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Figure: U.S. equity market, 1929-1999 (E.R. Fernholz (2002), p. 95)
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Figure: Capital distribution curves, U.S. equity market, 1968-2008

What kinds of models can describe this long-term stability?
k]



Definition of Hybrid Atlas Model

» Capitalizations X := {(Xi(t),..., Xn(1)), 0 <t < oo}.
» Descending Order Statistics (lexicographic tie-breaks):

max )(,(t) = X(1)(t) > X(g)(l‘) > > X(n)(t) ‘= min )(,(t) .

1<i<n 1<i<n

The curves of the previous slides are (smoothed) maps

1 /7 Xy (1)
Iogk+—>_,_/O Iog<X1(t)+---+Xn(t))dt’

for k =1,2,---,n over different decades [0, T] (for instance,
Jan 1969 — Dec 1978; of course, each decade has its own,
associated market “size” n).




Log-Capitalizations
Log-capitalizations Yj(t) := log Xi(t) .
Reverse-Order Statistics:  Y(1)(t) > --- > Y(»(t), 0<t<oo.

Dynamics of log-capitalizations.:

aYi(t) = (v + i + gk) dt + o, dW(t) it Yo (t) = Yi(t);

for1 <i,k<n,0<t<oo,where W(:)is n—dim. B.M.
System of Brownian particles interacting through their ranks.
Unique weak solution (Bass & Pardoux, PTRF ‘87).

company name i | k¥ ranked company

Drift (“mean”) Vi 9k
Diffusion (“variance”) ok >0




lllustration (n = 3) of Interactions through Rank:

Linear and Caleidoscopic Views

Time N s
X3(£)>X1(t)>Xo(t)
X (X000 ‘i
5 1> T3 >3
xr3 > T1 > T xr] > T9 > X3
X1(t)>X(t)>Xa(t)
xr3 > T2 > 11 X9 > T1 > X3
9 > X3 >
Xs Xo X4
Paths in R, x time A path in different wedges of R”




Permutations and Polyhedral Chambers

For p € X, (symmetric group on n elements), define wedge

Ro = (Y €R": Yoty = Yo2) = - = Yoy} »

a polyhedral chamber consisting of all points y € R” such that
Yp(k) s ranked kth among yy,---,yn. We resolve ties “lexico-
graphically”, always in favor of the lowest index (“name") /.

This results in a partition of R” into pairwise-disjoint chambers.
(To wit: p(k) is the “name" (index) of the particle that occupies
the k™ rank in the permutation p € ¥,.)

Define also the “coarser" chambers

Q,((i) :={y eR":y is ranked k™ among Yi,---.¥n) }

= U Rp; 1<ik<n.
{peXn:p(k)=i}




Vector Representation as a Diffusion

dY(t) = C(Y(1)) dt+S(Y(t)) dW(t); 0<t<oo

CU%ZE:(%qmyVh+7w~,%4mﬁﬁmPW4RJW

peSy

!/
Z(gk+71+7 10}((1)(.}/)’"')(gk+7n+7)'10,((’7)(y)> )

= Z dlag (O'p71(1),. cey O-p*‘(n)) '1’Rp(y); VAS R"
pesn

Sp

n
—dlag (de 10(1 ),...,Zak-‘lo}((n)(y)).
k=1 k=1



Semimartingale Representation of Ranked Processes
Recall Yy(t) > - > Y(;(t), and denote by
A& = LYw= Yo ()

the local time accumulated at the origin by the nonnegative
semimartingale Y((-) — Y(,(-) uptotime t,for1 <k </ <n.

Lemma: For k=1,....n, 0 <t< T, wehave

n
adY(t) = <7 + gk + ZV;1Q£,-)(Y(1‘))) dt + oy dBi(1)
i1

+ % [ar/\kvk+1 (t) - d/\k”*"(t)} ,

with the independent Brownian Motions (F.B. Knight)

2/1 )dW() k=1, .n.



Reminder: The Local Time at the origin, accumulated up to time
t by a continuous semimartingale Y(-) = Y(0)+ M(-) + V(.),is

t
LY(t) == YH(t)— Y*(0) - /0 151501 AY(8)

—nm/ 1y(s)1<e) AM)(s).

el0

The resulting process LY (-) is increasing, continuous, flat off
theset {t>0:Y(t)=0}.If Y(-) >0, this becomes

t t
LY(t) = /o 1iv(s)=0y dY(s) = /o 1 v(s)=0y dV(s) .

e For continuous semimartingales Yi(:),---, Yn(-) we have for
the local times at the origin (Yan, Ouknine; mid-80’s):

LY1/\Y2(t) 4 LY1VY2(t) — LY1(t) + LYZ(Z‘)7 0 S <o
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Banner & Ghomrasni (2008): More generally

n

n
L) => L),  0<t<oo,
i=1

k=1

e Semimartingale representation for the ranked processes

Y (1) = > 150(Y(D) aYi(t)
i=1

. 1 k¢ _kq 1 k¢
+ > N N0 ;Nk(t) dAA(1).

l=K+1

Please note the “upward pressure” coming from the lower ranks
(¢ =k+1,---,n), as well as the “downward pressure” from
the upperranks (¢ =1,--- ,k —1).



Here we keep track of the “size of the crowd” in rank k via

) = #{i:Y(t) = Y(k)(t)};

we also assume that all the semimatingales’ bounded variation
parts are absolutely continuous w.r.t. Lebesgue measure \,
and that for all (i,j) we have A({t > 0: Yj(t) = Y;(t)}) =0.

Idea of Proof of Lemma: For any three indices 1 <i,jym<n,
the “rank-gap" process

max Y,(-)— min Y,(")

v=i,j,m v=i,j,m

dominates a Bessel process in dimension § > 1, and analysis
of its local time shows that

LYo=Yo(y=A)=0, |k-t]>2.

Serendipity: even if triple (or higher-order) collisions occur,

they just do not matter for the respective local times.
12



These Local Times can be estimated...

LOCAL TIME
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Figure: The estimated local time processes A***'(t) for k = 10,
20, 40, ... , 5120; U.S. CRSP data, January 1990 to December 1999.
(From E.R. Fernholz (2002) Stochastic Portfolio Theory, page 107.)



Discussion: Such estimation comes from the construction of
rank-based portfolios that invest in an index-like fashion
(according to relative capitalization) in, say, the top k stocks.

The performance of such a portfolio, relative to the entire
market or to the submarket consisting of the bottom n — k
stocks, involves a “leakage” term proportional to the local time
AFKHT(.) which measures the “turnover" between ranks k and
k + 1; this can then be estimated based on observables.

e The linearity of the growth of local times is yet another
indication of an underlying stability or ergodic behavior.

(Recall that for, say, Brownian motion, local time grows like
VT ; whereas for processes with an invariant distribution and
stochastic stability, local time grows like T.)

What kinds of conditions can insure such stochastic stability?



Stability conditions

We shall assume, forevery k=1,...,.n—1, p€ X,:

=

n n
ng+27i:07 Z(gé+7p(£))<0.
k=1 i=1

(=1

Very roughly speaking: Assign big growth rates (and big
variances) to the smallest stocks; then a stable capital
distribution does indeed emerge.

As Pal & Pitman (2008) remark, the stability conditions ensure
that the “cloud of particles" will stick together: no sub-collection
of particles can “form its own galaxy", as it were, and drift apart
without ever again making contact with the rest.



Example 1 — Atlas model:

g1=-=0n-1=-8<0;
gn=(n—1)g>0;

The company with the lowest capitalization provides all the
growth (or support, as with the Titan of mythical lore) for the
entire structure. (Here, companies are “anonymous"” as far as
their growth rates are concerned.)

Example 2 — Atlas model with stock-specific drifts:

n
as above; =0 max v, < g.
a1, 7gn ;’71 y 1§i§n71 g

For instance:

= 1-— 2 1<i<n
f)//_g n+1 9 —= —= .
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Stochastic Stability

The average (center of gravity)

of the log-capitalizations

_ 1
d¥Y(t) :fydt+n;0kd8k(t)

is Brownian motion with variance S"7_,(ok/n)?, drift ~.

Recall here the independent Brownian Motions

Bk('):Z/O.‘IO,((/)(Y(ZL))O'VV/(I), k:1,--~,n.
i=1
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The above stability conditions imply that the process of
deviations from the center of gravity

Y() = (Ya() = Y(),oos Yal) = V()
is positive recurrent, uniformly over compact sets.

From the theory of R.Z. Khas’minskii (1960, 1980) we have
then the following stochastic stability result:

Proposition: The process \7(~) is stable in distribution; to wit,
there is a unique invariant probability measure u(-) such that
for every bounded, measurable f : [T — R we have, with 1 :=
{y e R": y; +---+ yn = 0}, the Strong Law of Large Numbers

T
lim ;_/0 f(Y(t) dt:/nf(y)u(dy), a.s.

T—oo




Average Occupation Times

Setting f(-) = 1x, () (respectively, 1, (-)), we define the

k
average occupation times of X(-) in the polyhedral chambers
Rp (respectively, Q,((')):

) §
D j —,u(Qk ):T|£n007 . 10,((,)(X(t))dt, 1 <k,i<n.

Equilibrium Identity:

n
7i+zgk19k,i =0; i=1,...,n.
k=1




Example 2 — Atlas model with stock-specific drifts:
g1==0p1=-98<0;, gh=(n—-1)g>0;
n
;hFO,m%w<m

¢ In this case, the proportions of time the various stocks
occupy the lowest (“Atlas") rank are given by

1 i
mm:<—7», i=1,--.,n.
n g

We shall obtain more general formulas for these quantities in a
short while ... .

20



Strong Laws of Large Numbers

Stability implies an SLLN for Local Times, YVk=1,--- ,n—1:

k

n
Jim lT NFI(T) = =23 <Qg +) ﬁ/,i’Yi)

=1 i=1

- _92 Z Op i (gé-'-")lp[)) >0, a.s.

pex, (=1

Typically, this quantity increases with rank k, much like the
picture we saw a moment ago: the higher the rank (to wit: the
bigger the k, the smaller the stock in terms of capitalization),
the bigger the intensity of “market turnover" around it.

21



e This will be the case, for instance, under the condition
(satisfied in Examples 1, 2):

gk+7i<0; V1<k<n-1, 1<i<n.

Together with
n n
» g+ 7i=0,
k=1 i=1

this condition implies stability.

What can be said about 9, ; and p ?

bl



EXAMPLE: Equal Variances, v =v1 =---=v,=0

Just a bunch of Brownian motions with drifts determined by
their ranks. In this case the equations become

(Z 91 g (Y(0) ) dt+ dWi(t) = Dyo(Y(1))dlt+ dWi(1)

A conservative diffusion, with drift given by a conservative
vector field and continuous, piecewise smooth potential

o(y) : ngY(k y €R".

The stability conditions imply ®(0) =0, [, e2*¥) dy < co and

1

®(y) = > Wy = Ykr) (Zk:) . yeRN{0}

3
|

>
Il
o

29



Now standard theory shows the existence of an invariant meas-
ure for the process Y(-), with unnormalized probability density
function in the form of a product-of-exponentials

e20() — exp{ Z M (¥, k+1))}

with (the stability conditions once again!)

k
Mi=-2) 9 >0, k=1,-,n-1.

(Independence of successive gaps. Reversibility.)
In reality: variances grow with rank (the smaller the stock, the

more volatile it tends to be). And of course, growth rates should
depend on name as well as rank... .

24



Linearly Growing Variances

iance Rate

T T T T T T
0 1000 2000 3000 4000 5000

Figure: Smoothed variance by rank, U.S. Equity market, 1990-1999.

We shall assume that variances grow linearly by rank:

05—012:05—052---:0%—05_1 >0.
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Semimartingale Reflected Brownian Motions

Recall the ranked semimartingale decomposition

t) = Zn: 1,0(Y(1) dYi(1) +% [d/\k,k+1(t) N d/\kq,k(t)} '
i

The vector =(-) of “Gaps" =x(-) := Y(x)(-) = Yik41)(-) > 0 with

+Z/ o 1o (Y(t)) -dY;(t)

k+1

_% |:/\k71,k(_) _,'_/\k+1,k+2(.):| _’_/\k,k+1(_)? 1 < k < n—1

can be seen as a semimartingale reflected Brownian motion
in the nonnegative orthant (Harrison, Reiman, Williams).

26



o Finally, we define the indicatormap | R" > y — p¥ € L,

Yor(y = Yor@@) = -+ 2 Yor(ny, Sothat p¥=p < ycRp,

where pY(k) is the name (index) of the coérdinate that occu-
pies the k™ rank among y1,--- , ¥n.

We introduce also the Index process

Pro=p"" 0<t<oo,

with values in the symmetric group X,. The definition implies

Y‘ﬁt(1) = Y(1)(t) > 2 Y(,,)(t) = Y‘Bt(”)? 0<t< .

27



Invariant Distribution for Adjacent Gaps and Indices

Proposition: Under the stability and linearly-growing-variance
conditions, the invariant distribution v(-) of (=(-),B.) is

B):(Zﬁ/\ Z/exp (\p,2)) dz

peXy k=1 peB

for every measurable set A x B € (R;)"" x ¥,. Here we have
set A\p := (Ap,1,---,Ap,n—1)" to be the vector of components:

—231 (9 + (o))

(a,%Jraf /2 >0; peXl,, 1<k<n-1.
Jr

Ap k=

Please compare with expression on slide 24.
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Discussion: The invariant measure v(-,-) of (=(-),.) satis-
fies the “Basic Adjoint Relationship” (BAR) of Harrison &
Williams (1987) (chamber-by chamber, then globally).

Its particular form leads to the density

P(=(t (ZH)\ Z/exp (\p,2)) dz

peET, k=1 peS,

of sums-of-products-of-exponentials type, for the distribution of
the semimartingale reflected Brownian motion process

=)= E10)s - =0 ()
of adjacent gaps
=k() = Y(k)(')*y(k-H)(')Zoa k=1,....,n-1

under the invariant measure v(-,-).
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Discussion (contd): The assumption of linearly growing
variances is crucial in the Proposition.

It guarantees that the structural “Skew-Symmetry Condition”
(SSC) is satisfied, and that the process of adjacent gaps

=) =G Zna ()

actually never visits the nonsmooth part of the boundary of the
positive orthant (R. Williams (1987)).

Special case of a theory developed by T. Ichiba (2009) in his
dissertation, concerning the absence of triple collisions.

Also: earlier work by Cépa & Lépingle (2007) with unbounded
(electrostatic repulsion) drifts; here drifts are bounded.

This implies the absence of triple collisions for the components
of the original process Y/(-).

20



Comment: With © the diagonal matrix of the covariance matrix
A = {ake}1<ko<n—1 With

ake = (0 + 0% 1) Viemky — 0% Vomk—1y — Tt Vemks1y »
and with the (n—1) x (n—1) "reflection matrix" (slide 25)
1 -1/2
-1/2 1 -1/2
-1/2 1 -1/2
-1/2 1

the Skew-Symmetry Condition (SSC) mandates

2(0-2A) = (1-R)D + D (1-N).

It is satisfied in the case of linearly growing variances.
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The components of the vector v, of the matrix SR provide the
directions of reflection, when the face of the boundary

Fp = {(21’...,2,7_1)’,2,(:0}, k=1,...,n—1

of the state-space & = (R )"~ is hit — non-tagentially! — and
the k™ component of A() increases. The BAR is

/Gin[ (p)f](z)dv(z,p) + 22/ (tk , VI(2))(2) dvok(2) = 0

for f € C?(&), where

1n-1 n—1
82f(z of(2)
= 13 0zx 82 kz_;bk(p) 0z’

n—

AP ](2) =
k=

bk(P) = (gk + Yp-1(k)) — (Fkt1 + Yp-1(k41)) -

22



Average Occupation Times

Corollary: The long-term-average occupation times are

bp = 1n(Rp) = v(&.{p}) (ZHA )1-;@%;}

qex, k=1

for each chamber Rp (p € ¥5), and

Oy = > b, i=1,....n.

{PETn: p(K)=i}

These DO satisfy (sanity check) the equilibrium identities

n
Vit > Gk =0; i=1,...n.
k=1

21



> Ifall v =0,then 9y ; =L for 1 < k,i<n
(first-order model of BFK (2005), includes
the simple Atlas model as a special case).

» Heat map of ¥, ; when
n=10, 02 =1+k,
gr=—1for 1 < k<9,
g0 =9, and
vi=1-(2i)/(n+1)
fori=1,...,10.

(1,10)



Distribution of Ranked Market Weights

Corollary: The invariant distribution of ranked market weights

. Xy () o
M(k)(‘)._X1(-)—|—---—|—Xn(~)Y k=1,....n

has probability density function o(my, ..., m,_1) given by

A Apt - Apni
>‘p,1+1 >\p,2_)‘p,1+1 )\p,n71_)\p,n72+1 _>\p,n—1+1 )
pex, M -y LU My

O<mp<mp1<...<m<1, mp=1—(my+---+mp4).
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e This is a distribution of ratios of Pareto type.
In the special case
n=-=m=0

it takes the far simpler form
= 140 A 1-A
@(m1a--~amn—1) = H Ak mk+ - k71'(1—m1— T _mn—1) !
k=1

with .
N CATe

= —An=0.
2 2 ) 0 n
Ok + Ot

26



Capital Distribution Curves

(M1 s Mo 1) =

)\p1 )\pn 1

_ZP )\—H Ap.o—Ap 1+1 Ap.n—1—Ap.n_2+1 _—Ap p_q+1

p,1 P27 \p,1 p,n—1 p,n—2 p,n—1
pex, M - My C MRy Mp

The invariant probability density for the ranked market weights
from the from the previous slide, allows us to describe the long
term average (and “expected”) slope of the capital distribution
curve at the various ranks k, thus also its shape:

lim —

/TlOQMk+1 ) — log M (1)
Tooo T

log(k + 1) — log k

v (109 Myert) —logMy\ _ —E"(Z)  _ M
log(k + 1) —logk /) log(1+k=1)  log(1+ k1)~

7



lllustrations

Rank
Fi 5 10 50 100 5001000 5 Fi 5 10 50 100 5001000 5

> n=5000,07=c«(2n—1),0¢=0,1<k<n—1,4 =—Cu,vj=—20,2<i<n, of =
0.075 + 6k x 1075, 1 < k < n. () cx = 0.02, (ii) ¢, = 0.03, (i) . = 0.04.
P> (iv) cx =0.02, gy = —0.016, gy =0,2< k< n—1,gn = (0.02)(2n — 1) 4+ 0.016,

> (V) gy =-- =gso=—0016, 96 =0,51 <k<n—1, gh=(0.02)(2n—1)+0.8.
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Connections

This theory allows us to compute growth-optimal and
universal portfolios, for long-term money management
(almost tailor-made for the “Empirical Bayes” Cover-Jamshidian
theory of universal portfolios; this is another story, and talk...).

The theory we presented relies heavily on

¢ the “semimartingale reflecting Brownian motion" analysis of
Queueing Networks in their heavy traffic limit approximation
(J.M. Harrison, M. Reiman, R. Williams),

and has strong connections with

29



e the combinatorial analysis of interacting diffusions based on
Coxeter groups (Chatterjee and Pal);

e discrete-time models of competing particle systems

in Statistical Mechanics, such as Sherrington-Kirkpatrick
models of spin glasses, with similar invariant distributions
(M. Aizenman, A. Ruzmaikina, P.L. Arguin).

As the number n — oo of particles increases to infinity,

the empirical measure of the "configuration of particles" is
characterized by evolution equations of the McKean-Vlasov
type, and by partial differential equations of the porous medium
form (very recent preprint by Mykhaylo Shkolnikov at Stanford).
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