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Portfolio theory: Basics

• Portfolio weights wi, Asset returns Xt
i

• If expected/predicted gains are gi then the expected gain of

the portfolio is

G =
∑

i

wigi

• Let risk be defined as: variance of the portfolio returns

(maybe not a good definition !)

R2 =
∑

ij

wiσiCijσjwj

where σ2
i is the variance of asset i, and

Cij is the correlation matrix.
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Markowitz Optimization

• Find the portfolio with maximum expected return for a given

risk or equivalently, minimum risk for a given return (G)

• In matrix notation:

wC = G C−1g

gTC−1g

where all gains are measured with respect to the risk-free

rate and σi = 1 (absorbed in gi).

• Note: in the presence of non-linear contraints, e.g.
∑

i

|wi| ≤ A

an NP complete, “spin-glass” problem! (see [JPB,Galluccio,Potters])
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Markowitz Optimization

• More explicitely:

w ∝
∑

α
λ−1
α (Ψα · w)Ψα = g +

∑

α
(λ−1
α − 1) (Ψα · w)Ψα

• Compared to the naive allocation w ∝ g:

– Eigenvectors with λ≫ 1 are projected out

– Eigenvectors with λ≪ 1 are overallocated

• Very important for “stat. arb.” strategies
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Empirical Correlation Matrix

• Empirical Equal-Time Correlation Matrix E

Eij =
1

T

∑

t

Xt
iX

t
j

σiσj

Order N2 quantities estimated with NT datapoints.

When T < N , E is not even invertible.

Typically: N = 500 − 1000; T = 500 − 2500
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Risk of Optimized Portfolios

• “In-sample” risk

R2
in = wT

EEwE =
1

gTE−1g

• True minimal risk

R2
true = wT

CCwC =
1

gTC−1g

• “Out-of-sample” risk

R2
out = wT

ECwE =
gTE−1CE−1g

(gTE−1g)2
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Risk of Optimized Portfolios

• Let E be a noisy, unbiased estimator of C. Using convexity

arguments, and for large matrices:

R2
in ≤ R2

true ≤ R2
out

• If C has some time dependence, one expects an even worse

underestimation
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In Sample vs. Out of Sample
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Possible Ensembles (stationary case)

• Null hypothesis Wishart ensemble:

〈Xt
iX

t′
j 〉 = σiσjδijδtt′

Constant volatilities and X with a finite second moment

• General Wishart ensemble:

〈Xt
iX

t′
j 〉 = σiσjCijδtt′

Constant volatilities and X with a finite second moment

• Elliptic Ensemble

〈Xt
iX

t′
j 〉 = s σiσjCijδtt′

Random common volatility, with a certain P(s)

(Ex: Student)
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Null hypothesis C = I

• Goal: understand the eigenvalue density of empirical corre-

lation matrices when q = N/T = O(1)

• Eij is a sum of (rotationally invariant) matrices Etij = (Xt
iX

t
j)/T

• Free random matrix theory: R-transform are additive →

ρE(λ) =

√

4λq − (λ+ q − 1)2

2πλq
λ ∈ [(1 −√

q)2, (1 +
√
q)2]

[Marcenko-Pastur] (1967) (and many rediscoveries)

• Any eigenvalue beyond the Marcenko-Pastur band can be

deemed to contain some information (but see below)

J.-P. Bouchaud



Null hypothesis C = I

• Remark 1: −GE(0) = 〈λ−1〉E = (1 − q)−1, allowing to com-

pute the different risks:

Rtrue =
Rin√
1 − q

; Rout =
Rin

1 − q

• Remark 2: One can extend the calculation to EMA estima-

tors [Potters, Kondor, Pafka]:

Et+1 = (1 − ε)Et + εXtXt
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General C Case

• The general case for C cannot be directly written as a sum

of “Blue” functions.

• Solution using different techniques (replicas, diagrams, S-

transforms):

GE(z) =

∫

dλ ρC(λ)
1

z − λ(1 − q+ qzGE(z))
,

• Remark 1: −GE(0) = (1 − q)−1 independently of C

• Remark 2: One should work from ρC −→ GE and postulate

a parametric form for ρC(λ), i.e.:

ρC(λ) =
µA

(λ− λ0)
1+µ

Θ(λ− λmin)
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Empirical Correlation Matrix
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Eigenvalue cleaning
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What about eigenvectors?

• Up to now, most results using RMT focus on eigenvalues

• What about eigenvectors? What natural null-hypothesis?

• Are eigen-directions stable in time?

• Important source of risk for market/sector neutral portfolios:

a sudden/gradual rotation of the top eigenvectors!

• ..a little movie...
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What about eigenvectors?

• Correlation matrices need a certain time T to be measured

• Even if the “true” C is fixed, its empirical determination

fluctuates:

Et = C + noise

• What is the dynamics of the empirical eigenvectors induced

by measurement noise?

• Can one detect a genuine evolution of these eigenvectors

beyond noise effects?

J.-P. Bouchaud



What about eigenvectors?

• More generally, can one say something about the eigenvec-

tors of randomly perturbed matrices:

H = H0 + ǫH1

where H0 is deterministic or random (e.g. GOE) and H1

random.
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Eigenvectors exchange

• An issue: upon pseudo-collisions of eigenvectors, eigenvalues

exchange

• Example: 2 × 2 matrices

H11 = a, H22 = a+ ǫ, H21 = H12 = c,−→

λ± ≈ǫ→0 a+
ǫ

2
±
√

c2 +
ǫ2

4

• Let c vary: quasi-crossing for c→ 0, with an exchange of the

top eigenvector: (1,−1) → (1,1)

• For large matrices, these exchanges are extremely numerous

→ labelling problem
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Subspace stability

• An idea: follow the subspace spanned by P -eigenvectors:

|ψk+1〉, |ψk+2〉, . . . |ψk+P 〉 −→ |ψ′
k+1〉, |ψ′

k+2〉, . . . |ψ′
k+P 〉

• Form the P × P matrix of scalar products:

Gij = 〈ψk+i|ψ′
k+j〉

• The determinant of this matrix is insensitive to label per-

mutations and is a measure of the overlap between the two

P -dimensional subspaces

– Q = 1
P ln |detG| is a measure of how well the first subspace

can be approximated by the second
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Null hypothesis

• Note: if P is large, Q can be “accidentally” large

• One can compute Q exactly in the limit P → ∞, N → ∞,

with fixed p = P/N :

• Final result:([Wachter] (1980); [Laloux,Miceli,Potters,JPB])

Q =

∫ 1

0
ds ln s ρ(s)

with:

ρ(s) =
1

p

√

s2(4p(1 − p) − s2)+

πs(1 − s2)
.
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Intermezzo

• Non equal time correlation matrices

Eτij =
1

T

∑

t

Xt
iX

t+τ
j

σiσj

N ×N but not symmetrical: ‘leader-lagger’ relations

• General rectangular correlation matrices

Gαi =
1

T

T
∑

t=1

Y tαX
t
i

N ‘input’ factors X; M ‘output’ factors Y

– Example: Y tα = Xt+τ
j , N = M
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Intermezzo: Singular values

• Singular values: Square root of the non zero eigenvalues

of GGT or GTG, with associated eigenvectors ukα and vki →
1 ≥ s1 > s2 > ...s(M,N)− ≥ 0

• Interpretation: k = 1: best linear combination of input vari-

ables with weights v1i , to optimally predict the linear com-

bination of output variables with weights u1
α, with a cross-

correlation = s1.

• s1: measure of the predictive power of the set of Xs with

respect to Y s

• Other singular values: orthogonal, less predictive, linear com-

binations
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Benchmark: no cross-correlations

• Null hypothesis: No correlations between Xs and Y s:

Gtrue ≡ 0

• But arbitrary correlations among Xs, CX, and Y s, CY , are

possible

• Consider exact normalized principal components for the sam-

ple variables Xs and Y s:

X̂t
i =

1√
λi

∑

j

UijX
t
j; Ŷ tα = ...

and define Ĝ = Ŷ X̂T .
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Benchmark: Random SVD

• Final result:([Wachter] (1980); [Laloux,Miceli,Potters,JPB])

ρ(s) = (m+ n− 1)+δ(s− 1) +

√

(s2 − γ−)(γ+ − s2)

πs(1 − s2)

with

γ± = n+m− 2mn± 2
√

mn(1 − n)(1 −m), 0 ≤ γ± ≤ 1

• Analogue of the Marcenko-Pastur result for rectangular cor-

relation matrices

• Many applications; finance, econometrics (‘large’ models),

genomics, etc.

• Same problem as subspace stability: T −→ N , n = m −→ p
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Sectorial Inflation vs. Economic indicators
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Back to eigenvectors: perturbation theory

• Consider a randomly perturbed matrix:

H = H0 + ǫH1

• Perturbation theory to second order in ǫ yields:

|det(G)| = 1 − ǫ2

2

∑

i∈{k+1,...,k+P}

∑

j 6∈{k+1,...,k+P}

(

〈ψi|H1|ψj〉
λi − λj

)2

.
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The case of correlation matrices

• Consider the empirical correlation matrix:

E = C + η η =
1

T

T
∑

t=1

(XtXt − C)

• The noise η is correlated as:

〈

ηijηkl
〉

=
1

T
(CikCjl + CilCjk)

• from which one derives:

〈

|det(G)|1/P
〉

≈ 1 − 1

2TP





P
∑

i=1

N
∑

j=P+1

λiλj

(λi − λj)2



 .

(and a similar equation for eigenvalues)
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Stability of eigenvalues: Correlations

Eigenvalues clearly change: well known correlation crises
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Stability of eigenspaces: Correlations

8 meaningful eigenvectors
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Stability of eigenspaces: Correlations

P = 5
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The case of correlation matrices

• Empirical results show a faster decorrelation → real dynamics

of the eigenvectors

• The case of the top eigenvector, in the limit λ1 ≫ λ2, and

for EMA:

– An Ornstein-Uhlenbeck process on the unit sphere around

θ = 0

– Explicit solution for the full distribution P(θ) and time

correlations

– detG = cos(θ − θ′)

• Full characterisation of the dynamics for arbitrary P? (Ran-

dom rotation of a solid body)
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