No good deal definition	Main results on NGD pricing	Hedging

Pricing and Hedging Basis Risk under No Good Deal Assumption

Laurence Carassus and Emmanuel Temam carassus@math.jussieu.fr, temam@math.jussieu.fr

LPMA, Université Paris 7-Diderot

"Pricing and Hedging Basis Risk under No Good Deal Assumption" avec E. Temam 2010, http://hal.archives-ouvertes.fr/hal-00498479/fr/

Introduction	No good deal definition	Main results on NGD pricing	Hedging
00			
No Good Deal			
Introduction			

• Good Deal : portfolio with a "too good" Sharpe ratio :

Introduction	No good deal definition	Main results on NGD pricing	Hedging
00			
No Good Deal			
Introduction	h		

- Good Deal : portfolio with a "too good" Sharpe ratio :
 - Sharpe Ratio is a performance ratio that measures the degree to which the expected return of the claim is in excess of the risk free rate, as a proportion of the standard deviation.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
No Good Deal			
Introductio	'n		

- Good Deal : portfolio with a "too good" Sharpe ratio :
 - Sharpe Ratio is a performance ratio that measures the degree to which the expected return of the claim is in excess of the risk free rate, as a proportion of the standard deviation.
- Cochrane-Saá-Requejo (2001), Björk-Slinko (2006), Klöppel-Schweizer (2007),...

Introduction	No good deal definition	Main results on NGD pricing	Hedging
00			
No Good Deal			
Introductio	n		

- Good Deal : portfolio with a "too good" Sharpe ratio :
 - Sharpe Ratio is a performance ratio that measures the degree to which the expected return of the claim is in excess of the risk free rate, as a proportion of the standard deviation.
- Cochrane-Saá-Requejo (2001), Björk-Slinko (2006), Klöppel-Schweizer (2007),...

Introduction	No good deal definition	Main results on NGD pricing	Hedging
•••			
No Good Deal			
Introduction	h		

- Good Deal : portfolio with a "too good" Sharpe ratio :
 - Sharpe Ratio is a performance ratio that measures the degree to which the expected return of the claim is in excess of the risk free rate, as a proportion of the standard deviation.
- Cochrane-Saá-Requejo (2001), Björk-Slinko (2006), Klöppel-Schweizer (2007),...

Motivation : basis risk management

• Hedge a derivative written on V, which is not liquid, via a liquid and well correlated asset $S \rightarrow$ Incomplete market.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
•••			
No Good Deal			
Introduction	h		

- Good Deal : portfolio with a "too good" Sharpe ratio :
 - Sharpe Ratio is a performance ratio that measures the degree to which the expected return of the claim is in excess of the risk free rate, as a proportion of the standard deviation.
- Cochrane-Saá-Requejo (2001), Björk-Slinko (2006), Klöppel-Schweizer (2007),...

- Hedge a derivative written on V, which is not liquid, via a liquid and well correlated asset $S \rightarrow$ Incomplete market.
- Examples : hedging an option on

Introduction	No good deal definition	Main results on NGD pricing	Hedging
•••			
No Good Deal			
Introduction	h		

- Good Deal : portfolio with a "too good" Sharpe ratio :
 - Sharpe Ratio is a performance ratio that measures the degree to which the expected return of the claim is in excess of the risk free rate, as a proportion of the standard deviation.
- Cochrane-Saá-Requejo (2001), Björk-Slinko (2006), Klöppel-Schweizer (2007),...

- Hedge a derivative written on V, which is not liquid, via a liquid and well correlated asset $S \rightarrow$ Incomplete market.
- Examples : hedging an option on
 - stock via the associated index;

Introduction	No good deal definition	Main results on NGD pricing	Hedging
•••			
No Good Deal			
Introduction	h		

- Good Deal : portfolio with a "too good" Sharpe ratio :
 - Sharpe Ratio is a performance ratio that measures the degree to which the expected return of the claim is in excess of the risk free rate, as a proportion of the standard deviation.
- Cochrane-Saá-Requejo (2001), Björk-Slinko (2006), Klöppel-Schweizer (2007),...

- Hedge a derivative written on V, which is not liquid, via a liquid and well correlated asset $S \rightarrow$ Incomplete market.
- Examples : hedging an option on
 - stock via the associated index;
 - FO SR 0,5% via FO 1% or Brent.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
No Good Deal			
Introduction			

• Define Sharpe ratio for a process.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
No Good Deal			
Introduction			

- Define Sharpe ratio for a process.
- Show that the "right NGD" price is greater than the one previously compute in the literature.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
No Good Deal			
Introduction			

- Define Sharpe ratio for a process.
- Show that the "right NGD" price is greater than the one previously compute in the literature.
- Find a hedging strategy.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
No Good Deal			
Introduction			

- Define Sharpe ratio for a process.
- Show that the "right NGD" price is greater than the one previously compute in the literature.
- Find a hedging strategy.
- Show numerically the NGD efficiency.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
The model			
No Good De	al : the model		

• Non risky asset : $dS_t^0 = S_t^0 r dt$.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
The model			
No Good	Deal : the model		

- Non risky asset : $dS_t^0 = S_t^0 r dt$.
- Exchangeable asset : $dS_t = S_t(\mu_S dt + \sigma_S dW_t)$.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
The model			
No Good	Deal : the model		

- Non risky asset : $dS_t^0 = S_t^0 r dt$.
- Exchangeable asset : $dS_t = S_t(\mu_S dt + \sigma_S dW_t)$.
- Non exchangeable asset : $dV_t = V_t(\mu_V dt + \sigma_V(\rho dW_t + \sqrt{1 \rho^2} dW_t^*))$.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
The model			
No Good	Deal · the model		

- Non risky asset : $dS_t^0 = S_t^0 r dt$.
- Exchangeable asset : $dS_t = S_t(\mu_S dt + \sigma_S dW_t)$.
- Non exchangeable asset : $dV_t = V_t(\mu_V dt + \sigma_V(\rho dW_t + \sqrt{1-\rho^2} dW_t^*).$

$$\begin{aligned} \mathcal{M}^2(\mathbb{P}) &:= L^2(\mathbb{P}) \cap \left\{ \mathbb{Q} \sim \mathbb{P} \ : \ S/S^0 \text{ is a } \mathbb{Q} \text{ martingale } \right\} \\ &= \left\{ \mathbb{Q} \mid \exists \lambda \text{ s.t. } \frac{d\mathbb{Q}}{d\mathbb{P}} = Z_T^\lambda \right\} \neq \emptyset \text{ with,} \end{aligned}$$

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
The model			
No Good	Deal : the model		

- Non risky asset : $dS_t^0 = S_t^0 r dt$.
- Exchangeable asset : $dS_t = S_t(\mu_S dt + \sigma_S dW_t)$.
- Non exchangeable asset : $dV_t = V_t(\mu_V dt + \sigma_V(\rho dW_t + \sqrt{1-\rho^2} dW_t^*).$

$$\begin{split} \mathcal{M}^2(\mathbb{P}) &:= L^2(\mathbb{P}) \cap \left\{ \mathbb{Q} \sim \mathbb{P} \ : \ S/S^0 \text{ is a } \mathbb{Q} \text{ martingale } \right\} \\ &= \left\{ \mathbb{Q} \mid \exists \lambda \text{ s.t. } \frac{d\mathbb{Q}}{d\mathbb{P}} = Z_T^\lambda \right\} \neq \emptyset \text{ with,} \end{split}$$

•
$$Z_T^{\lambda} = \exp\left(-h_S W_T - \frac{1}{2}h_S^2 T + \int_0^T \lambda_s dW_s^* - \frac{1}{2}\int_0^T \lambda_s^2 ds\right),$$

Introduction	No good deal definition	Main results on NGD pricing	Hedging
000			
The model			
No Good	Dool : the model		

- Non risky asset : $dS_t^0 = S_t^0 r dt$.
- Exchangeable asset : $dS_t = S_t(\mu_S dt + \sigma_S dW_t)$.
- Non exchangeable asset : $dV_t = V_t(\mu_V dt + \sigma_V(\rho dW_t + \sqrt{1 \rho^2} dW_t^*))$.

$$\begin{split} \mathcal{M}^2(\mathbb{P}) &:= L^2(\mathbb{P}) \cap \left\{ \mathbb{Q} \sim \mathbb{P} \ : \ S/S^0 \text{ is a } \mathbb{Q} \text{ martingale } \right\} \\ &= \left\{ \mathbb{Q} \mid \exists \lambda \text{ s.t. } \frac{d\mathbb{Q}}{d\mathbb{P}} = Z_T^\lambda \right\} \neq \emptyset \text{ with,} \end{split}$$

•
$$Z_T^{\lambda} = \exp\left(-h_S W_T - \frac{1}{2}h_S^2 T + \int_0^T \lambda_s dW_s^{\star} - \frac{1}{2}\int_0^T \lambda_s^2 ds\right),$$

 $h_S = \frac{\mu_S - r}{\sigma_S}$ Sharpe ratio of S .

Introduction 000 Sharpe ratio No good deal definition

Main results on NGD pricing

Hedging 000000

No Good Deal : Sharpe ratio

Global Sharpe ratio

Let X be a contingent claim and $\mathbb{Q} \in \mathcal{M}^2(\mathbb{P})$: $SR^2(X, \mathbb{Q}) = \frac{\mathbb{E}(X) - \mathbb{E}^{\mathbb{Q}}(X)}{\sqrt{\operatorname{Var}(X)}}$ Introduction 000 Sharpe ratio No good deal definition ●○○ Main results on NGD pricing

Hedging 000000

No Good Deal : Sharpe ratio

Global Sharpe ratio

Let X be a contingent claim and $\mathbb{Q} \in \mathcal{M}^2(\mathbb{P})$: $SR^2(X, \mathbb{Q}) = \frac{\mathbb{E}(X) - \mathbb{E}^{\mathbb{Q}}(X)}{\sqrt{\operatorname{Var}(X)}}$

Proposition : Klöppel-Schweizer (2007) Let $\mathbb{Q} \in \mathcal{M}^2(\mathbb{P})$ then $\sup_{X \text{ "admi"}} SR^2(X, \mathbb{Q}) = \sqrt{\operatorname{Var} Z_T}$. Introduction 000 Sharpe ra<u>tio</u> No good deal definition

Main results on NGD pricing

Hedging 000000

No Good Deal : Sharpe ratio

Global Sharpe ratio

Let X be a contingent claim and $\mathbb{Q} \in \mathcal{M}^2(\mathbb{P})$: $SR^2(X, \mathbb{Q}) = \frac{\mathbb{E}(X) - \mathbb{E}^{\mathbb{Q}}(X)}{\sqrt{\operatorname{Var}(X)}}$

Proposition : Klöppel-Schweizer (2007) Let $\mathbb{Q} \in \mathcal{M}^2(\mathbb{P})$ then $\sup_X \text{ "admi"} SR^2(X, \mathbb{Q}) = \sqrt{\operatorname{Var} Z_T}$.

NGD Assumption

There exists $\mathbb{Q} \in \mathcal{M}^2(\mathbb{P})$ and $\beta > 0$, such that $\forall X$, $SR^2(X,Q) \leq \beta$.

Proposition NGD Assumption \iff $\mathcal{M}^{2,\beta}(\mathbb{P}) := \left\{ \mathbb{Q} \in \mathcal{M}^2(\mathbb{P}) : \|Z_T\|_{L^2(\mathbb{P})} \leq \sqrt{1+\beta^2} \right\} \neq \emptyset.$

Introduction	No good dear definition	Main results on NGD pricing	rieuging
	000		
Pricing rule			
No Good D	eal pricing		
			-

Assume that
$$rac{1}{T}\ln(1+eta^2)\geq h_S^2$$
 and $\lambda^{max}=\sqrt{rac{1}{T}\ln(1+eta^2)-h_S^2}.$

Cochrane-Saá-Requejo and Björk-Slinko NGD price

$$\tilde{p}_0(H) = \sup_{\lambda_t(\omega) \in [-\lambda^{max}, \lambda^{max}]} \mathbb{E}\left[Z_T^{\lambda} \frac{H}{S_T^0} \right].$$

Introduction	No good deal definition	Main results on MGD pricing	rieuging
	000		
Pricing rule			
No Good D	Deal pricing		
			_

Assume that
$$\frac{1}{T}\ln(1+\beta^2) \ge h_S^2$$
 and $\lambda^{max} = \sqrt{\frac{1}{T}\ln(1+\beta^2)} - h_S^2$.

Cochrane-Saá-Requejo and Björk-Slinko NGD price

$$\tilde{p}_0(H) = \sup_{\lambda_t(\omega) \in [-\lambda^{max}, \lambda^{max}]} \mathbb{E}\left[Z_T^{\lambda} \frac{H}{S_T^0} \right].$$

Pricing via coherent measure of risk

$$\begin{split} p_0(H) &= & \inf \left\{ m \in \mathbb{R} \mid \; \exists \Phi \text{ s.t. } \inf_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}} \left[\frac{X_T^{m,\Phi} - H}{S_T^0} \right] \geq 0 \right\} \\ &= & \sup_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}} \left[\frac{H}{S_T^0} \right]. \end{split}$$

Klöppel-Schweizer (2007) or Cherny (08)

Introduction	No good dear definition	Main results on MGD pricing	rieuging
	$\circ \bullet \circ$		00000
Pricing rule			
No Good D	Deal pricing		
			_

Assume that
$$\frac{1}{T}\ln(1+\beta^2) \ge h_S^2$$
 and $\lambda^{max} = \sqrt{\frac{1}{T}\ln(1+\beta^2)} - h_S^2$.

Cochrane-Saá-Requejo and Björk-Slinko NGD price

$$\tilde{p}_0(H) = \sup_{\lambda_t(\omega) \in [-\lambda^{max}, \lambda^{max}]} \mathbb{E}\left[Z_T^{\lambda} \frac{H}{S_T^0} \right].$$

Pricing via coherent measure of risk

$$\begin{split} p_0(H) &= & \inf\left\{ m \in \mathbb{R} \mid \; \exists \Phi \text{ s.t. } \inf_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}}\left[\frac{X_T^{m,\Phi} - H}{S_T^0}\right] \geq 0 \right\} \\ &= & \sup_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}}\left[\frac{H}{S_T^0}\right]. \end{split}$$

Klöppel-Schweizer (2007) or Cherny (08)

Remark : There is no natural hedging strategies associated to this notion of NGD.

	No good deal definition	
	000	
Commentioner		

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy :

$$SR^{1}(X_{t}) = \frac{\frac{1}{dt}\mathbb{E}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

Comparaison

No good deal definition

Main results on NGD pricing 0000

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy : $\frac{1}{TE} \left(\frac{dX_t}{T} / \mathcal{F}_t \right) - r$

$$SR^{1}(X_{t}) = \frac{\frac{\overline{dt} \mathbb{E}\left(\frac{\overline{X_{t}}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

• For a strategy based on S^0 and $S : SR^1(X_t) = h_S$.

Comparaison	

Main results on NGD pricing

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy :

$$SR^{1}(X_{t}) = \frac{\frac{1}{dt}\mathbb{E}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

• For a strategy based on S^0 and $S : SR^1(X_t) = h_S$.

Link between NGD CSR(01) or BS(06) price and Sharpe ratio

Introduction	

Comparaison

No good deal definition

Main results on NGD pricing

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy :

$$SR^{1}(X_{t}) = \frac{\frac{1}{dt}\mathbb{E}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

• For a strategy based on S^0 and $S : SR^1(X_t) = h_S$.

Link between NGD CSR(01) or BS(06) price and Sharpe ratio

• Equivalence between bounding SR^1 and bounding λ : no

Comparaison	

Main results on NGD pricing

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy :

$$SR^{1}(X_{t}) = \frac{\frac{1}{dt}\mathbb{E}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

• For a strategy based on S^0 and $S : SR^1(X_t) = h_S$.

Link between NGD CSR(01) or BS(06) price and Sharpe ratio

• Equivalence between bounding SR^1 and bounding λ : no

•
$$|SR^1(X_t)| = |h_S| \le |(-h_S, \lambda_t)|_{\mathbb{R}^2}$$
,

Comparaison	

Main results on NGD pricing

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy :

$$SR^{1}(X_{t}) = \frac{\frac{1}{dt}\mathbb{E}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

• For a strategy based on S^0 and $S : SR^1(X_t) = h_S$.

Link between NGD CSR(01) or BS(06) price and Sharpe ratio

- Equivalence between bounding SR^1 and bounding λ : no
 - $|SR^1(X_t)| = |h_S| \le |(-h_S, \lambda_t)|_{\mathbb{R}^2}$,
- Equivalence between bounding SR^2 and bounding λ : no unless, λ is deterministic

000	

Main results on NGD pricing 0000

Comparaison

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy :

$$SR^{1}(X_{t}) = \frac{\frac{1}{dt}\mathbb{E}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

• For a strategy based on S^0 and $S : SR^1(X_t) = h_S$.

Link between NGD CSR(01) or BS(06) price and Sharpe ratio

- Equivalence between bounding SR^1 and bounding λ : no
 - $|SR^1(X_t)| = |h_S| \le |(-h_S, \lambda_t)|_{\mathbb{R}^2}$,
- Equivalence between bounding SR^2 and bounding λ : no unless, λ is deterministic

•
$$\operatorname{Var}(Z_T^{\lambda}) = e^{h_S^2 T} \mathbb{E}^{\tilde{\mathbb{Q}}} \left(e^{\int_0^T \lambda_s^2 ds} \right) - 1,$$

000	

Main results on NGD pricing 0000

Comparaison

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy :

$$SR^{1}(X_{t}) = \frac{\frac{1}{dt}\mathbb{E}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

• For a strategy based on S^0 and $S : SR^1(X_t) = h_S$.

Link between NGD CSR(01) or BS(06) price and Sharpe ratio

- Equivalence between bounding SR^1 and bounding λ : no
 - $|SR^1(X_t)| = |h_S| \le |(-h_S, \lambda_t)|_{\mathbb{R}^2}$,
- Equivalence between bounding SR^2 and bounding λ : no unless, λ is deterministic

•
$$\operatorname{Var}(Z_T^{\lambda}) = e^{h_S^2 T} \mathbb{E}^{\tilde{\mathbb{Q}}} \left(e^{\int_0^T \lambda_s^2 ds} \right) - 1,$$

• A bound on λ implies a bound on $|SR^1(X_t)|$ or $|SR^2(X_t)|$ but the converse does not hold true.

000	

Main results on NGD pricing

Comparaison

No Good Deal : Sharpe ratio and No Good Deal Pricing

Instantaneous Sharpe ratio

• Let X_t be the value of a self-financed strategy :

$$SR^{1}(X_{t}) = \frac{\frac{1}{dt}\mathbb{E}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right) - r}{\frac{1}{dt}\sqrt{\operatorname{Var}\left(\frac{dX_{t}}{X_{t}}/\mathcal{F}_{t}\right)}}.$$

• For a strategy based on S^0 and $S : SR^1(X_t) = h_S$.

Link between NGD CSR(01) or BS(06) price and Sharpe ratio

- Equivalence between bounding SR^1 and bounding λ : no
 - $|SR^1(X_t)| = |h_S| \le |(-h_S, \lambda_t)|_{\mathbb{R}^2}$,
- Equivalence between bounding SR^2 and bounding λ : no unless, λ is deterministic

•
$$\operatorname{Var}(Z_T^{\lambda}) = e^{h_S^2 T} \mathbb{E}^{\tilde{\mathbb{Q}}} \left(e^{\int_0^T \lambda_s^2 ds} \right) - 1,$$

- A bound on λ implies a bound on $|SR^1(X_t)|$ or $|SR^2(X_t)|$ but the converse does not hold true.
- $\tilde{p}_0(H) \leq p_0(H)$ and is not related to the NGD principle.

Introduction	No good deal definition	Main results on NGD pricing	Hedging
		0000	
Main result			
No Good Deal			

• $p_0 = \sup_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}} \left[\frac{H}{S_T^o} \right]$ is more complex to compute than \tilde{p}_0 .

	No good deal definition	Main results on NGD pricing	Hedging
		0000	
Main result			
No Good	Deal		

- $p_0 = \sup_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}} \left[\frac{H}{S_T^o} \right]$ is more complex to compute than \tilde{p}_0 .
- We propose to compute an upper and a lower bounds for $p_0(H)$:

	No good deal definition	Main results on NGD pricing	Hedging
		0000	
Main result			
No Good Deal			

- $p_0 = \sup_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}} \left[\frac{H}{S_T^0} \right]$ is more complex to compute than \tilde{p}_0 .
- We propose to compute an upper and a lower bounds for $p_0(H)$: • p_0^{UB} : suppress the non negativity and relax the martingale
 - p_0^{UB} : suppress the non negativity and relax the martingale assumption on Z_T^{λ} .

	No good deal definition	Main results on NGD pricing	Hedging
		0000	
Main result			
No Good	Deal		

- $p_0 = \sup_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}} \left[\frac{H}{S_T^0} \right]$ is more complex to compute than \tilde{p}_0 .
- We propose to compute an upper and a lower bounds for $p_0(H)$:
 - p_0^{UB} : suppress the non negativity and relax the martingale assumption on Z_T^{λ} .
 - p_0^{LB} : λ is assume to be independent of W : explicit computation of p_0 is possible when relaxing the positivity assumption on Z_T^{λ} .

	No good deal definition	Main results on NGD pricing	Hedging
		0000	
Main result			
No Good	Deal		

- $p_0 = \sup_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}} \left[\frac{H}{S_T^0} \right]$ is more complex to compute than \tilde{p}_0 .
- We propose to compute an upper and a lower bounds for $p_0(H)$:
 - p_0^{UB} : suppress the non negativity and relax the martingale assumption on Z_T^{λ} .
 - p_0^{LB} : λ is assume to be independent of W: explicit computation of p_0 is possible when relaxing the positivity assumption on Z_T^{λ} .

Theorem

Assume that $H = (V_T - K)_+$ and there is NGD. Then

$$p_0^{UB} \ge p_0 \ge p_0^{LB} \ge \tilde{p}_0.$$

In some cases, $p_0^{LB} > \tilde{p}_0$.

	No good deal definition	Main results on NGD pricing	Hedging
		0000	
Main result			
No Good	Deal		

- $p_0 = \sup_{\mathbb{Q} \in \mathcal{M}^{2,\beta}(\mathbb{P})} \mathbb{E}^{\mathbb{Q}} \left[\frac{H}{S_T^0} \right]$ is more complex to compute than \tilde{p}_0 .
- We propose to compute an upper and a lower bounds for $p_0(H)$:
 - p_0^{UB} : suppress the non negativity and relax the martingale assumption on Z_T^{λ} .
 - p_0^{LB} : λ is assume to be independent of W: explicit computation of p_0 is possible when relaxing the positivity assumption on Z_T^{λ} .

Theorem

Assume that $H = (V_T - K)_+$ and there is NGD. Then

$$p_0^{UB} \ge p_0 \ge p_0^{LB} \ge \tilde{p}_0.$$

In some cases, $p_0^{LB} > \tilde{p}_0$.

$$\begin{split} \tilde{p}_{0} &= e^{-rT}BS(V_{0}, T, K, \mu_{V} - \sigma_{V}\rho h_{S} + \sigma_{V}\lambda^{max}\sqrt{1-\rho^{2}}, \sigma_{V}), \\ p_{0}^{LB} &= \varepsilon \tilde{p}_{0} + (1-\varepsilon)e^{-rT}\mathbb{E}(Z_{T}^{0}Y^{down}H), \ \varepsilon \in (0,1), \\ p_{0}^{UB} &= \mathbb{E}((Z_{T}^{0} + e^{h_{S}^{2}T/2}\bar{\beta}\frac{H - \mathbb{E}(H \mid \mathcal{F}_{T}^{W})}{\sqrt{\mathbb{E}[H^{2} - \mathbb{E}(H \mid \mathcal{F}_{T}^{W})^{2}]}})H), \ \bar{\beta} = \sqrt{(1+\beta^{2})e^{-h_{S}^{2}T} - 1}. \end{split}$$

	No good deal definition	Main results on NGD pricing	Hedging
		0000	
Numerical results			

No Good Deal Pricing : numerical results

Assume the following market conditions :

μ_V	σ_V	V_0	μ_S	σ_S	S_0	r	Т
0.04	0.32	15	0.0272	0.256	100	2%	0.25

Introduction	No good deal definition	Main results on NGD pricing	Hedging
		0000	
Numerical results			

No Good Deal Pricing : numerical results

Assume the following market conditions :

μ_V	σ_V	V_0	μ_S	σ_S	S_0	r	Т
0.04	0.32	15	0.0272	0.256	100	2%	0.25

Example

If K = 15, $\rho = 0.8$, $\beta = 2$ then our lower bound is 8.4% higher than "NGD-CSR". The difference can reach 25% in other market conditions.

Introduction 000 No good deal definition

Main results on NGD pricing

Hedging 000000

Numerical results

No Good Deal Pricing : numerical results

- NGD Price ↓ when ρ ↑ (OK theoretically for "NGD-CSR" but not for "NGD-LB" and 'NGD-UB").
- NGD Price \rightarrow "MV-Price" when $\rho \rightarrow 1$ (OK theoretically).
- The following items are not always true :
 - "V-BS Price" is near "MV-Price",
 - "S-BS Price" is very low.

Main results on NGD pricing

Hedging 000000

Numerical results

No Good Deal Pricing : numerical results

• NGD Price \uparrow when $\beta\uparrow$

(OK theoretically for "NGD-CSR" and "NGD-UB", but not for "NGD-LB"),

• NGD Price \rightarrow "MV-Price" when $\beta \rightarrow \sqrt{e^{h_S^2 T} - 1}$

⁽OK theoretically).

on NGD pricing Hedging
00000

	No good deal definition	Main results on NGD pricing	Hedging
000	000	0000	00000
Hedging criterium			
Pricing nee	ds Hedging		

	No good deal definition	Main results on NGD pricing	Hedging
			• 0 0000
Hedging criterium			
Pricing need	ls Hedging		

Proposed solution

• Compute explicitly the strategy in *exchangeable assets* that minimize the quadratic error under the historic probability when starting with an initial capital equal to NGD price.

	No good deal definition	Main results on NGD pricing	Hedging
			• 0 0000
Hedging criterium			
Pricing needs	s Hedging		

- Compute explicitly the strategy in *exchangeable assets* that minimize the quadratic error under the historic probability when starting with an initial capital equal to NGD price.
- Comparaison

	No good deal definition	Main results on NGD pricing	Hedging
			00000
Hedging criterium			
Pricing need	ds Hedging		

- Compute explicitly the strategy in *exchangeable assets* that minimize the quadratic error under the historic probability when starting with an initial capital equal to NGD price.
- Comparaison
 - with other hedging strategy.

	No good deal definition	Main results on NGD pricing	Hedging
			• 0 0000
Hedging criterium			
Pricing needs	s Hedging		

- Compute explicitly the strategy in *exchangeable assets* that minimize the quadratic error under the historic probability when starting with an initial capital equal to NGD price.
- Comparaison
 - with other hedging strategy.
 - with other initial wealths.

	No good deal definition	Main results on NGD pricing	Hedging
			•••••
Hedging criterium			
Pricing needs	Hedging		

- Compute explicitly the strategy in *exchangeable assets* that minimize the quadratic error under the historic probability when starting with an initial capital equal to NGD price.
- Comparaison
 - with other hedging strategy.
 - with other initial wealths.
 - according to several risk measures.

	No good deal definition	Main results on NGD pricing	Hedging
			00000
Hedging criterium			
Pricing needs H	Hedging		

~ .

Solve :

$$v_{\alpha}(H) = \inf_{(\Phi^0, \Phi^1) \in \mathcal{A}_2} \mathbb{E} \left[H - \left(X_0 + \int_0^T (\Phi_t^0 dS_t^0 + \Phi_t^1 dS_t) \right) \right]^2$$

	No good deal definition	Main results on NGD pricing	Hedging
			00000
Hedging criterium			
Pricing needs I	Hedging		

ъ

Calua

Solve :

$$v_{\alpha}(H) = \inf_{(\Phi^0, \Phi^1) \in \mathcal{A}_2} \mathbb{E} \left[H - \left(X_0 + \int_0^T (\Phi_t^0 dS_t^0 + \Phi_t^1 dS_t) \right) \right]^2$$

- Föllmer-Sonderman (86), Duffie-Richardson (91), Schweizer (92).
- We follow the approach of Gouriéroux-Laurent-Pham (98)

Pricing ne	eds Hedging		
Hedging criterium			
			00000
	No good deal definition	Main results on NGD pricing	Hedging

Б

Solve:

$$v_{\alpha}(H) = \inf_{(\Phi^0, \Phi^1) \in \mathcal{A}_2} \mathbb{E} \left[H - \left(X_0 + \int_0^T (\Phi^0_t dS^0_t + \Phi^1_t dS_t) \right) \right]^2$$

ъ

- Föllmer-Sonderman (86), Duffie-Richardson (91), Schweizer (92).
- We follow the approach of Gouriéroux-Laurent-Pham (98)
 - Via a change of numéraire, we transform the initial problem in order to obtain (locals) martingales and perform a projection argument thanks to the Galtchouk-Kunita-Watanabe theorem

Pricing ne	eds Hedging		
Hedging criterium			
			00000
Introduction	No good deal definition	Main results on NGD pricing	Hedging

Б

Solve :

$$v_{\alpha}(H) = \inf_{(\Phi^0, \Phi^1) \in \mathcal{A}_2} \mathbb{E} \left[H - \left(X_0 + \int_0^T (\Phi^0_t dS^0_t + \Phi^1_t dS_t) \right) \right]^2$$

ъ

- Föllmer-Sonderman (86), Duffie-Richardson (91), Schweizer (92).
- We follow the approach of Gouriéroux-Laurent-Pham (98)
 - Via a change of numéraire, we transform the initial problem in order to obtain (locals) martingales and perform a projection argument thanks to the Galtchouk-Kunita-Watanabe theorem
 - Contributions of the proof :

Pricing ne	eds Hedging		
Hedging criterium			
			00000
Introduction	No good deal definition	Main results on NGD pricing	Hedging

Б

Solve :

$$v_{\alpha}(H) = \inf_{(\Phi^0, \Phi^1) \in \mathcal{A}_2} \mathbb{E} \left[H - \left(X_0 + \int_0^T (\Phi_t^0 dS_t^0 + \Phi_t^1 dS_t) \right) \right]^2$$

- Föllmer-Sonderman (86), Duffie-Richardson (91), Schweizer (92).
- We follow the approach of Gouriéroux-Laurent-Pham (98)
 - Via a change of numéraire, we transform the initial problem in order to obtain (locals) martingales and perform a projection argument thanks to the Galtchouk-Kunita-Watanabe theorem
 - Contributions of the proof :
 - explicit solution for basis risk

ъ

Pricing ne	eds Hedging		
Hedging criterium			
			00000
Introduction	No good deal definition	Main results on NGD pricing	Hedging

Б

Solve :

$$v_{\alpha}(H) = \inf_{(\Phi^0, \Phi^1) \in \mathcal{A}_2} \mathbb{E} \left[H - \left(X_0 + \int_0^T (\Phi^0_t dS^0_t + \Phi^1_t dS_t) \right) \right]^2$$

- Föllmer-Sonderman (86), Duffie-Richardson (91), Schweizer (92).
- We follow the approach of Gouriéroux-Laurent-Pham (98)
 - Via a change of numéraire, we transform the initial problem in order to obtain (locals) martingales and perform a projection argument thanks to the Galtchouk-Kunita-Watanabe theorem
 - Contributions of the proof :
 - explicit solution for basis risk

ъ

• show directly that the martingale property of the risky assets implies a particular form for the numéraire with no use of the so-called optimal variance measure.

Theorem	

Main results on NGD pricing

No Good Deal : hedging

Theorem

Let $H = (V_T - K)_+$, the solution of the preceding problem is given by

$$\begin{split} \Phi^{0,H}_t &= \quad \frac{U_t}{S_t^0} \left[\frac{\sigma_S + h_S}{\sigma_S} \left(X_0 + \int_0^t \left(h_S K_l + \rho \frac{L_l}{U_l} \right) dW_l^U \right) \ - \frac{1}{\sigma_S} \left(h_S K_t + \rho \frac{L_t}{U_t} \right) \right], \\ \Phi^{1,H}_t &= \quad \frac{U_t}{\sigma_S S_t} \left[\left(h_S K_t + \rho \frac{L_t}{U_t} \right) \ - h_S \left(X_0 + \int_0^t \left(h_S K_l + \rho \frac{L_l}{U_l} \right) dW_l^U \right) \right]. \end{split}$$

The minimum is equal to

$$\begin{split} v_{\alpha}(H) &= e^{(2r-h_{S}^{2})T} \Bigg[\left(e^{-rT} BS(V_{0}, T, K, \mu_{V} - \sigma_{V} h_{S} \rho, \sigma_{V}) - X_{0} \right)^{2} \\ &+ (1 - \rho^{2}) \mathbb{E}^{Q^{U}} \left(\int_{0}^{T} \left(\frac{L_{t}}{U_{t}} \right)^{2} dt \right) \Bigg], \end{split}$$

$$U_{t} = e^{-r(T-t)} S^{T}$$

$$K_{t} = \frac{e^{-r(T-t)}}{U_{t}} BS(V_{t}, T-t, K, \mu_{V} - \sigma_{V}h_{S}\rho, \sigma_{V})$$

$$L_{t} = \sigma_{V}e^{-r(T-t) + (\mu_{V} - \sigma_{V}h_{S}\rho)(T-t)}V_{t}\mathcal{N}(d_{1}(V_{t}, T-t, K, \mu_{V} - \sigma_{V}h_{S}\rho, \sigma_{V})),$$

 $W_t^U = W_t + 2h_S t$ and $W_t^{*,U} = W_t^*$ are brownien motions under Q^U .

Introduction		No good deal definition		Main results on NGD pricing		Hedging
						000000
Numerical results						
No Goo	d Deal	: comparaison	avec	d'autres straté	gies d	е
couvertu	ire					

• Strategies X^{Strat} starting from $X_0 \in \{$ "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" $\}$ and following "Strat" :

			No good deal definition	Main results on NGD p	ricing	Hedging
						00000
Numerica	results					
No	Good	Deal	: comparaison	avec d'autres	stratégies d	le

- Strategies X^{Strat} starting from $X_0 \in \{$ "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" $\}$ and following "Strat" :
 - "BaHCash" : X_0 all in cash.

couverture

	No good deal definition	Main results on NGD pricing	Hedging
			00000
Numerical results			
No Good	Deal : comparaiso	n avec d'autres stratég	ies de

couverture

- Strategies X^{Strat} starting from $X_0 \in \{$ "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" $\}$ and following "Strat" :
 - "BaHCash" : X_0 all in cash.
 - "BaHS" : $X_T^{BaHS} = X_0 S_T / S_0$

	No good deal definition	Main results on NGD pricing	Hedgin
			0000
Numerical results			
No Good Deal	· comparaison ave	oc d'autres stratég	ries de

No Good Deal : comparaison avec d'autres straté couverture

- Strategies X^{Strat} starting from $X_0 \in$ { "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" } and following "Strat" :
 - "BaHCash" : X_0 all in cash.

• "BaHS" :
$$X_T^{BaHS} = X_0 S_T / S_0$$

• "BS"
$$X_T^{BS} = \left(\frac{V_0}{S_0}S_T - K\right)_+ + (X_0 - S - BS_0)e^{rT}.$$

	No good deal definition	Main results on NGD pricing	Hedgir
			000
Numerical results			
No Good	Deal : comparaisor	avec d'autres stratég	gies de

couverture

- Strategies X^{Strat} starting from $X_0 \in \{$ "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" $\}$ and following "Strat" :
 - "BaHCash" : X_0 all in cash.
 - "BaHS" : $X_T^{BaHS} = X_0 S_T / S_0$
 - "BS" $X_T^{BS} = \left(\frac{V_0}{S_0}S_T K\right)_+ + (X_0 S \cdot BS_0)e^{rT}.$
 - "NGD"

	No good deal definition	Main results on NGD pricing	Hedgin
			0000
Numerical results			
No Cood Doo	L : comparaisor	a avoc d'autros stratógi	oc do

No Good Deal : comparaison avec d'autres stratégies de couverture

- Strategies X^{Strat} starting from $X_0 \in$ { "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" } and following "Strat" :
 - "BaHCash" : X_0 all in cash.
 - "BaHS" : $X_T^{BaHS} = X_0 S_T / S_0$

• "BS"
$$X_T^{BS} = \left(\frac{V_0}{S_0}S_T - K\right)_+ + (X_0 - S - BS_0)e^{rT}.$$

• "NGD"

Risk measures

		No good deal definition	No good deal definition		Main results on NGD pricing	
Numerical results						
NI C				17 .		

No Good Deal : comparaison avec d'autres stratégies de couverture

- Strategies X^{Strat} starting from $X_0 \in$ { "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" } and following "Strat" :
 - "BaHCash" : X_0 all in cash.
 - "BaHS" : $X_T^{BaHS} = X_0 S_T / S_0$
 - "BS" $X_T^{BS} = \left(\frac{V_0}{S_0}S_T K\right)_+ + (X_0 S \cdot BS_0)e^{rT}.$
 - "NGD"
- Risk measures
 - Super-replication probability, SRP : $\mathbb{P}[X_T^{Strat} \ge (V_T K)_+]$,

		No good deal definition	Main results on NGD pricing		Н	
Numerical results						

lging ○●○○

No Good Deal : comparaison avec d'autres stratégies de couverture

- Strategies X^{Strat} starting from $X_0 \in$ { "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" } and following "Strat" :
 - "BaHCash" : X_0 all in cash.
 - "BaHS" : $X_T^{BaHS} = X_0 S_T / S_0$
 - "BS" $X_T^{BS} = \left(\frac{V_0}{S_0}S_T K\right)_+ + (X_0 S \cdot BS_0)e^{rT}.$
 - "NGD"
- Risk measures
 - Super-replication probability, SRP : $\mathbb{P}[X_T^{Strat} \ge (V_T K)_+]$,
 - Expected loss, EL : $\mathbb{E}[(X_T^{Strat} (V_T K)_+)_-]$.

		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Numerical results			
	No good deal definition	Main results on NGD pricing	

No Good Deal : comparaison avec d'autres stratégies de couverture

- Strategies X^{Strat} starting from $X_0 \in$ { "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" } and following "Strat" :
 - "BaHCash" : X_0 all in cash.
 - "BaHS" : $X_T^{BaHS} = X_0 S_T / S_0$
 - "BS" $X_T^{BS} = \left(\frac{V_0}{S_0}S_T K\right)_+ + (X_0 S \cdot BS_0)e^{rT}.$
 - "NGD"
- Risk measures
 - Super-replication probability, SRP : $\mathbb{P}[X_T^{Strat} \ge (V_T K)_+]$,
 - Expected loss, EL : $\mathbb{E}[(X_T^{Strat} (V_T K)_+)_-].$
 - Value at Risk at 99 %, i.e. v s.t. $P[X_T^{Strat} - (V_T - K)_+ \ge -v] = 99\%.$

Numerical results			
	No good deal definition	Main results on NGD pricing	

No Good Deal : comparaison avec d'autres stratégies de couverture

- Strategies X^{Strat} starting from $X_0 \in$ { "MV Price", "NGD-CSR", "NGD" = "(NGD-UB+NGD-LB)/2" } and following "Strat" :
 - "BaHCash" : X_0 all in cash.
 - "BaHS" : $X_T^{BaHS} = X_0 S_T / S_0$
 - "BS" $X_T^{BS} = \left(\frac{V_0}{S_0}S_T K\right)_+ + (X_0 S \cdot BS_0)e^{rT}.$
 - "NGD"
- Risk measures
 - Super-replication probability, SRP : $\mathbb{P}[X_T^{Strat} \ge (V_T K)_+]$,
 - Expected loss, EL : $\mathbb{E}[(X_T^{Strat} (V_T K)_+)_-].$
 - Value at Risk at 99 %, i.e. v s.t. $P[X_T^{Strat} - (V_T - K)_+ \ge -v] = 99\%.$

The best situations are those where sur-replication probability is near 1, expected losses are small and VaR is low.

- Naives strategies : BaHCash and BaHS :
 - $\rho \uparrow \Rightarrow \mathsf{SRP} \downarrow$, EL \uparrow and VaR \uparrow ,
 - because ρ only appears in X_0 and "NGD-CSR", "NGD" and "MV" \downarrow when $\rho \uparrow$.

	No good deal definition	Main results on NGD pricing	Hedging
			000000
Numerical results			

• More elaborated strategies : minimum variance "NGD" and "BS ", those strategies approximate H :

• When $\rho \uparrow$, $S \sim V$ from a risk perspective \Rightarrow SRP \uparrow , EL \downarrow and VaR \downarrow .