multivariate
dependence exists.
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Introduction 2

One possible extension: maximum correlation coupling is the
coupling π s.t.

Eπ(X ′Y ) = sup
X̃∼X
Ỹ∼Y

E(X̃ ′Ỹ )

When p and q do not charge small sets, there exists a unique
gradient of convex function ∇ϕ such that Y = ∇ϕ(X ) a.s. In
general, there exists a convex l.s.c function ϕ such that
Y ∈ ∂ϕ(X ) a.s.
This is not fully satisfactory as it involves only component-wise
covariances; the notion of cross dependence is not accounted for.
Our goal is to define a more general notion of extreme dependence
that yields more extremally dependent couplings.
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More on cross-covariance

As with the maximum correlation coupling, our solution involves
second order cross-moments of X and Y : the object of interest is
the cross-covariance matrix of (X ,Y ). As a single vector in R2n,
its covariance matrix is

Cov((X ,Y )) =

(
Cov(X ) E(XY ′)

E(XY ′)′ Cov(Y )

)

The diagonal blocks are known (they do not depend on the
coupling).

For convenience we write σX ,Y = E(XY ′) = (E(XiYj))i ,j .

Example: if p = q = N (0, Id2), X = Y ⇒ σX ,Y = Id2.
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Projecting couplings in the plane

A simple example is to consider two bivariate laws X =
(

X1
X2

)
and Y =

(
Y1
Y2

)
.

One can project any coupling between X and Y in the plane
by considering the coordinates (E(X1Y1),E(X2Y2)).

We obtain the image of Π(p, q) : this is the set of attainable
covariances, called the covariogram.
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Attainable covariances and Covariogram

More generally, the covariogram C(p, q) is the set {σπ : π ∈ Π(p, q)}.
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Extreme couplings induced from the covariogram

Definition of Extreme Couplings

A coupling π has extreme dependence if σπ lies on the boundary
∂C(p, q) of the covariogram.

A variational characterization of extremal couplings

The following conditions are equivalent:
i) (X ,Y ) ∼ π ∈ Π (p, q) have extreme dependence;
ii) there exists M ∈Mn(R)\{0} such that

Tr
(
M ′σπ

)
= sup

π′∈Π(p,q)
Tr
(
M ′σπ′

)
(1)

or equivalently Eπ(X ′MY ) = supπ′∈Π(p,q) Eπ′(X ′MY )
iii) there exists M ∈Mn(R)\{0} and a convex function u on Rn

such that M.Y ∈ ∂u (X ) holds almost surely.

→ There are thus many extremally dependent couplings.
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Conic orders on cross-covariance matrices

If C is a compact basis (convex set such that 0 /∈ C ) in Mn(R)
then

K (C ) = {y ∈Mn(R)|Tr(x ′y) ≥ 0, ∀x ∈ C}

is a closed convex cone.
A conic strict (partial) order is defined on Mn(R) by

A �C B if A− B ∈ Int(K (C ))

Example: Positive Definite Order
C = {S ∈ S+

n (R)|Tr(S) = 1}, K (C ) is the set of matrices M
whose symmetric part, M+M′

2 is semi-definite positive.
Problem: Which couplings π yield a σπ maximal for �C?
We say that these couplings exhibit positive extreme dependence
with respect to �C .
→ for instance the maximal correlation coupling has positive
extreme dependence with respect to �C whenever Id ∈ C .
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Main result on maximizing cross-covariance matrices

Variational characterization of positive extreme dependence

The following conditions are equivalent:
i) (X ,Y ) ∼ π ∈ Π (p, q) have extreme positive dependence with
respect to �C ;
ii) there exists M ∈ C such that

Tr
(
M ′σπ

)
= sup

π′∈Π(p,q)
Tr
(
M ′σπ′

)
(2)

or equivalently Eπ(X ′MY ) = supπ′∈Π(p,q) Eπ′(X ′MY );
iii) there exists M ∈ C and a convex function u such that
M.Y ∈ ∂u (X ) holds almost surely.

Example: p = N (0, I2) and q = N (0, 1)⊗ U(0,1).
(X , (X1,U)), U ∼ U(0,1) independent from (X1,X2) is not the
maximum correlation coupling but satisfies (2) with M = ( 1 0

0 0 ).
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Covariogram and positive extreme couplings

Figure: Positive orthant order

Damien Bosc, joint work with Alfred Galichon Modelling Extreme Dependence for Multivariate Data



Covariogram and positive extreme couplings (2)

Figure: Location of positive extreme couplings
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Finding extreme couplings: entropic relaxation

The problem Eπ(X ′MY ) = supπ′∈Π(p,q) Eπ′(X ′MY ) is relaxed by
entropic penalization:

W (M,T ) = max
π

E(X ′MY ) + TEnt(π) (3)

Ent(π) is the entropy of π, defined as −Eπ
(

log(π(X ,Y ))
)
.

Homogeneity in (M,T ): we set the temperature at 1. We then
aim at finding M̂ s.t

σπ̂ = σ
π(M̂)

where π(M) is a solution of solution of (3)

M̂ is called the affinity matrix of π̂.
As ∇MW (M, 1) = σπ(M), it thus amounts to solve :

min
M

W (M, 1)− σπ̂ ·M (4)

which is a convex minimization problem.
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Filled covariogram
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Algorithm : Iterative Proportional Fitting Procedure

The solution π of (3) can be shown to take the form:

log π(x , y) = x ′My + u(x) + v(y), u ∈ L1(dp), v ∈ L1(dq)

u and v must be adjusted so that π ∈ Π(p, q).
This is the purpose of IPFP (Deming & Stephan 1940, Von
Neumann 1950). Recursion scheme : eun+1(x) = p(x)∫

ex
′My+vn(y)dy

evn+1(x) = q(y)∫
ex

′My+un+1(x)dx

π2n ∝ ex
′My+un(x)+vn(y) has first marginal p

π2n+1 ∝ ex
′My+un(x)+vn+1(y) has second marginal q

πn → π ∈ Π(p, q) in total variation
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Examples with sector indices

We consider the time series of daily returns on S&P 500 and DJ
EUROSTOXX subsectors: construction, health care and financials.

We introduce X =

(
X1
X2
X3

)
, Y =

(
Y1
Y2
Y3

)
with,

X1 = return on the S&P 500 construction sector
X2 = return on the S&P 500 health care sector
X3 = return on the S&P 500 financial sector

Y is defined in the same manner for the DJ Eurostoxx.
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Examples with sector indices

Multivariate discrete laws are defined from historical data Xt and
Yt :

p =
1

N

N∑
t=1

δXt , q =
1

N

N∑
t=1

δYt

For historical data spanning 5 years between september 2004 and
september 2009 one gets the following results :

# of components 2 3

M̂
(

0.23 −0.14
−0.10 0.40

) ( 0.25 −0.139 −0.37
−0.39 0.44 −0.80
−0.57 −0.15 0.86

)
error =

||σM̂−σπ̂ ||
||σπ̂ || ≈ 0.1% < 0.2 %
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Example of trajectory
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Analysis of the optimal coupling

The empirical coupling π̂ is thus associated with a π(M̂,T = 0)
which maximizes

Eπ(X ′M̂Y ), π ∈ Π(p, q)

Singular value decomposition on M̂ yields M̂ = USV ′ where U,V
are unitary and S diagonal nonnegative.
(X̃ , Ỹ ) = (

√
SU ′X ,

√
SVY ) has maximum correlation.

Ex: with 3 components, we obtain

X̃ =

(
−0.42X1+0.95X2−0.019X3
−0.64X1−0.27X2+0.26X3
0.11X1+0.06X2+0.35X3

)
Ỹ =

(
−0.30Y1+0.99Y2−0.13Y3
−0.67Y1−0.16Y2+0.28Y3
0.12Y1+0.08Y2+0.34Y3

)
→ two indices most correlated to one another.
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Application to dependence stress testing

The dependence between two set of assets X and Y , with
cross-covariance matrix σ, can be stressed:

1 based on empirical data, the dependence between X and Y is
stressed by building a sequence σT with T → 0.

2 by considering the maximum correlation coupling

3 by considering the cross-corrrelation matrices

corrρ =

(
ρ ... ρ

...
...

ρ ... ρ

)
yielding cross-covariance matrices σρ and

letting ρ→ 1.

Example: An investor solves the mean-variance allocation
problem

maxωµ
′ω − λ

2
ω′Σω

yielding wopt = 1
λΣ−1µ. The matrix Σ is stressed into Σ̃,

generating the unexpected variance w ′optΣ̃wopt .
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Covariance stress

Plot of T 7→ w′
optΣTwopt
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Results

1 The investor faces a 7.5% increase of the variance as T → 0.

2 Maximum Correlation coupling: the variance is 12% lower
than the expected variance w ′optΣwopt .

3 σρ: admissibility problem. The resulting covariance matrix(
Cov(X ) σρ
σ′
ρ Cov(Y )

)
is not necessarily semidefinite positive. In

this example, ρmax = 74% and it yields a variance that is 13%
lower than the maximal variance found with the first method.

→ The maximum correlation coupling might not be a proper means
to increase dependence as it disregards the cross dependence.
→ The proposed method has the advantage of providing
admissible covariance matrices.
The same ideas apply to pricing of multi-underlyings european
options.
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Conclusion

We proposed a new notion of extreme dependence in the
multivariate case.

It is linked to the maximization of cross-covariance matrices
with respect to conic orders.

To every coupling between multivariate laws (historical,
simulated ...) we can associate an extremal coupling.

It yields a natural construction of indices of maximum
correlation.

It can be applied to build scenarios where the dependence
becomes extreme.
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