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Say we have a set of 1d, middle- or low-frequency financial
data. What kind of model should we use?

Here we consider the following cases:
Itō semi-martingales vs. a class of (true) multifractal
martingales.

I Does the data-generating process likely belong to one of
the two classes?

I Is the number of available data large enough to answer the
previous question?

Statistics for multifractal processes are a new topic! this an
exploratory work.



Itō semi-martingales

I A semi-martingale is the sum of a finite variation process,
a continuous local martingale, and a compensated jump
process.

I It is in the Itō class if the finite variation process, the
quadratic variation of the continuous local martingale and
the compensator of the jump process are all absolutely
continuous w.r.t. the Lebesgue measure.

I Very large and very natural family, especially for financial
models.



Non-parametric tests for Itō semi-martingales

I Aït-Sahalia et Jacod (2009) test whether an Itō
semi-martingale X is continuous or not, based on the
observation of X at times i/n i = 0, . . . , n.

I They base themselves on the following behavior of the
p-variations of the process, p > 0:

nτ(p)
n−1∑
i=0

|X(k+1)/n − Xk/n|p
P→ l > 0 pour n→ +∞

with :
I τ(p) = p/2− 1 if X has no jumps on [0,1],
I τ(p) = (p/2− 1)− if X jumps on [0,1].



Multifractal models in finance

I Mandelbrot (1997), Calvet et Fisher (2001), Bacry, Muzy et
Delour (2001): continuous, multifractal martingales as a
model for financial assets prices.

I Multifractal processes:

n−1∑
i=0

|X(k+1)/n − Xk/n|p ≈ cpn−τ(p), n→ +∞

with p 7→ τ(p) strictly concave (and not piecewise linear).
I This relation seems to be seen on the data.
I Also: the models reproduce the statistical regularities

observed in practice while using only a small number of
scalar parameters. Good results for risk prediction (see
e.g. Duchon, Robert et Vargas 2008).



Multifractal scaling of the French stock index
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Multifractal scaling of the French stock index
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MRW model of Bacry and Muzy (2003)

Xt = Bθt , t ≥ 0,

with B a standard Brownian motion and θ an increasing
process indep. of B :

θt = σ2 lim
l→0

∫ t

0
ewl (u)du.

I log-normal case :
(
wl(t), t ≥ 0

)
is a stationary Gaussian

process such that

Cov
[
wl(0),wl(t)

]
↑ λ2 log+(T/t) for l → 0

and E
[
ewl (t)

]
= 1 for all l and t .



Properties of the model

I Multifractal scaling: τ(p) = p/2− 1−λ2p(p − 2)/8,
λ2 ≈ 0.1 in finance.

I Note that as l → 0, we have ewl (u) → 0 a.s. and
ewl (u) → +∞ in Lp, p>1. The process

θt = lim
l→0

∫ t

0
ewl (u)du

is non degenerate but also not Lebesgue-absolutely
continuous. Hence X =

(
Bθt , t ≥ 0

)
is a continuous

martingale that is not Itō.
I Also: construction of a more general MRW class with(

wl(t), t ≥ 0
)

that has an infinitely divisible distribution.



Theoretical problem

Consider a process X =
(
Xt ,0 ≤ t ≤ 1

)
observed at dyadic

times, and define

S(p,2−N) =
2N−1∑
k=0

|X(k+1)2−N − Xk2−N |p.

Based on S(p,2−N), find a statistic that converges to a known
distribution under

H0 : X is an Itō semi-martingale

and becomes degenerate under

H1 : X is an MRW process.

Also: same question when you exchange H0 and H1.



Case H0: X is Itō

Proposition 1 (Aït-Sahalia and Jacod)
If X is Itō with no jumps, then for p > 2

c(p)
S(p,2−N))

(S(2p,2−N))1/2

(
S(p,2−(N−1))

S(p,2−N)
− 2p/2−1

)
L→ N(0,1).

The strict concavity of p 7→ τ(p) shows that this goes to +∞ if
X is an MRW.
However, if X is Itō with jumps, this goes to an unknown r.v.



Test for H0: X is Itō

Choose (kN) a sequence such that kN ≤ 1, kN → 1 and
(1− kN)N → +∞.

Theorem 1
Consider

T Ito
N = c(p)2(p/2−1)(bkNNc−N) S(p,2−bkNNc))

(S(2p,2−N))1/2

(
S(p,2−(N−1))

S(p,2−N)
−2p/2−1

)
.

Then if X is Itō with jumps, T Ito
N → 0 in probability. If X is Itō

with no jumps, T Ito
N
L→ N(0,1). If X is an MRW, T Ito

N → +∞ in
probability.



Case H0: X is an MRW

Proposition 2
If X is an MRW, alors

√
3√

2(2τ(4)−1)

S(2,2−N)− S(2,2−N+1)√
S(4,2−N)

L→ N(0,1).

If X is Itō with jumps, this goes to 0.
However, if X is Itō with no jumps, this is of order 1.



Test for the case H0: X is an MRW

Theorem 2
Fix k ∈ (0,1) and define

T MRW
N =

√
3√

2(2τ(4)−1)
2(N−bkNc)τ(4)/2 S(2,2−N)− S(2,2−N+1)√

S(4,2−bkNc)
.

Then if X is Itō, T MRW
N goes to 0 in probability. If X is an MRW,

then T MRW
N

L→ N(0,1).
NB: in practice τ(4) is unknown. We also have a theoretical
result for the case where it is replaced by a consistent
estimator.



Simulations: Itō semi-martingales
Either BM, or BM with a few (≈ 30) large jumps U([−1/2,1/2]).
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Simulations: MRW
Log-normal MRW with λ2 = 0.1 :
τ(p) = −0.0125p2 + 0.525p − 1.

0.0 0.2 0.4 0.6 0.8 1.0

−
1

.0
−

0
.6

−
0

.2
0

.0
0

.2



Simulations: MRW
Log-normal MRW with λ2 = 0.7 :
τ(p) = −0.0875p2 + 0.675p − 1.
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Simulation results

Simulated MRW, MRW,
process λ2 = 0.1 λ2 = 0.7

Number 2N of data 32 768 1 048 576 32 768 1 048 576
Level of the test

10% 11 11 10 10
5% 8 5 4 4
1% 1 2 2 1

Simulated Brownian Brownian motion
process motion + large jumps

Level of the test
10% 29 63 66 100
5% 12 21 31 82
1% 3 4 4 23

Table: Number of rejects of H0: X = MRW, τ(4) = 1− λ2 known, for
100 simulations of the processes.


