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Motivation

• Given: a frictionless market of stocks with continuous
Markovian dynamics.

• If there does not exist an equivalent local martingale
measure can we have the concept of hedging?

• Answer: Yes, if a square-integrable “market price of risk”
exists.

• If there exists an equivalent local martingale measure
and a stock price process is a “strict local martingale”
what is the cheapest way to hold this stock at time T?

• Answer: Delta-hedging.

• How can we compute hedging prices?

• Answer: PDE techniques, (non-)equivalent changes of
measures

• Techniques: Itô’s formula, PDE techniques to prove
smoothness of hedging prices, Föllmer measure
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Two generic examples

• Reciprocal of the three-dimensional Bessel process (NFLVR):

dS̃(t) =− S̃2(t)dW (t)

• Three-dimensional Bessel process:

dS(t) =
1

S(t)
dt + dW (t)
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Strict local martingales

• A stochastic process X (·) is a local martingale if there exists a
sequence of stopping times (τn) with limn→∞ τn = ∞ such
that X τn(·) is a martingale.

• Here, in our context, a local martingale is a nonnegative
stochastic process X (·) which does not have a drift:

dX (t) = X (t)somethingdW (t).

• Strict local martingales (local martingales, which are not
martingales) do only appear in continuous time.

• Nonnegative local martingales are supermartingales.
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We assume a Markovian market model.

• Our time is finite: T < ∞. Interest rates are zero.

• The stocks S(·) = (S1(·), . . . ,Sd(·))T follow

dSi (t) =Si (t)

(
µi (t,S(t))dt +

K∑
k=1

σi ,k(t,S(t))dWk(t)

)

with some measurability and integrability conditions.

• → Markovian

• but not necessarily complete (K > d allowed).

• The covariance process is defined as

ai ,j(t,S(t)) :=
K∑

k=1

σi ,k(t,S(t))σj ,k(t,S(t)).

• The underlying filtration is denoted by F = {F(t)}0≤t≤T .
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An important guy: the market price of risk.

• A market price of risk is an RK -valued process θ(·) satisfying

µ(t,S(t)) = σ(t,S(t))θ(t).

• We assume it exists and∫ T

0
‖θ(t)‖2dt < ∞.

• The market price of risk is not necessarily unique.

• We will always use a Markovian version of the form θ(t,S(t)).
(needs argument!)



Motivation Notation Hedging (price) Markovian mpr Change of measure Example Summary

Related is the stochastic discount factor.

• The stochastic discount factor corresponding to θ is denoted
by

Z θ(t) := exp

(
−
∫ t

0
θT(u,S(u))dW (u)− 1

2

∫ t

0
‖θ(u,S(u))‖2du

)
.

• It has dynamics

dZ θ(t) = −θT(t,S(t))Z θ(t)dW (t).

• If Z θ(·) is a martingale, that is, if E [Z θ(T )] = 1, then it
defines a risk-neutral measure Q with dQ = Z θ(T )dP.

• Otherwise, Z θ(·) is a strict local martingale and classical
arbitrage is possible.

• From Itô’s rule, we have

d
(
Z θ(t)Si (t)

)
= Z θ(t)Si (t)

K∑
k=1

(σi ,k(t,S(t))− θk(t,S(t))) dWk(t).
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Everything an investor cares about: how and how much?

• We call trading strategy the number of shares held by an
investor: η(t) = (η1(t), . . . , ηd(t))T

• We assume that η(·) is progressively measurable with respect
to F and self-financing.

• The corresponding wealth process V v ,η(·) for an investor with
initial wealth V v ,η(0) = v has dynamics

dV v ,η(t) =
d∑

i=1

ηi (t)dSi (t).

• We restrict ourselves to trading strategies which satisfy
V 1,η(t) ≥ 0.



Motivation Notation Hedging (price) Markovian mpr Change of measure Example Summary

The terminal payoff

• Let p : Rd
+ → [0,∞) denote a measurable function.

• The investor wants to have the payoff p(S(T )) at time T .

• For example,

• market portfolio: p̃(s) =
∑d

i=1 si
• money market: p0(s) = 1
• stock: p1(s) = s1
• call: pC (s) = (s1 − L)+ for some L ∈ R.

• We define a candidate for the hedging price as

hp(t, s) := Et,s
[
Z̃ θ(T )p(S(T ))

]
,

where Z̃ θ(T ) = Z θ(T )/Z θ(t) and S(t) = s under the
expectation operator Et,s .
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Non path-dependent European claims

Assume that we have a contingent claim of the form p(S(T )) ≥ 0
and that for all points of support (t, s) for S(·) with t ∈ [0,T ) we
have hp ∈ C 1,2(Ut,s) for some neighborhood Ut,s of (t, s). Then,
with ηp

i (t, s) := Dih
p(t, s) and vp := hp(0,S(0)), we get

V vp ,ηp
(t) = hp(t,S(t)).

The strategy ηp is optimal in the sense that for any ṽ > 0 and for
any strategy η̃ whose associated wealth process is nonnegative and
satisfies V ṽ ,η̃(T ) ≥ p(S(T )), we have ṽ ≥ vp. Furthermore, hp

solves the PDE

∂

∂t
hp(t, s) +

1

2

d∑
i=1

d∑
j=1

si sjai ,j(t, s)D
2
i ,jh

p(t, s) = 0

at all points of support (t, s) for S(·) with t ∈ [0,T ).
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The proof relies on Itô’s formula.

• Define the martingale Np(·) as

Np(t) := E[Z θ(T )p(S(T ))|F(t)] = Z θ(t)hp(t,S(t)).

• Use a localized version of Itô’s formula to get the dynamics of
Np(·). Since it is a martingale, its dt term must disappear
which yields the PDE.

• Then, another application of Itô’s formula yields

dhp(t,S(t)) =
d∑

i=1

Dih
p(t,S(t))dSi (t) = dV vp ,ηp

(t).

• This yields directly V vp ,ηp
(·) ≡ hp(·,S(·)).
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Proof (continued)

• Next, we prove optimality.

• Assume we have some initial wealth ṽ > 0 and some strategy
η̃ with nonnegative associated wealth process such that
V ṽ ,η̃(T ) ≥ p(S(T )) is satisfied.

• Then, Z θ(·)V ṽ ,η̃(·) is a supermartingale.

• This implies

ṽ ≥ E[Z θ(T )V ṽ ,η̃(T )] ≥ E[Z θ(T )p(S(T ))]

= E[Z θ(T )V vp ,ηp
(T )] = vp
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Non-uniqueness of PDE

• Usually,

∂

∂t
v(t, s) +

1

2

d∑
i=1

d∑
j=1

si sjai ,j(t, s)D
2
i ,jv(t, s) = 0

does not have a unique solution.

• However, if hp is sufficiently differentiable, it can be
characterized as the minimal nonnegative solution of the PDE.

• This follows as in the proof of optimality. If h̃ is another
nonnegative solution of the PDE with h̃(T , s) = p(s), then
Z θ(·)h̃(·,S(·)) is a supermartingale.
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Corollary: Modified put-call parity

For any L ∈ R we have the modified put-call parity for the call-
and put-options (S1(T )− L)+ and (L− S1(T ))+, respectively,
with strike price L:

Et,s
[
Z̃ θ(T )(L− S1(T ))+

]
+ hp1

(t, s)

= Et,s
[
Z̃ θ(T )(S1(T )− L)+

]
+ Lhp0

(t, s),

where p0(·) ≡ 1 denotes the payoff of one monetary unit and
p1(s) = s1 the price of the first stock for all s ∈ Rd

+.
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Role of Markovian market price of risk

Let M ≥ 0 be a random variable measurable with respect to
FS(T ). Let ν(·) denote any MPR and θ(·, ·) a Markovian MPR.
Then, with

Mν(t) := E
[

Z ν(T )

Z ν(t)
M

∣∣∣∣Ft

]
and Mθ(t) := E

[
Z θ(T )

Z θ(t)
M

∣∣∣∣Ft

]
for t ∈ [0,T ], we have Mν(·) ≤ Mθ(·) almost surely.
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Proof

• We define c(·) := ν(·)− θ(·,S(·)) and cn(·) := c(·)1{τn≥·} for
some localization sequence τn.

• Then,

Z ν(T )

Z ν(t)
= lim

n→∞

Z cn
(T )

Z cn(t)

· exp
(
−
∫ T

t
θT(dW (u) + cn(u)du)− 1

2

∫ T

t
‖θ‖2du

)
.

• Since
∫ T
0 cn(t)dt is bounded, Z cn

(·) is a martingale.

• Fatou’s lemma, Girsanov’s theorem and Bayes’ rule yield

Mν(t) ≤ lim inf
n→∞

EQn

[
exp

(
−
∫ T

t
θTdW n(u)− 1

2

∫ T

t
‖‖2du

)
M

∣∣∣∣Ft

]
.

• Since σ(·,S(·))cn(·) ≡ 0 the process S(·) has the same
dynamics under Qn as under P.
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We can change the measure to compute hp

• There exists not always an equivalent local martingale
measure.

• However, after making some technical assumptions on the
probability space and the filtration we can construct a new
measure Q which corresponds to a “removal of the stock price
drift”.

• Based on the work of Föllmer and Meyer and along the lines
of Delbaen and Schachermayer.
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Theorem: Under a new measure Q the drifts disappear.
There exists a measure Q such that P � Q. More precisely, for all
nonnegative F(T )-measurable random variables Y we have

EP[Z θ(T )Y ] = EQ
[
Y 1{

1

Zθ(T )
>0

}] .

Under this measure Q, the stock price processes follow

dSi (t) = Si (t)
K∑

k=1

σi ,k(t,S(t)) dW̃k(t)

up to time τ θ := inf{t ∈ [0,T ] : 1/Z θ(t) = 0}. Here,

W̃k(t ∧ τ θ) := Wk(t ∧ τ θ) +

∫ t∧τθ

0
θk(u,S(u))du

is a K -dimensional Q-Brownian motion stopped at time τ θ.
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What happens in between time 0 and time T : Bayes’ rule.

For all nonnegative F(T )-measurable random variables Y the
representation

EQ
[
Y 1{1/Zθ(T )>0}

∣∣∣F(t)
]

= EP[Z θ(T )Y |F(t)]
1

Z θ(t)
1{1/Zθ(t)>0}

holds Q-almost surely (and thus P-almost surely) for all t ∈ [0,T ].
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After a change of measure, the Bessel process becomes
Brownian motion.

• We look at a market with one stock:

dS(t) =
1

S(t)
dt + dW (t).

• We have S(t) > 0 for all t ≥ 0.

• The market price of risk is θ(t, s) = 1/s.

• The inverse stochastic discount factor 1/Z θ becomes zero
exactly when S(t) hits 0.

• Removing the drift with a change of measure as before makes
S(·) a Brownian motion (up to the first hitting time of zero by
1/Z θ(·)) under Q.
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The optimal strategy for getting one dollar at time T can
be explicitly computed.

• For p(s) ≡ p0(s) ≡ 1 we get

hp0
(t, s) = EP

[
Z θ(T )

Z θ(t)
· 1
∣∣∣∣Ft

]∣∣∣∣
S(t)=s

= EQ[1{1/Zθ(T )>0}|Ft ]|S(t)=s

= 2Φ

(
s√

T − t

)
− 1.

• This yields the optimal strategy

η0(t, s) =
2√

T − t
φ

(
s√

T − t

)
.

• The hedging price hp satisfies on all points {s > 0} the PDE

∂

∂t
hp(t, s) +

1

2
D2hp(t, s) = 0.
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Conclusion

• No equivalent local martingale measure needed to find an
optimal hedging strategy based upon the familiar delta hedge.

• Sufficient conditions are derived for the necessary
differentiability of expectations indexed over the initial market
configuration.

• The dynamics of stochastic processes under a non-equivalent
measure and a generalized Bayes’ rule might be of interest
themselves.

• We have computed some optimal trading strategies in
standard examples for which so far only ad-hoc and not
necessarily optimal strategies have been known.
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Thank you!
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