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Price representation

m Price processes behave differently at different scales:

m Coarse scales (daily data): diffusions
m Fine scales (tick data): marked point processes

m Breakdown of the diffusive behaviour in small scales

m In dimension 1 : microstructure noise (variance instability).

m In dimension 2 : Epps effect (covariance instability).
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Microstructure noise and signature plot

Price
N . . . . ) modelling with
m Itd semimartingale price model consensus (indifferently microstructure
. . . via point
mld—prlce/tl’aded—prlce) processes.
E. B >
De M.H

t
S; = drift; + / 0sdBs + (jump process,)
0

Construction
of price

m If S; is observed over [0, t] at times 0, A, 2A, .. ., i
convergence of the realized volatility

processes

t
VA{S}t = Z (SIA — S(i—l)A)2 E)/O U?ds

iA<t

as A — 0 with accuracy VA.
m This suggests to pick A as small as possible... but



Signature plot
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Figure: A ~» Vp for FGBL (43 days, 9-11 AM) on Last Traded Ask.
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Figure: FGBL, 06 Feb 2007, 09:00-10:00 (UTC) 1 data per second.



In dimension 2: Epps effect
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m In the same It6 semimartingale setting, we have Sacry, S
. . . Delattre H
convergence of the quadratic covariation and J.F. Muz,

Construction
CVa{sW.s@}, = 37 (5~ 5 1a) (SA —5P0a)  ElE

iA<t on Hawkes

]P) (1) (2) processes
— (S, 5%,

m Same prescription as for the realized volatility: pick A as
small as possible... but



Epps effect
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Figure: A ~ CVA{S(l),S(z)} (normalized) with S®) = FGBL,
S = FGBM, 40 days, 9-11AM.



In dimension 2
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Figure: FGBL/FGBM



Motivation

We look for a “simple” multivariate price model with the
following properties:
m Be defined in continuous time with discrete values in a
microscopic scale.
m Incorporate microstructure noise and the Epps effect with
“few" parameters.

m Diffuse in a macroscopic scale.
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Point process approach

Price process = marked point process.
m Marks : jumps up/down by 1 tick,
m Jump times: time stamps of price changes.

The price process is the result (sum) of a “upward change
or price” and a “downward change of price”. Coupling
random intensities (Hawkes process) — microstructure
noise.

The price of two assets is obtained by coupling further
(Hawkes process) the respective intensities of the “upward
change of price” and “downward change of price”
processes — dependence structure.
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Compound Poisson process
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m Let NI* and N/~ be two independent Poisson processes
with intensity pt.

m Then Delattre, M.H
and J.F. Muzy

o0
Pt o— M+ H— Construction
Mt L Nt - Nt - E 5n1T,,§t of price
—0 models based
n= on Hawkes
processes

is a compound Poisson process with
m (T, — Th,_1)n>1 i.i.d. exponential with parameters

Mg+ p—.
m Law of the jumps:

K+

]P)[En = +1] =1 7]11)[5” = 71] = m
+ _



Scaling limit

Price

m Macroscopic limit take g4 = p— = p with § — 0 modelling with
(continuous limit in space). e okt
processes.
Ng_1+Ng_1 E. Bacry, S
1 Delattre, M.H
M#E = g gj and J.F. Muzy
0 )
Construction
. - . of price
with ¢; i.i.d. standard Bernoulli £1. A
. . . on Hawkes
| Spatlal renormalization processes
s—12ut

\/SM;%_I ~ \/g Z g = B2p,t7
1

where (B;) is a standard Brownian motion. By scaling

d
BZ,u,t (:) V 2uBt

and /24 is the macroscopic volatility/2.



Hawkes processes: the 1 dimensional case

Price
modelling with
m Start with a counting process N; constructed via its i
stochastic intensity processes.
[E\f:\jm H

and J.F. Muz,

A(t) = M+/Ot¢>(t—5)st

Construction
of price
models based
on Hawkes

where ¢(-) is a coupling function. Standard brocesses
$(x) = ae™P%. Interpretation of the parameters:

B [ exogenous intensity
m o (rather a/3): local self-exciting intensity.
m [3: temporal delay.
m (One has ] ¢(t — s)dNs = Y7, ®(t — T,).) Essential
constraint: [;F ¢ < 1.




Remark on parameter inference
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m The likelihood is explicit, given a continuous trajectory Defattre. M.H
over [O, T] If ’[9 = (ILL’ O[, B) and J.F. Muz,
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T T
log £(1) = /0 log( Mo (s))dNs — /0 Ao (s)ds.

m But: maximization of the log-likelihood is
computationnally intensive.



Price model in dimension 1
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— . . . via point
Let S; = N;” — N, with N;t Hawkes processes with respective processes.
random intensities )\ti given by = oy S
Dela VI.H

and J.F. Muz,

)\i(t) = U+ + Oé/ e_ﬁ(t_s)st:.F Construction

of price
[O’t) models based
on Hawkes
processes

B /i1 exogeneous intensity.

m « et §: mutually exciting intensities generating a
“mean-reverting effect” for S;.

B ae X~ ®(x) with ||®[|;1 < 1 in the sequel.



Price in dimension 2
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Start from two processes X and Y constructed as before. and J.F. Muzy
Introduce a supplementary coupling on the intensities of Construction
ot
the two processes and create a dependence structure models based
Upward x-Upwardy and Downward x-Downwardy . o

(We ignore further possible coupling Upward x-Downwardy and
Downwardx-Upwardy between X and Y.)



Representation of X and Y

Set

X(t) = Ny (£) — Ng(t) and ¥(t) = Ny() - Ny (1)

with

2 (t) = u§+/ ¢X,X(t—s)dN§(s)+/ dx y(t—s)dN5(s)
[0,t) [0,t)

and

N(e) =i [

(Dy’y(t—S)dN)j(:(S)—F/ dy x(t—s)dNE(s)
[0,t)

[0,%)
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Simulation over 1000 seconds
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Figure: Sample simulation in dimension 2



Simulation over 1000 secondes
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Figure: Another sample...



Scaling limits

m First step:

closed-form formulas for the mean “signature plot” when
®(x) = ae P* (through the explicit computation of the
Bartlett spectrum, case with stationary increments) in
dimension 1 and 2.

Statistical fits and discussion of further data filtering.

m Second step: diffusive limit (after spatial renormalization)
for arbitrary @ in dimension 1 (and arbitrary ®x y, ®y x and
q)X,X = ¢y’y in dimension 2)

m More scaling limits...

m Comparison with other models

Price
modelling with
microstructure

via point
processes.

Del M.H
and J.F. Muzy

Scaling limit
in dimension 1
and 2



Mean “signature plot” and scaling limits

Price

m Time-space renormalization modelling with
XO(t) = V6X(671t), telo,1] brocesses.
m Realized volatility Dotactre WM
and J.F. Muz
A1 s '
Va{X®} =3~ (xO(ia) - xO((i - 1)a))
i=1
1 -1 2
~ WE[(X(A(S ) - X(O)) ] .Sczlling limit .
m Mean signature plot and 2
1 2
V(e) = E[(X(2) = X(0))°]
m Interpretation

V(AGY) = Va{X®].



Mean “Signature plot”
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If q)x’x(X) = ¢y,y(X) = ae‘ﬁx, ¢X’y = (Dy’x =0 and [E BM'LFH
ut = pu~ = p we have (via Bartlett spectrum) for X (or Y) e

2u 1
V(t) = [ +
O =1—assla+a/op

]_ 1 - - t caling limit

+(]- - 2) eXp ( (a + ﬁ) ):| idlimgerllsion 1
Ara/d?) (a+dr



Scaling limit in dimension 1, u* = p

m Step 1 : price decomposition introducing a martingale

XO)(t) = M2(NF,, — Ny,

51t

= M+ BO(p),

with

Mt(5) _ 51/2(N+ — NZ ) — Bg(s) martingale

61t 61t

and

51t
Bga) - 51/2/ ()\“‘(s) — )\_(s))ds predictable
0
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Scaling limit in dimension 1 (cont.)

Price

m Step 2: Convergence of the compensator modelling with
microstructure

via point

processes.

B (1) = 62 / s [Cots-way - np) [

and J.F. Muzy

S (%) 1 s
/[O’t)dx ()/0 5 Lo(51s)d

=— | XO) &s(t—u) du
[O’t) SN———r Scaling limit

Dirac mass x||®||,1 iannjir;ension 1

~ = |0 aXO(t).
= In the limit

XO(t) = 8[| XO(2) + M



Scaling limit in dimension 1 (cont.)

. Price
m Step 3: Convergence of the martingale part modelling with
microstructure
5t oroceses,
B\ — + -
(M) =4 A (AT(s)+ A7 (s))ds E Bacy s

and J.F. Muz,

5Lt s
:2ut+5/ ds/ o(s — u)d (N*(u) + N~ (u))
0
:2ut+/ [ (6)] cbg(t—u)
0 Scaling limit
in dimension 1
~ 2ut—i—/ (M@, ps5(t — u)du and 2
0
~ 2ut + || @] 1 (M),
m Conclusion

2/
mon, E, 2
M) = T ol



Scaling limit in dimension 1 (cont.)

m We obtain a)

2
M(‘s) t i} 7’MW’
O =\ T e ¥

where W is a Wiener process

m and b) the representation
XO(t) = ~ @) XO(t) + m”

m a) + b) yield the final result:

1 2
x@) () -9 W,
() T+l | 1=l
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Discussion

Price

m Microscopic variance modelling with
microstructure
via point
E[A+ —"_ Af] — 2/-1/ processes.
1 — ||¢||1 E. Bacry, S
De M.H
and Muzy
m Macroscopic variance
52 — 24 1
- 2
1—|®f[s (1 +[[l]1)
. . Scaling limit
m However the influence of ¢ does not disappear at in dimension 1
and 2

large scale
m This influence can be quantified by looking at the function

1 1
1—x(1+ x)?

ol = x €[0,1) ~ f(x) =

f(x) < f(0) => x ~ 0.61 and f minimum at x = 1.



Influence of ||®||; on the macroscopic variance

Histogram of ||®||; fitted (mean square) on the signature plot
of
Bund 10Y 140 days - 9 : 11am - 12am: 2pm - 2 : 4pm
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Mean ~ 0.34
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Mean signature plot on simulated data

Price
mgdelling with
Signature plot on 11 hours simulated data microstructure
point
processes.

Scaling limit
in dimension 1
and 2
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Mean signature plot on real data

Price

modelling with
m Bund 10Y : 21 days, 9-11 AM - Last Traded Ask (7000 microstructure
. via point
poin tS) processes.
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Scaling limit
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Mean signature plot on real data - Mean square

regression

m Bund 10Y : 21 days, 9-11 AM - Last Traded Ask
Mean square regression fit

0.045

0.04 ¢

0035 h

Vat !

(ticks)
003 |

0.025 -

0.02

50 700 750
At (seconds)

= Fairly good modelling of the 1d microstructure naise.
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Mean signature plot on real data - MLE

Price
modelling with
m Bund 10Y : 21 dayS, 0-11 AM - Last Traded Ask microstructure
. . . . via point
Maximum likelihood fit processes.
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Mean signature plot on real data

Price

m Bund 10Y : 26 days, 9-11 AM - Last Traded Price (29000  pisuu
points) processes
0.1%
VAt
(ticks
01 Scaling limit
in dimension 1
and 2
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Mean signature plot on real data - MLE

Price

m 10Y Bund data : 26 days, 9-11 AM - Last Traded Price modeling with
Mean square regression fit via point
. . . . processes.
Maximum likelihood fit
Scaling limit
in dimension 1
and 2

4 A e Ui

50 1 1 )
00 3 At ( secondso)0



Instabilities of the MLE fit

The 1d model is a very good model for 1d microstructure noise
but it remains a "first-brick” model for tick-by-tick time-series
themselves :

m " Naive” model

m Arbitrary parametric shape ¢(t) = ae™Pt
m Fully symmetric constant parameters :
ph=p", at =a7, gt =p~
m No volume in the model !
m tick-by-tick time-series : Arbitrary projection of a very
complex phenomenon (orderbook dynamics)
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Mean signature plot on real data

Price

m 10Y Bund data : 26 days, 9-11 AM - Last Traded Price ':fctls“t?f_cvtvui:
Volume > 1 - 11000 points racesses.
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Mean signature plot on real data

Price
m 10Y Bund data : 21 days, 9-11 AM - Last Traded Price ':fctls“t?f_cvtvu'trz
Volume > 1 - 8600 points racesses.
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Mean signature plot on real data

Price
m 10Y Bund data : 41 days, 9-11 AM - Last Traded Price ':fctls“t?f_cvtvu'trz
Volume > 1 - 20000 points processes
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Scaling limit in dimension 2

Price

m For SImplIC|ty My = p—, ¢)X,X = (DY,Y = (Dself mgdellitng\;vith
m In the same way, X(t) = Mx(t) 4+ Bx(t) with Bx(t) given NS
by E. Bacry, S
Delat M.H

[ i) = (o))
:/0 [/05 (Cbse“:(s — u)dNy (u) + Sxy (s — u)dNT,(u))
_ /O ’ (Dseif(s — u)dN;E (u) + Dy (s — u)d/v;(u))} RN i incoin

m After scaling+same kind of approximation as in the 1d
case

XO(£) m — || Paarfl| 1 XO(£) + |Dxy || 1 YO (1) + ME(2).



Scaling limit in dimension 2 (cont.)

m By symmetry, we obtain in the limit

XO(t) = MO () — | Peerel| 1 X O () + | Dxy |12 YO(2)
YO(£) = MO (£) — [ Datll 12 YO(E) + [y | 2 X O (1)

m Convergence of the martingale part
(8) 4 4(8) 1 2
(M, MYY) 2 a0 oy ol (W, W)

where W) and W@ are two independent Brownian
motions. (We need t ~» t®xy(t) and t®yx(t) in L).
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Scaling limit in dimension 2 (cont.)

Price
modelling with
. - microstructure
m We have in the limit § — 0 via point

processes.

5) d Tesiloxy L IIeyxll 1 2 E. Bacry, S
X0 4 e T (LIS W D+ 0y [ W) | EE

and J.F. Muz,

and (by symmetry)

(6) d. N5 1,11 xy L 1P yx |l (1) (2)
YO 4 ot [0y W1+ 0 ) W],

Scaling limit
in dimension 1

m Macroscopic correlation formula and 2

(IPxy || + [[®vx[)(1 + [[®s]])

C(X.Y) =
oY) = oy vl + (2 92])°




mean Epps effect the dimension 2 model

-~ ~ Price
m Daily "correlation” estimator : Car = Car/Co rodeling with
via point
1day/At processes.
Cae= Y (X((n+1)AD-X(nAD))(Y((n+1)A1)-Y (nA e
n=0 and

m the mean Epps effect

E(X(At)Y(Ab)) O
VEX(At2)E(Y(At)?) R

and 2

MEppsat =

with initial condition : X(0) =0

m closed-form formula for the mean Epps effect when
SOx x, Py y, Px,y, Py x are of the form ae Px
— through the explicit computation of the Bartlett
spectrum (1963).



Closed form for the mean Epps effect in dimension

2
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m General case — too many parameters...
m Reducing the parameters

B X, by

B Qsagme = OX X = OX,Y,

B Qcross = QXY = QY X, iczliirr;ge;is?;i; 1
m 3 =pxy=0vx=08xx=08yy and 2



Mean Epps effect on simulated data

Mean Epps effect on 50 hours simulated data

061

MEppsat

0dr

021

50 100 20(
At (seconds)
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Mean Epps effect on real data

m Bund 10Y / Bobl 5Y : 41 days, 9-11 AM - Last Traded lngde'TlEchewitl1
via point
processes.

Scaling limit
in dimension 1
and 2

50 100 150 200



Mean Epps effect on real data

m Bund 10Y / Bobl 5Y : 41 days, 9-11 AM - Last Traded

50 100 150 200

with apepr = agyng NO way to perform good fits for the two

individual signature plots and the Epps effect at the same time.
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Instabilities

The 2d model accounts for 2d microstructure noise but it
remains a "first-brick” model for tick-by-tick time-series
themselves :
m "Naive” model
m Arbitrary parametric shape ¢(t) = ae™"t
m Fully symmetric constant parameters
— clearly not the case at all in the real life!
m tick-by-tick time-series : Arbitrary projection of a complex
phenomenon (orderbook dynamics)
Moreover

m "filtering” is even more arbitrary than in the 1d case
— No reason to use the same filtering rule for each asset

Price
modelling with
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Zov
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and J.F. Muz,
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More scaling limits! (in dimension 1)

m Bachelier (additive) limit with arbitrary p4 # p—,
O, £ D
m Black-Scholes (multiplicative) limit

m How to — simply— obtain a continuous diffusion process
macroscopic limit

m Toward macroscopic stochastic volatility diffusion via a
Nelson type argument

Price
modelling with
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and J.F. Muz,

as
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limits



Microstructure noise: the latent price approach

Price
m The fair/efficient price (S;) is a diffusion of the form Bl
via point
dS; = bedt + 0+dBy, t € 0,1] S
[E . HDH
but cannot be observed. e J1IF, Rihes
m What we can observe = (Yl, e YA—I), where
LaW(Yk | (St)t) = KA(SkA, dX)
m Ka(s, dx) Markov kernel.
m Conditional on the latent (S;)¢, the Y; are independent.
m Popular model: additive microstructure (white) noise Comparing
additive

microstructure

)/i — SiA + §i7A7 I: 17 o Ail, E[ﬁ:,A] — 0 noise approach




Some references
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m Latent price approach

m In statistics: Gloter and Jacod (2001), Munk and Delattre, M.H
Schmiedt-Hieber (2009), Rei (2010) o '

m In financial econometrics: Ait-Sahalia, Mykland and Zhang
(2003 to 2006).

m And many more... Podolkii, Vetter, Jacod, Mykland,
Zhang, Bandi, Russell, Diebold, Strasser,
Barndorff-Nielsen, Hansen, Lund, Shepard,

m Other approaches for modelling microstructure noise:

m Engle Russell (2002), Robert and Rosenbaum (2009) Comonr
omparing

m Econophysics literature Order book oriented modelling... with the
additive
microstructure
noise approach



Comparison: additive microstructure noise vs.

Hawkes

Price
modelling with
microstructure

via point
processes.
m Latent price approach. One observes R
R o gl
Yia=Sia+&7, E[§a]l =0, E[§ A] = p° >0,
m Take o(t) = o for simplicity...
m This is not a microscopic model in our terminology!
m Indeed: the observation horizon [0, 1] is fixed irrespectively
of the sampling observation frequency A~!. A
e
additive

microstructure
noise approach



Additive microstructure noise

Indeed

m As A — 0, one equivalently observes (in a distributional
sense) (ReiB, 2010)

Y (dt) = X; + pAY?B(dt), te0,1]

m Hence infinite information over fixed time as A — 0.

m In our setting, we can observe continuously
(X(t),t €[0,1]). This observation contains finite
information only about p and ®. (Equivalently: one cannot
recover u nor ® from (X(t),t € [0,1]).)

Price
modelling with
microstructure

via point
processes.

Comparing
with the
additive
microstructure
noise approach



m How to reconcile both approaches and compare them?

m Recast the additive microstructure noise model into
microscopic time, over the horizon [0,57!] with § ~ 0.

m In this setting, we have data at (microscopic) times
0,A2A,...,nA =51

m We can compare now additive microstructure noise data
{Y;a} and Hawkes data {X©®)(iA)}, fori=1,...,n
(same sample size).

Price
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and J.F. Muz,

Comparing
with the
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Mean “signature plot”

Price
modelling with
microstructure

m Recall the time-space renormalization

XO(t) .= Vox(5 ), telo,1] via point
m Realized volatility Do
A-1 , and J.F. Muzy
Va{X®} =3~ (xO(ia) - xO((i - 1)a))
i=1
1

~ s E[(X(2071) = X(0))7]

Mean signature plot

V(e) = {E[(X(8) - X(0))’]

. additive
|nterpretat|0n microstructure

noise approach
V(AGY) = Va{X®].




Comparing signature plots

m Transform the additive microstructure noise model
Yia = 0Bia + p&ia into
YI(A) - \/SUBIAé 1+ pfgl

m Historic volatility approximation Va{Y ()}

Price
modelling with
microstructure

via point
processes.

and JF. N luzy

-1

i=1

Z (YI.(‘S) Y((,(S)l) )2 ~ 02+ 20?0071 = Vagd micro(6”

IA)

Comparing
with the
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m Hawkes signature plot:
VHawkes(t) = 02 + 02{(1 + H(DH)Z - 1}G(t)
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Wlth- G(t? = 1(Z+7ﬁ)t ~ (a4 B)71/t (large t) and with
the identification
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B V.4d micro(t) cannot be consistent with empirical data in reise approach

the regime t ~ 0 unless p = p(t).



	Construction of price models based on Hawkes processes
	Scaling limit in dimension 1 and 2
	More scaling limits
	Comparing with the additive microstructure noise approach

