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Portfolio theory: Basics

e Portfolio weights w;, Asset returns X!

e If expected/predicted gains are g; then the expected gain of
the portfolio is

G =) wyg;

e Let risk be defined as: variance of the portfolio returns
(maybe not a good definition )
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where o; IS the variance of asset ¢, and

C';; is the correlation matrix.
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Markowitz Optimization

e Find the portfolio with maximum expected return for a given
risk or equivalently, minimum risk for a given return (G)

e In matrix notation:
C_lg
g/'C-1g
where all gains are measured with respect to the risk-free
rate and o; = 1 (absorbed in g;).

WC:g

e Note: in the presence of non-linear contraints, e.g.

> lwi| <A

1

an NP complete, “spin-glass” problem! (see [JPB,Galluccio,Potters])
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Markowitz Optimization

e More explicitely:

woe Y At (Ta - W) =g+ > Ot —1) (T w) T,

e Compared to the naive allocation w «x g:
— Eigenvectors with A > 1 are projected out

— Eigenvectors with A < 1 are overallocated

e Very important for ‘'stat. arb.” strategies
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Empirical Correlation Matrix

e Empirical Equal-Time Correlation Matrix E

t vt
1 Xz-Xj

Eij =22

t 9i9j

Order N2 quantities estimated with NT datapoints.
When T'< N, E is not even invertible.

Typically: N =500 — 1000; 7"'= 500 — 2500
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Risk of Optimized Portfolios

e ‘In-sample” risk

Ri2n = W%EWE = gTEl—lg
e True minimal risk
R%rue — WECWC — gTcl—lg
o "Out-of-sample” risk
Rgut = wpCwp = g??T—];iE;;g

J.-P. Bouchaud



Risk of Optimized Portfolios

e Let E be a noisy, unbiased estimator of C. Using convexity
arguments, and for large matrices:

2 2 2
Rin < Rtrue < Rout

e If C has some time dependence, one expects an even worse
underestimation
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In Sample vs. Out of Sample
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Possible Ensembles (stationary case)
e Null hypothesis Wishart ensemble:
Constant volatilities and X with a finite second moment

e General Wishart ensemble:
t vt/
Constant volatilities and X with a finite second moment

e Elliptic Ensemble
(XfX§/> = 50;0,;C;;04y
Random common volatility, with a certain P(s)

(Ex: Student)
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Null hypothesis C =1

e Goal: understand the eigenvalue density of empirical corre-
lation matrices when ¢ = N/T = O(1)

e E;;isasum of (rotationally invariant) matrices E,fj = (XfX})/T

e Free random matrix theory: R-transform are additive —

_ _1)2
) = VN SR Al - VR a4 va?

Marcenko-Pastur| (1967) (and many rediscoveries)

e Any eigenvalue beyond the Marcenko-Pastur band can be
deemed to contain some information (but see below)
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Null hypothesis C =1

e Remark 1: —Gg(0) = A1y = (1 —¢)~ 1, allowing to com-
pute the different risks:

Rin ) Rout: Rin

VI—q g

Ritrye =

e Remark 2: One can extend the calculation to EMA estima-
tors [Potters, Kondor, Pafkal:

Ep1=00-9)E + eXX?
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General C Case

e The general case for C cannot be directly written as a sum
of “Blue” functions.

e Solution using different techniques (replicas, diagrams, S-
transforms):

Cr() = [droc) .

2 =M1 —q+q2Gp(2))

e Remark 1: —Gg(0) = (1 — ¢)~ ! independently of C

e Remark 2: One should work from p~ — G and postulate
a parametric form for po(N), i.e.:
A
(A=) tTw

pc(A) = O (A = Amin)
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Empirical Correlation Matrix
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Eigenvalue cleaning
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What about eigenvectors?

e Up to now, most results using RMT focus on eigenvalues
e \What about eigenvectors? What natural null-hypothesis?
e Are eigen-directions stable in time~?

e Important source of risk for market/sector neutral portfolios:
a sudden/gradual rotation of the top eigenvectors!

e ..a little movie...
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What about eigenvectors?

e Correlation matrices need a certain time T' to be measured

e Even if the “true” C is fixed, its empirical determination
fluctuates:

E; = C 4+ noise

e \What is the dynamics of the empirical eigenvectors induced
by measurement noise?

e Can one detect a genuine evolution of these eigenvectors
beyond noise effects?
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What about eigenvectors?

e More generally, can one say something about the eigenvec-
tors of randomly perturbed matrices:

H = Hg + ¢H;

where Hg is deterministic or random (e.g. GOE) and H;
random.
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Eigenvectors exchange

e An issue: upon pseudo-collisions of eigenvectors, eigenvalues
exchange

e Example: 2 x 2 matrices

H11 = a, Hoo = a + ¢, Ho1 = Hyip =c¢,—

)\ _€:|: _6
~. .0a-+ \/c” +
+ ~e—0 > 1

e Let ¢ vary: quasi-crossing for ¢ — 0, with an exchange of the
top eigenvector: (1,—-1) — (1,1)

e FoOr large matrices, these exchanges are extremely numerous
— labelling problem
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Subspace stability
e An idea: follow the subspace spanned by P-eigenvectors:

|¢k—|—1>7 |¢k—|—2>7 Tt |¢k—|—P> - |¢I,g—|—1>7 |¢I,g—|—2>7 s |¢I,§—|—P>

e Form the P x P matrix of scalar products:

Gij = (Vi Vpt)

e [ he determinant of this matrix is insensitive to label per-
mutations and is a measure of the overlap between the two
P-dimensional subspaces

—Q = % In| det G| is a measure of how well the first subspace
can be approximated by the second
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Null hypothesis

e Note: if P is large, () can be “accidentally” large

e One can compute @ exactly in the limit P — oo, N — oo,
with fixed p = P/N:

e Final result:([Wachter] (1980); [Laloux,Miceli,Potters,JPB])

QZ/Oldslns p(s)
with:
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Intermezzo

e Non equal time correlation matrices

t+7
1 XX
Elj =252

t 9i0j

N x N but not symmetrical: ‘leader-lagger’ relations

e (General rectangular correlation matrices

1 2 t vt
Goi == > Y. X,
thl

N ‘input’ factors X; M ‘output’ factors Y

— Example: Y = X{T7, N=M
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Intermezzo: Singular values

e Singular values: Square root of the non zero eigenvalues
of GGT or GT@, with associated eigenvectors u% and vf —
1>s1 >8> - S(M,N)- >0

e Interpretation: kK = 1: best linear combination of input vari-
ables with weights fuil, to optimally predict the linear com-
bination of output variables with weights u}x with a cross-

correlation = s3.

e s1. Measure of the predictive power of the set of Xs with
respect to Y's

e Other singular values: orthogonal, less predictive, linear com-
binations
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Benchmark: no cross-correlations

e Null hypothesis: No correlations between Xs and Y's:

Gtrue =0

e But arbitrary correlations among Xs, Cx, and Ys, Cy, are
possible

e Consider exact normalized principal components for the sam-
ple variables Xs and Ys:

1
VA

At_
X, =

J

and define G =Y X7,
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Benchmark: Random SVD
e Final result:([Wachter] (1980); [Laloux,Miceli,Potters,JPB])

V(=) (4 — 5)

ws(1l — s2)

p(s) = (m+n—1)T6(s— 1)+
with
s =n—|—m—2mn:|:2\/mn(1—n)(1—m), 0<~1+ <1

e Analogue of the Marcenko-Pastur result for rectangular cor-
relation matrices

e Many applications; finance, econometrics (‘large’ models),
genomics, etc.

e Same problem as subspace stability: T'"— N, n=m —p
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Sectorial Inflation vs. Economic indicators
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Back to eigenvectors: perturbation theory

e Consider a randomly perturbed matrix:

H = Hg + ¢H;

e Perturbation theory to second order in ¢ vields:

€ (i H1[3;) ) 2
det(G)] =1-— > | > ( vy ) .
ie{k+1,. k+P}j@{k+1,. . k+P)} y
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T he case of correlation matrices

e Consider the empirical correlation matrix:

1 T
E=C+n =2 (X'Xx'-C)
thl

e [ he noise n is correlated as:

1
(Mijm) = 7(CikCji + CaCjp)

e from which one derives:

N WP S F-S S OV
<\det(G)| > T arp [ZZ‘UZZ‘H O\z'—Aj)QJ.

(and a similar equation for eigenvalues)
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Stability of eigenvalues: Correlations

Eigenvalues clearly change: well known correlation crises
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Stability of eigenspaces: Correlations
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Stability of eigenspaces: Correlations

Numerical simulations

- det(Gemp)(T)
— det(Gn)(1)
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T he case of correlation matrices

e Empirical results show a faster decorrelation — real dynamics
of the eigenvectors

e The case of the top eigenvector, in the limit A1 > X\>, and
for EMA:

— An Ornstein-Uhlenbeck process on the unit sphere around
0 =20

— Explicit solution for the full distribution P(#) and time
correlations

— det G = cos(0 — )

e Full characterisation of the dynamics for arbitrary P? (Ran-
dom rotation of a solid body)
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