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Price representation

Price processes behave differently at different scales:

Coarse scales (daily data): diffusions
Fine scales (tick data): marked point processes

Breakdown of the diffusive behaviour in small scales

In dimension 1 : microstructure noise (variance instability).
In dimension 2 : Epps effect (covariance instability).
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Microstructure noise and signature plot

Itô semimartingale price model consensus (indifferently

mid-price/traded-price)

St = driftt +

∫ t

0
σsdBs +

(
jump processt

)
If St is observed over [0, t] at times 0,∆, 2∆, . . .,
convergence of the realized volatility

V∆

{
S
}
t

:=
∑
i∆≤t

(
Si∆ − S(i−1)∆

)2 P→
∫ t

0
σ2
s ds

as ∆→ 0 with accuracy
√

∆.

This suggests to pick ∆ as small as possible... but
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Signature plot

Figure: ∆ V∆ for FGBL (43 days, 9-11 AM) on Last Traded Ask.
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Figure: FGBL, 06 Feb 2007, 09:00–10:00 (UTC) 1 data per second.
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In dimension 2: Epps effect

In the same Itô semimartingale setting, we have
convergence of the quadratic covariation

CV∆

{
S (1), S (2)

}
t

:=
∑
i∆≤t

(
S

(1)
i∆ − S

(1)
(i−1)∆

)(
S

(2)
i∆ − S

(2)
(i−1)∆

)
P→ 〈S (1),S (2)〉t

Same prescription as for the realized volatility: pick ∆ as
small as possible... but
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Epps effect
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Figure: ∆ CV∆
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}
(normalized) with S (1) = FGBL,

S (2) = FGBM, 40 days, 9-11AM.
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In dimension 2
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Motivation

We look for a “simple” multivariate price model with the
following properties:

Be defined in continuous time with discrete values in a
microscopic scale.

Incorporate microstructure noise and the Epps effect with
“few” parameters.

Diffuse in a macroscopic scale.
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Point process approach

1 Price process = marked point process.

Marks : jumps up/down by 1 tick,
Jump times: time stamps of price changes.

2 The price process is the result (sum) of a “upward change
or price” and a “downward change of price”. Coupling
random intensities (Hawkes process) → microstructure
noise.

3 The price of two assets is obtained by coupling further
(Hawkes process) the respective intensities of the “upward
change of price” and “downward change of price”
processes → dependence structure.
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Compound Poisson process

Let Nµ+
t and N

µ−
t be two independent Poisson processes

with intensity µ±.

Then

M
µ+,µ−
t := Nµ+

t − N
µ−
t =

∞∑
n=0

εn1Tn≤t

is a compound Poisson process with

(Tn − Tn−1)n≥1 i.i.d. exponential with parameters
µ+ + µ−.
Law of the jumps:

P
[
εn = +1

]
= 1− P

[
εn = −1

]
=

µ+

µ+ + µ−
.
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Scaling limit

Macroscopic limit take µ+ = µ− = µ with δ → 0
(continuous limit in space).

Mµδ−1

t =

Nµ
tδ−1 +Nµ

tδ−1∑
0

εi

with εi i.i.d. standard Bernoulli ±1.

Spatial renormalization

√
δMµ

tδ−1 ≈
√
δ

δ−12µt∑
1

εi ≈ B2µt ,

where (Bt) is a standard Brownian motion. By scaling

B2µt
(d)
=
√

2µBt

and
√

2µ is the macroscopic volatility1/2.
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Hawkes processes: the 1 dimensional case

Start with a counting process Nt constructed via its
stochastic intensity

λ(t) = µ+

∫ t

0
φ(t − s)dNs

where φ(·) is a coupling function. Standard
φ(x) = αe−βx . Interpretation of the parameters:

µ: exogenous intensity
α: (rather α/β): local self-exciting intensity.
β: temporal delay.

(One has
∫ t

0 φ(t − s)dNs =
∑

Tn<t φ(t − Tn).) Essential

constraint:
∫ +∞

0 φ < 1.
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Remark on parameter inference

The likelihood is explicit, given a continuous trajectory
over [0,T ]. If ϑ = (µ, α, β)

log `(ϑ) =

∫ T

0
log(λϑ(s))dNs −

∫ T

0
λϑ(s)ds.

But: maximization of the log-likelihood is
computationnally intensive.
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Price model in dimension 1

Let St = N+
t − N−t , with N±t Hawkes processes with respective

random intensities λ±t given by

λ±(t) := µ± + α

∫
[0,t)

e−β(t−s)dN∓s

µ±: exogeneous intensity.

α et β: mutually exciting intensities generating a
“mean-reverting effect” for St .

αe−βx  Φ(x) with ‖Φ‖L1 < 1 in the sequel.
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Price in dimension 2

1 Start from two processes X and Y constructed as before.

2 Introduce a supplementary coupling on the intensities of
the two processes and create a dependence structure
UpwardX -UpwardY and DownwardX -DownwardY .

3 (We ignore further possible coupling UpwardX -DownwardY and

DownwardX -UpwardY between X and Y .)



Price
modelling with
microstructure

via point
processes.

E. Bacry, S.
Delattre, M.H.
and J.F. Muzy

Construction
of price
models based
on Hawkes
processes

Scaling limit
in dimension 1
and 2

More scaling
limits

Comparing
with the
additive
microstructure
noise approach

Representation of X and Y

Set

X (t) = N+
X (t)− N−X (t) and Y (t) = N+

Y (t)− N−Y (t)

with

λ±X (t) = µ±X+

∫
[0,t)

ΦX ,X (t−s)dN∓X (s)+

∫
[0,t)

ΦX ,Y (t−s)dN±Y (s)

and

λ±Y (t) = µ±Y +

∫
[0,t)

ΦY ,Y (t−s)dN±X (s)+

∫
[0,t)

ΦY ,X (t−s)dN±X (s)
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Simulation over 1000 seconds
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Figure: Sample simulation in dimension 2
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Simulation over 1000 secondes
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Figure: Another sample...
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Scaling limits

First step:

1 closed-form formulas for the mean “signature plot” when
Φ(x) = αe−βx (through the explicit computation of the
Bartlett spectrum, case with stationary increments) in
dimension 1 and 2.

2 Statistical fits and discussion of further data filtering.

Second step: diffusive limit (after spatial renormalization)
for arbitrary Φ in dimension 1 (and arbitrary ΦX ,Y , ΦY ,X and

ΦX ,X = ΦY ,Y in dimension 2).

More scaling limits...

Comparison with other models
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Mean “signature plot” and scaling limits

Time-space renormalization

X (δ)(t) :=
√
δX (δ−1t), t ∈ [0, 1]

Realized volatility

V∆

{
X (δ)

}
:=

∆−1∑
i=1

(
X (δ)(i∆)− X (δ)

(
(i − 1)∆

))2

≈ 1

∆δ−1
E
[(
X (∆δ−1)− X (0)

)2]
Mean signature plot

V(t) :=
1

t
E
[(
X (t)− X (0)

)2]
Interpretation

V(∆δ−1) ≈ V∆

{
X (δ)

}
.
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Mean “Signature plot”

If ΦX ,X (x) = ΦY ,Y (x) = αe−βx , ΦX ,Y = ΦY ,X = 0 and
µ+ = µ− = µ we have (via Bartlett spectrum) for X (or Y)

V(t) =
2µ

1− α/β

[ 1

(1 + α/β)2
+

+(1− 1

(1 + α/β)2
)

1− exp
(
− (α + β)t

)
(α + β)t

]
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Scaling limit in dimension 1, µ± = µ

Step 1 : price decomposition introducing a martingale

X (δ)(t) = δ1/2
(
N+
δ−1t
− N−

δ−1t

)
= M

(δ)
t + B(δ)(t),

with

M
(δ)
t = δ1/2

(
N+
δ−1t
− N−

δ−1t

)
− B

(δ)
t martingale

and

B
(δ)
t = δ1/2

∫ δ−1t

0

(
λ+(s)− λ−(s)

)
ds predictable
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Scaling limit in dimension 1 (cont.)

Step 2: Convergence of the compensator

B(δ)(t) = δ1/2

∫ δ−1t

0
ds

∫ s

0
Φ(s − u)d(N−u − N+

u )

=−
∫

[0,t)
dX (δ)(u)

∫ t−u

0
δ−1Φ(δ−1s)ds

=−
∫

[0,t)
X (δ)(u) Φδ(t − u)︸ ︷︷ ︸

Dirac mass×‖Φ‖L1

du

≈ − ‖Φ‖L1X (0)(t).

In the limit

X (0)(t) = −‖Φ‖L1X (0)(t) + M
(0)
t
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Scaling limit in dimension 1 (cont.)

Step 3: Convergence of the martingale part

〈
M(δ)

〉
t

= δ

∫ δ−1t

0

(
λ+(s) + λ−(s)

)
ds

= 2µt + δ

∫ δ−1t

0
ds

∫ s

0
φ(s − u)d

(
N+(u) + N−(u)

)
= 2µt +

∫ t

0

[
M(δ)

]
u
φδ(t − u)du

≈ 2µt +

∫ t

0
〈M(δ)〉u φδ(t − u)du

≈ 2µt + ‖Φ‖L1〈M(δ)〉t

Conclusion 〈
M(δ)

〉
t

P−→ 2µ

1− ‖Φ‖L1

t
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Scaling limit in dimension 1 (cont.)

We obtain a)

M(δ)(t)
d−→

√
2µ

1− ‖Φ‖L1

Wt ,

where W is a Wiener process

and b) the representation

X (0)(t) = −‖Φ‖L1X (0)(t) + M
(0)
t

a) + b) yield the final result:

X (δ)(t)
d−→ 1

1 + ‖Φ‖L1

√
2µ

1− ‖Φ‖L1

Wt
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Discussion

Microscopic variance

E[λ+ + λ−] =
2µ

1− ||Φ||1

Macroscopic variance

σ2 =
2µ

1− ||Φ||1
1

(1 + ||Φ||1)2

However the influence of Φ does not disappear at
large scale

This influence can be quantified by looking at the function

||φ||1 = x ∈ [0, 1) f (x) =
1

1− x

1

(1 + x)2

f (x) ≤ f (0) =⇒ x ≈ 0.61 and f minimum at x = 1
3 .
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Influence of ||Φ||1 on the macroscopic variance

Histogram of ||Φ||1 fitted (mean square) on the signature plot
of
Bund 10Y 140 days - 9 : 11am - 12am: 2pm - 2 : 4pm

0 0.5 10

10

20

30

40

50

Mean ≈ 0.34
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Mean signature plot on simulated data

Signature plot on 11 hours simulated data
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Mean signature plot on real data

Bund 10Y : 21 days, 9-11 AM - Last Traded Ask (7000
points)

50 100 150 2000.02
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Mean signature plot on real data - Mean square
regression

Bund 10Y : 21 days, 9-11 AM - Last Traded Ask
Mean square regression fit
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=⇒ Fairly good modelling of the 1d microstructure noise.
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Mean signature plot on real data - MLE

Bund 10Y : 21 days, 9-11 AM - Last Traded Ask
Maximum likelihood fit
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Mean signature plot on real data

Bund 10Y : 26 days, 9-11 AM - Last Traded Price (29000
points)
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Mean signature plot on real data - MLE

10Y Bund data : 26 days, 9-11 AM - Last Traded Price
Mean square regression fit
Maximum likelihood fit
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Instabilities of the MLE fit

The 1d model is a very good model for 1d microstructure noise
but it remains a ”first-brick” model for tick-by-tick time-series
themselves :

”Naive” model

Arbitrary parametric shape φ(t) = αe−βt

Fully symmetric constant parameters :
µ+ = µ−, α+ = α−, β+ = β−

No volume in the model !

tick-by-tick time-series : Arbitrary projection of a very
complex phenomenon (orderbook dynamics)
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Mean signature plot on real data

10Y Bund data : 26 days, 9-11 AM - Last Traded Price
Volume > 1 - 11000 points
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10Y Bund data : 41 days, 9-11 AM - Last Traded Price
Volume > 1 - 20000 points
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Scaling limit in dimension 2

For simplicity µ+ = µ−, ΦX ,X = ΦY ,Y = Φself

In the same way, X (t) = MX (t) + BX (t) with BX (t) given
by ∫ t

0

[
λ+
X (s)− λ−X (s)

]
ds

=

∫ t

0

[ ∫ s

0

(
Φself(s − u)dN−X (u) + ΦXY (s − u)dN+

Y (u)
)

−
∫ s

0

(
Φself(s − u)dN+

X (u) + ΦXY (s − u)dN−Y (u)
)]
ds

After scaling+same kind of approximation as in the 1d
case

X (δ)(t) ≈ −‖Φself‖L1X (δ)(t) + ‖ΦXY ‖L1Y (δ)(t) + M
(δ)
X (t).
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Scaling limit in dimension 2 (cont.)

By symmetry, we obtain in the limit

X (0)(t) = M
(0)
X (t)− ‖Φself‖L1X (0)(t) + ‖ΦXY ‖L1Y (0)(t)

Y (0)(t) = M
(0)
Y (t)− ‖Φself‖L1Y (0)(t) + ‖ΦYX‖L1X (0)(t)

Convergence of the martingale part(
M

(δ)
X ,M

(δ)
Y

) d→ σ‖Φs‖,‖ΦXY ‖,‖ΦYX ‖
(
W (1),W (2)

)
where W (1) and W (2) are two independent Brownian
motions. (We need t  tΦXY (t) and tΦYX (t) in L1).
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Scaling limit in dimension 2 (cont.)

We have in the limit δ → 0

X (δ) d→ σ‖Φs‖,‖ΦXY ‖,‖ΦYX ‖
(1+‖Φs‖)2−‖ΦXY ‖‖ΦYX ‖

[
(1+‖Φs‖)W (1)+‖ΦXY ‖W (2)

]
.

and (by symmetry)

Y (δ) d→ σ‖Φs‖,‖ΦXY ‖,‖ΦYX ‖
(1+‖Φs‖)2−‖ΦXY ‖‖ΦYX ‖

[
‖ΦYX‖W (1)+(1+‖Φs‖)W (2)

]
.

Macroscopic correlation formula

C (X ,Y ) =
(‖ΦXY ‖+ ‖ΦYX‖)(1 + ‖Φs‖)
‖ΦXY ‖‖ΦYX‖+ (1 + ‖Φs‖)2
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The mean Epps effect the dimension 2 model

Daily ”correlation” estimator : C∆t = C̃∆t/C̃0

C̃∆t =

1day/∆t∑
n=0

(X ((n+1)∆t)−X (n∆t))(Y ((n+1)∆t)−Y (n∆t))

the mean Epps effect

MEpps∆t =
E (X (∆t)Y (∆t))√

E (X (∆t)2)E (Y (∆t)2)
(1)

with initial condition : X (0) = 0

closed-form formula for the mean Epps effect when
ΦX ,X , ΦY ,Y , ΦX ,Y , ΦY ,X are of the form αe−βx

→ through the explicit computation of the Bartlett
spectrum (1963).
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Closed form for the mean Epps effect in dimension
2

Closed form formula for the mean Epps effect in dimension 2

General case → too many parameters...

Reducing the parameters

µX , µY

αsame = αX ,X = αX ,Y ,
αcross = αX ,Y = αY ,X ,
β = βX ,Y = βY ,X = βX ,X = βY ,Y
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Mean Epps effect on simulated data

Mean Epps effect on 50 hours simulated data
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Mean Epps effect on real data

Bund 10Y / Bobl 5Y : 41 days, 9-11 AM - Last Traded
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with αBobl = αBund no way to perform good fits for the two
individual signature plots and the Epps effect at the same time.
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Mean Epps effect on real data

Bund 10Y / Bobl 5Y : 41 days, 9-11 AM - Last Traded
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with αBobl = αBund no way to perform good fits for the two
individual signature plots and the Epps effect at the same time.
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Instabilities

The 2d model accounts for 2d microstructure noise but it
remains a ”first-brick” model for tick-by-tick time-series
themselves :

”Naive” model

Arbitrary parametric shape φ(t) = αe−βt

Fully symmetric constant parameters
→ clearly not the case at all in the real life!

tick-by-tick time-series : Arbitrary projection of a complex
phenomenon (orderbook dynamics)

Moreover

”filtering” is even more arbitrary than in the 1d case
→ No reason to use the same filtering rule for each asset
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More scaling limits! (in dimension 1)

Bachelier (additive) limit with arbitrary µ+ 6= µ−,
Φ+ 6= Φ−

Black-Scholes (multiplicative) limit

How to – simply– obtain a continuous diffusion process as
macroscopic limit

Toward macroscopic stochastic volatility diffusion via a
Nelson type argument
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Microstructure noise: the latent price approach

The fair/efficient price (St) is a diffusion of the form

dSt = btdt + σtdBt , t ∈ [0, 1]

but cannot be observed.

What we can observe =
(
Y1, . . . ,Y∆−1

)
, where

Law
(
Yk

∣∣ (St)t
)

= K∆(Sk∆, dx)

K∆(s, dx) Markov kernel.

Conditional on the latent (St)t , the Yi are independent.

Popular model: additive microstructure (white) noise

Yi = Si∆ + ξi ,∆, i = 1, . . . ,∆−1, E[ξi ,∆] = 0
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Some references

Latent price approach

In statistics: Gloter and Jacod (2001), Munk and
Schmiedt-Hieber (2009), Reiß (2010)
In financial econometrics: Ait-Sahalia, Mykland and Zhang
(2003 to 2006).
And many more... Podolkii, Vetter, Jacod, Mykland,
Zhang, Bandi, Russell, Diebold, Strasser,
Barndorff-Nielsen, Hansen, Lund, Shepard,

Other approaches for modelling microstructure noise:

Engle Russell (2002), Robert and Rosenbaum (2009)
Econophysics literature Order book oriented modelling...
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Comparison: additive microstructure noise vs.
Hawkes

Latent price approach. One observes

Yi ,∆ = Si∆ + ξ∆
i , E[ξi ,∆] = 0, E[ξ2

i ,∆] = ρ2 > 0,

with dSt = σ(t)dBt .

Take σ(t) ≡ σ for simplicity...

This is not a microscopic model in our terminology!

Indeed: the observation horizon [0, 1] is fixed irrespectively
of the sampling observation frequency ∆−1.
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Additive microstructure noise

Indeed

As ∆→ 0, one equivalently observes (in a distributional
sense) (Reiß, 2010)

Y (dt) = Xt + ρ∆1/2Ḃ(dt), t ∈ [0, 1]

Hence infinite information over fixed time as ∆→ 0.

In our setting, we can observe continuously
(X (t), t ∈ [0, 1]). This observation contains finite
information only about µ and Φ. (Equivalently: one cannot

recover µ nor Φ from (X (t), t ∈ [0, 1]).)
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So?

How to reconcile both approaches and compare them?

Recast the additive microstructure noise model into
microscopic time, over the horizon [0, δ−1] with δ ≈ 0.

In this setting, we have data at (microscopic) times

0,∆, 2∆, . . . , n∆ = δ−1

We can compare now additive microstructure noise data
{Yi∆} and Hawkes data {X (δ)(i∆)}, for i = 1, . . . , n
(same sample size).
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Mean “signature plot”

Recall the time-space renormalization

X (δ)(t) :=
√
δX (δ−1t), t ∈ [0, 1]

Realized volatility

V∆

{
X (δ)

}
:=

∆−1∑
i=1

(
X (δ)(i∆)− X (δ)

(
(i − 1)∆

))2

≈ 1

∆δ−1
E
[(
X (∆δ−1)− X (0)

)2]
Mean signature plot

V(t) :=
1

t
E
[(
X (t)− X (0)

)2]
Interpretation

V(∆δ−1) ≈ V∆

{
X (δ)

}
.
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Comparing signature plots

Transform the additive microstructure noise model
Yi ,∆ = σBi∆ + ρ ξi ,∆ into

Y
(δ)
i∆ =

√
δσBi∆δ−1 + ρ

√
δξi ,∆.

Historic volatility approximation V∆{Y (δ)}

∆−1∑
i=1

(
Y

(δ)
i∆ − Y

(δ)
(i−1)∆

)2 ≈ σ2 + 2ρ2δ∆−1 =: Vadd micro(δ−1∆)
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Conclusion

Additive microstructure signature plot (t = ∆δ−1):

Vadd micro(t) = σ2 +
2ρ2

t

Hawkes signature plot:

VHawkes(t) = σ2 + σ2
{

(1 + ‖Φ‖)2 − 1
}
G (t)

with G (t) = 1−e−(α+β)t

(α+β)t ∼ (α + β)−1/t (large t) and with
the identification

σ2 =
2µ

1− ‖Φ‖
1

(1 + ‖Φ‖)2

Vadd micro(t) cannot be consistent with empirical data in
the regime t ≈ 0 unless ρ = ρ(t).
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