Eigenvector stability: Random Matrix Theory and Financial Applications

J.P Bouchaud
with: R. Allez, M. Potters

Portfolio theory: Basics

- Portfolio weights w_i, Asset returns X_i^t

- If expected/predicted gains are g_i then the expected gain of the portfolio is

$$G = \sum_i w_i g_i$$

- Let risk be defined as: variance of the portfolio returns (maybe not a good definition!)

$$R^2 = \sum_{ij} w_i \sigma_i C_{ij} \sigma_j w_j$$

where σ_i^2 is the variance of asset i, and C_{ij} is the correlation matrix.

J.-P. Bouchaud
Markowitz Optimization

- Find the portfolio with maximum expected return for a given risk or equivalently, minimum risk for a given return (G).

- In matrix notation:

$$w_C = G \frac{C^{-1}g}{g^T C^{-1}g}$$

where all gains are measured with respect to the risk-free rate and $\sigma_i = 1$ (absorbed in g_i).

- Note: in the presence of non-linear constraints, e.g.

$$\sum_i |w_i| \leq A$$

an NP complete, “spin-glass” problem! (see [JPB,Galluccio,Potters])

J.-P. Bouchaud
Markowitz Optimization

• More explicitly:

\[w \propto \sum_{\alpha} \lambda_{\alpha}^{-1} (\Psi_{\alpha} \cdot w) \Psi_{\alpha} = g + \sum_{\alpha} (\lambda_{\alpha}^{-1} - 1) (\Psi_{\alpha} \cdot w) \Psi_{\alpha} \]

• Compared to the naive allocation \(w \propto g \):

 – Eigenvectors with \(\lambda \gg 1 \) are projected out

 – Eigenvectors with \(\lambda \ll 1 \) are overallocated

• Very important for “stat. arb.” strategies
Empirical Correlation Matrix

- Empirical Equal-Time Correlation Matrix E

\[E_{ij} = \frac{1}{T} \sum_{t} \frac{X_t^i X_t^j}{\sigma_i \sigma_j} \]

Order N^2 quantities estimated with NT datapoints.

When $T < N$, E is not even invertible.

Typically: $N = 500 – 1000; T = 500 – 2500$
Risk of Optimized Portfolios

• “In-sample” risk

\[R_{\text{in}}^2 = w_E^T E w_E = \frac{1}{g^T E^{-1} g} \]

• True minimal risk

\[R_{\text{true}}^2 = w_C^T C w_C = \frac{1}{g^T C^{-1} g} \]

• “Out-of-sample” risk

\[R_{\text{out}}^2 = w_E^T C w_E = \frac{g^T E^{-1} C E^{-1} g}{(g^T E^{-1} g)^2} \]
Risk of Optimized Portfolios

- Let \mathbf{E} be a noisy, unbiased estimator of \mathbf{C}. Using convexity arguments, and for large matrices:

$$ R_{\text{in}}^2 \leq R_{\text{true}}^2 \leq R_{\text{out}}^2 $$

- If \mathbf{C} has some time dependence, one expects an even worse underestimation

J.-P. Bouchaud
In Sample vs. Out of Sample

- Raw in-sample
- Cleaned in-sample
- Cleaned out-of-sample
- Raw out-of-sample

J.-P. Bouchaud
Possible Ensembles (stationary case)

• Null hypothesis Wishart ensemble:
 \[\langle X_i^t X_j^{t'} \rangle = \sigma_i \sigma_j \delta_{ij} \delta_{tt'} \]
 Constant volatilities and \(X \) with a finite second moment

• General Wishart ensemble:
 \[\langle X_i^t X_j^{t'} \rangle = \sigma_i \sigma_j C_{ij} \delta_{tt'} \]
 Constant volatilities and \(X \) with a finite second moment

• Elliptic Ensemble
 \[\langle X_i^t X_j^{t'} \rangle = s \sigma_i \sigma_j C_{ij} \delta_{tt'} \]
 Random common volatility, with a certain \(P(s) \)
 (Ex: Student)

J.-P. Bouchaud
Null hypothesis \(C = I \)

- **Goal:** understand the eigenvalue density of empirical correlation matrices when \(q = N/T = O(1) \)

- \(E_{ij} \) is a sum of (rotationally invariant) matrices \(E_{ij}^t = (X_i^t X_j^t)/T \)

- **Free random matrix theory:** R-transform are additive \(\rightarrow \)
 \[
 \rho_E(\lambda) = \frac{\sqrt{4\lambda q - (\lambda + q - 1)^2}}{2\pi \lambda q} \quad \lambda \in [(1 - \sqrt{q})^2, (1 + \sqrt{q})^2]
 \]
 [Marcenko-Pastur] (1967) (and many rediscoveries)

- Any eigenvalue beyond the Marcenko-Pastur band can be deemed to contain some information (but see below)
Null hypothesis $C = I$

- **Remark 1:** $-G_E(0) = \langle \lambda^{-1} \rangle_E = (1 - q)^{-1}$, allowing to compute the different risks:

 $$R_{\text{true}} = \frac{R_{\text{in}}}{\sqrt{1 - q}}; \quad R_{\text{out}} = \frac{R_{\text{in}}}{1 - q}$$

- **Remark 2:** One can extend the calculation to EMA estimators [Potters, Kondor, Pafka]:

 $$E_{t+1} = (1 - \varepsilon)E_t + \varepsilon X^t X^t$$
General C Case

- The general case for C cannot be directly written as a sum of “Blue” functions.

- Solution using different techniques (replicas, diagrams, S-transforms):

 $$G_E(z) = \int d\lambda \rho_C(\lambda) \frac{1}{z - \lambda(1 - q + qzG_E(z))},$$

- Remark 1: $-G_E(0) = (1 - q)^{-1}$ independently of C

- Remark 2: One should work from $\rho_C \longrightarrow G_E$ and postulate a parametric form for $\rho_C(\lambda)$, i.e.:

 $$\rho_C(\lambda) = \frac{\mu A}{(\lambda - \lambda_0)^{1+\mu}} \Theta(\lambda - \lambda_{\text{min}})$$
Empirical Correlation Matrix

\[\rho(\lambda) \]

Data
Dressed power law ($\mu=2$)
Raw power law ($\mu=2$)
Marcenko-Pastur

J.-P. Bouchaud
Eigenvalue cleaning

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 xlabel={Risk},
 ylabel={Return},
 axis lines=left,
 xmin=0, xmax=30,
 ymin=0, ymax=150,
 xtick={0,10,20,30},
 ytick={0,50,100,150},
 legend style={at={(0.5,0.95)},anchor=north},
]
\addplot [red, thick] table {data.csv};
\addplot [blue, thick] table {data.csv};
\addplot [blue, dashed] table {data.csv};
\addplot [red, dashed] table {data.csv};
\legend{Raw in-sample, Cleaned in-sample, Cleaned out-of-sample, Raw out-of-sample}
\end{axis}
\end{tikzpicture}
\end{center}

J.-P. Bouchaud
What about eigenvectors?

- Up to now, most results using RMT focus on eigenvectors.

What about eigenvectors? What natural null-hypothesis?

- Are eigen-directions stable in time?

- Important source of risk for market/sector neutral portfolios:
 a sudden/gradual rotation of the top eigenvectors!

- ..a little movie...

J.-P. Bouchaud
What about eigenvectors?

- Correlation matrices need a certain time T to be measured.

- Even if the “true” C is fixed, its empirical determination fluctuates:

 \[E_t = C + \text{noise} \]

- What is the dynamics of the empirical eigenvectors induced by measurement noise?

- Can one detect a genuine evolution of these eigenvectors beyond noise effects?

J.-P. Bouchaud
What about eigenvectors?

- More generally, can one say something about the eigenvectors of randomly perturbed matrices:

$$H = H_0 + \epsilon H_1$$

where H_0 is deterministic or random (e.g. GOE) and H_1 random.
Eigenvectors exchange

- **An issue:** upon pseudo-collisions of eigenvectors, eigenvalues exchange

- **Example:** 2×2 matrices

$$H_{11} = a, \quad H_{22} = a + \epsilon, \quad H_{21} = H_{12} = c, \quad \longrightarrow$$

$$\lambda_{\pm} \approx_{\epsilon \to 0} a + \frac{\epsilon}{2} \pm \sqrt{c^2 + \frac{\epsilon^2}{4}}$$

- Let c vary: quasi-crossing for $c \to 0$, with an exchange of the top eigenvector: $(1, -1) \to (1, 1)$

- For large matrices, these exchanges are extremely numerous \rightarrow labelling problem

J.-P. Bouchaud
Subspace stability

- An idea: follow the subspace spanned by P-eigenvectors:

$$|\psi_{k+1}\rangle, |\psi_{k+2}\rangle, \ldots |\psi_{k+P}\rangle \rightarrow |\psi'_{k+1}\rangle, |\psi'_{k+2}\rangle, \ldots |\psi'_{k+P}\rangle$$

- Form the $P \times P$ matrix of scalar products:

$$G_{ij} = \langle \psi_{k+i} | \psi'_{k+j} \rangle$$

- The determinant of this matrix is insensitive to label permutations and is a measure of the overlap between the two P-dimensional subspaces

$$Q = \frac{1}{P} \ln |\det G|$$

is a measure of how well the first subspace can be approximated by the second

J.-P. Bouchaud
Null hypothesis

• Note: if P is large, Q can be “accidentally” large

• One can compute Q exactly in the limit $P \rightarrow \infty$, $N \rightarrow \infty$, with fixed $p = P/N$:

• Final result: ([Wachter] (1980); [Laloux, Miceli, Potters, JPB])

\[
Q = \int_0^1 ds \ln s \rho(s)
\]

with:

\[
\rho(s) = \frac{1}{p} \sqrt{\frac{s^2(4p(1-p) - s^2)^+}{\pi s(1 - s^2)}}.
\]

J.-P. Bouchaud
Intermezzo

- Non equal time correlation matrices

\[E_{ij}^\tau = \frac{1}{T} \sum_t \frac{X_i^t X_j^{t+\tau}}{\sigma_i \sigma_j} \]

\(N \times N\) but not symmetrical: ‘leader-lagger’ relations

- General rectangular correlation matrices

\[G_{\alpha i} = \frac{1}{T} \sum_{t=1}^{T} Y_{\alpha t} X_i^t \]

\(N\) ‘input’ factors \(X\); \(M\) ‘output’ factors \(Y\)

- Example: \(Y_{\alpha t} = X_j^{t+\tau}\), \(N = M\)

J.-P. Bouchaud
Intermezzo: Singular values

- **Singular values:** Square root of the non zero eigenvalues of GG^T or $G^T G$, with associated eigenvectors u_k^{α} and $v_i^k \rightarrow 1 \geq s_1 > s_2 > ... s_{(M,N)}^- \geq 0$

- **Interpretation:** $k = 1$: best linear combination of input variables with weights v_1^i, to optimally predict the linear combination of output variables with weights u_1^α, with a cross-correlation $= s_1$.

- s_1: measure of the **predictive power** of the set of Xs with respect to Ys

- **Other singular values:** orthogonal, less predictive, linear combinations

J.-P. Bouchaud
Benchmark: no cross-correlations

- **Null hypothesis:** No correlations between Xs and Ys:
 \[G_{\text{true}} \equiv 0 \]

- **But** arbitrary correlations *among* Xs, C_X, and Ys, C_Y, are possible

- Consider exact normalized principal components for the sample variables Xs and Ys:
 \[
 \hat{X}_i^t = \frac{1}{\sqrt{\lambda_i}} \sum_j U_{ij} X_j^t; \quad \hat{Y}_\alpha^t = \ldots
 \]
 and define $\hat{G} = \hat{Y} \hat{X}^T$.

J.-P. Bouchaud
Benchmark: Random SVD

• Final result: ([Wachter] (1980); [Laloux, Miceli, Potters, JPB])

\[\rho(s) = (m + n - 1)^+ \delta(s - 1) + \frac{\sqrt{(s^2 - \gamma_-) (\gamma_+ - s^2)}}{\pi s (1 - s^2)} \]

with

\[\gamma_\pm = n + m - 2mn \pm 2\sqrt{mn(1-n)(1-m)}, \quad 0 \leq \gamma_\pm \leq 1 \]

• Analogue of the Marcenko-Pastur result for rectangular correlation matrices

• Many applications; finance, econometrics (‘large’ models), genomics, etc.

• Same problem as subspace stability: \(T \rightarrow N, \ n = m \rightarrow p \)

J.-P. Bouchaud
Sectorial Inflation vs. Economic indicators

$P(s' < s)$

Data
Benchmark

$N = 50, M = 16, T = 265$

J.-P. Bouchaud
• Consider a randomly perturbed matrix:

\[H = H_0 + \epsilon H_1 \]

• Perturbation theory to second order in \(\epsilon \) yields:

\[
|\det(G)| = 1 - \frac{\epsilon^2}{2} \sum_{i \in \{k+1, \ldots, k+P\}} \sum_{j \not\in \{k+1, \ldots, k+P\}} \left(\frac{\langle \psi_i | H_1 | \psi_j \rangle}{\lambda_i - \lambda_j} \right)^2.
\]
The case of correlation matrices

- Consider the empirical correlation matrix:

\[E = C + \eta \quad \eta = \frac{1}{T} \sum_{t=1}^{T} (X_t^t X_t^t - C) \]

- The noise \(\eta \) is correlated as:

\[\langle \eta_{ij} \eta_{kl} \rangle = \frac{1}{T} (C_{ik} C_{jl} + C_{il} C_{jk}) \]

- From which one derives:

\[\langle |\det(G)|^{1/P} \rangle \approx 1 - \frac{1}{2TP} \left[\sum_{i=1}^{P} \sum_{j=P+1}^{N} \frac{\lambda_i \lambda_j}{(\lambda_i - \lambda_j)^2} \right]. \]

(and a similar equation for eigenvalues)

J.-P. Bouchaud
Stability of eigenvalues: Correlations

Eigenvalues clearly change: well known correlation crises

J.-P. Bouchaud
Stability of eigenspaces: Correlations

8 meaningful eigenvectors

J.-P. Bouchaud
Stability of eigenspaces: Correlations

\[P = 5 \]

J.-P. Bouchaud
The case of correlation matrices

- Empirical results show a faster decorrelation → real dynamics of the eigenvectors

- The case of the top eigenvector, in the limit $\lambda_1 \gg \lambda_2$, and for EMA:
 - An Ornstein-Uhlenbeck process on the unit sphere around $\theta = 0$
 - Explicit solution for the full distribution $P(\theta)$ and time correlations
 - $\det G = \cos(\theta - \theta')$

- Full characterisation of the dynamics for arbitrary P? (Random rotation of a solid body)

J.-P. Bouchaud