Price modelling with microstructure via point processes.

E. Bacry, S. Delattre, M.H. and J.F. Muzy

12 janvier, 2011
Content

1. Construction of price models based on Hawkes processes
2. Scaling limit in dimension 1 and 2
3. More scaling limits
4. Comparing with the additive microstructure noise approach
Price representation

- Price processes behave differently at different scales:
 - Coarse scales (daily data): **diffusions**
 - Fine scales (tick data): **marked point processes**
- Breakdown of the diffusive behaviour in small scales
 - In dimension 1: **microstructure noise** (variance instability).
 - In dimension 2: **Epps effect** (covariance instability).
Itô semimartingale price model consensus (indifferently mid-price/traded-price)

\[S_t = \text{drift}_t + \int_0^t \sigma_s dB_s + (\text{jump process}_t) \]

If \(S_t \) is observed over \([0, t]\) at times \(0, \Delta, 2\Delta, \ldots\), convergence of the realized volatility

\[
V_{\Delta}\{S\}_t := \sum_{i\Delta \leq t} (S_{i\Delta} - S_{(i-1)\Delta})^2 \xrightarrow{\mathbb{P}} \int_0^t \sigma_s^2 ds
\]

as \(\Delta \to 0 \) with accuracy \(\sqrt{\Delta} \).

This suggests to pick \(\Delta \) as small as possible... but
Figure: $\Delta \rightsquigarrow V_\Delta$ for FGBL (43 days, 9-11 AM) on Last Traded Ask.
Price modelling with microstructure via point processes.

E. Bacry, S. Delattre, M.H. and J.F. Muzy

Construction of price models based on Hawkes processes

Scaling limit in dimension 1 and 2

More scaling limits

Comparing with the additive microstructure noise approach

Figure: FGBL, 06 Feb 2007, 09:00–10:00 (UTC) 1 data per second.
In dimension 2: Epps effect

- In the same Itô semimartingale setting, we have convergence of the quadratic covariation

\[
CV_\Delta \{S^{(1)}, S^{(2)}\}_t := \sum_{i\Delta \leq t} (S_{i\Delta}^{(1)} - S_{(i-1)\Delta}^{(1)})(S_{i\Delta}^{(2)} - S_{(i-1)\Delta}^{(2)})
\]

\[
\mathbb{P} \rightarrow \langle S^{(1)}, S^{(2)} \rangle_t
\]

- Same prescription as for the realized volatility: pick \(\Delta\) as small as possible... but
Epps effect

Figure: \(\Delta \sim CV_\Delta \{ S^{(1)}, S^{(2)} \} \) (normalized) with \(S^{(1)} = \text{FGBL}, \ S^{(2)} = \text{FGBM} \), 40 days, 9-11AM.
Price modelling with microstructure via point processes.

E. Bacry, S. Delattre, M.H. and J.F. Muzy

Construction of price models based on Hawkes processes

Scaling limit in dimension 1 and 2

More scaling limits

Comparing with the additive microstructure noise approach

Figure: FGBL/FGBM
We look for a “simple” multivariate price model with the following properties:

- Be defined in continuous time with discrete values in a microscopic scale.
- Incorporate microstructure noise and the Epps effect with “few” parameters.
- Diffuse in a macroscopic scale.
Point process approach

1. Price process = marked point process.
 - Marks: jumps up/down by 1 tick,
 - Jump times: time stamps of price changes.

2. The price process is the result (sum) of a “upward change or price” and a “downward change of price”. Coupling random intensities (Hawkes process) → microstructure noise.

3. The price of two assets is obtained by coupling further (Hawkes process) the respective intensities of the “upward change of price” and “downward change of price” processes → dependence structure.
Compound Poisson process

- Let $N^{\mu+}_t$ and $N^{\mu-}_t$ be two independent Poisson processes with intensity μ_{\pm}.

- Then

$$M^{\mu+,:\mu-}_t := N^{\mu+}_t - N^{\mu-}_t = \sum_{n=0}^{\infty} \varepsilon_n 1_{T_n \leq t}$$

is a **compound Poisson process** with

- $(T_n - T_{n-1})_{n \geq 1}$ i.i.d. exponential with parameters $\mu_+ + \mu_-$.

- Law of the jumps:

$$P[\varepsilon_n = +1] = 1 - P[\varepsilon_n = -1] = \frac{\mu_+}{\mu_+ + \mu_-}.$$
Scaling limit

- **Macroscopic limit** take $\mu_+ = \mu_- = \mu$ with $\delta \to 0$ (continuous limit in space).

\[
M_t^{\mu\delta^{-1}} = \sum_{0}^{N_t^{\mu}} + N_t^{\mu} - 1
\]

with ε_i i.i.d. standard Bernoulli ± 1.

- **Spatial renormalization**

\[
\sqrt{\delta}M_t^{\mu\delta^{-1}} \approx \sqrt{\delta} \sum_{1}^{\delta^{-1}2\mu t}\varepsilon_i \approx B_{2\mu t},
\]

where (B_t) is a standard Brownian motion. By scaling

\[
B_{2\mu t} \overset{(d)}{=} \sqrt{2\mu}B_t
\]

and $\sqrt{2\mu}$ is the macroscopic volatility $1/2$.
Hawkes processes: the 1 dimensional case

- Start with a **counting** process N_t constructed via its stochastic intensity

$$
\lambda(t) = \mu + \int_0^t \phi(t - s) dN_s
$$

where $\phi(\cdot)$ is a **coupling** function. Standard $\phi(x) = \alpha e^{-\beta x}$. Interpretation of the parameters:

- μ: exogenous intensity
- α: (rather α/β): local self-exciting intensity.
- β: temporal delay.

(One has $\int_0^t \phi(t - s) dN_s = \sum_{T_n < t} \phi(t - T_n)$.) **Essential constraint**: $\int_0^{+\infty} \phi < 1$.
Remark on parameter inference

- The likelihood is explicit, given a continuous trajectory over $[0, T]$. If $\vartheta = (\mu, \alpha, \beta)$

$$\log \ell(\vartheta) = \int_0^T \log(\lambda_\vartheta(s))dN_s - \int_0^T \lambda_\vartheta(s)ds.$$

- **But:** maximization of the log-likelihood is computationally intensive.
Price model in dimension 1

Let $S_t = N_t^+ - N_t^-$, with N_t^\pm Hawkes processes with respective random intensities λ_t^\pm given by

$$\lambda^\pm(t) := \mu^\pm + \alpha \int_{[0,t]} e^{-\beta(t-s)} dN_s^\pm$$

- μ^\pm: exogeneous intensity.
- α et β: mutually exciting intensities generating a “mean-reverting effect” for S_t.
- $\alpha e^{-\beta x} \xrightarrow{\text{as}} \Phi(x)$ with $\|\Phi\|_{L^1} < 1$ in the sequel.
Price in dimension 2

1. Start from two processes X and Y constructed as before.
2. Introduce a supplementary coupling on the intensities of the two processes and create a dependence structure $\text{Upward}_X - \text{Upward}_Y$ and $\text{Downward}_X - \text{Downward}_Y$.
3. (We ignore further possible coupling $\text{Upward}_X - \text{Downward}_Y$ and $\text{Downward}_X - \text{Upward}_Y$ between X and Y.)
Representation of X and Y

Set

$$X(t) = N^+_X(t) - N^-_X(t) \text{ and } Y(t) = N^+_Y(t) - N^-_Y(t)$$

with

$$\lambda^\pm_X(t) = \mu^\pm_X + \int_{[0,t]} \Phi_{X,X}(t-s) dN^\pm_X(s) + \int_{[0,t]} \Phi_{X,Y}(t-s) dN^\pm_Y(s)$$

and

$$\lambda^\pm_Y(t) = \mu^\pm_Y + \int_{[0,t]} \Phi_{Y,X}(t-s) dN^\pm_X(s) + \int_{[0,t]} \Phi_{Y,Y}(t-s) dN^\pm_Y(s)$$
Simulation over 1000 seconds

Figure: Sample simulation in dimension 2
Simulation over 1000 secondes

Figure: Another sample...
Scaling limits

- **First step:**
 1. Closed-form formulas for the mean “signature plot” when \(\Phi(x) = \alpha e^{-\beta x} \) (through the explicit computation of the Bartlett spectrum, case with stationary increments) in dimension 1 and 2.
 2. Statistical fits and discussion of further data filtering.

- **Second step:** diffusive limit (after spatial renormalization) for arbitrary \(\Phi \) in dimension 1 (and arbitrary \(\Phi_{X,Y}, \Phi_{Y,X} \) and \(\Phi_{X,X} = \Phi_{Y,Y} \) in dimension 2).

- More scaling limits...

- Comparison with other models
Mean “signature plot” and scaling limits

- Time-space renormalization
 \[X^{(\delta)}(t) := \sqrt{\delta} X(\delta^{-1}t), \quad t \in [0, 1] \]

- Realized volatility
 \[V_\Delta \{ X^{(\delta)} \} := \sum_{i=1}^{\Delta^{-1}} \left(X^{(\delta)}(i\Delta) - X^{(\delta)}((i - 1)\Delta) \right)^2 \]
 \[\approx \frac{1}{\Delta \delta^{-1}} \mathbb{E} \left[\left(X(\Delta \delta^{-1}) - X(0) \right)^2 \right] \]

- Mean signature plot
 \[\mathcal{V}(t) := \frac{1}{t} \mathbb{E} \left[(X(t) - X(0))^2 \right] \]

- Interpretation
 \[\mathcal{V}(\Delta \delta^{-1}) \approx V_\Delta \{ X^{(\delta)} \}. \]
Mean “Signature plot”

If \(\Phi_{X,X}(x) = \Phi_{Y,Y}(x) = \alpha e^{-\beta x} \), \(\Phi_{X,Y} = \Phi_{Y,X} = 0 \) and \(\mu^+ = \mu^- = \mu \) we have (via Bartlett spectrum) for \(X \) (or \(Y \))

\[
\mathcal{N}(t) = \frac{2\mu}{1 - \alpha/\beta} \left[\frac{1}{(1 + \alpha/\beta)^2} + \right.
\]

\[
+ \left(1 - \frac{1}{(1 + \alpha/\beta)^2} \right) \frac{1 - \exp \left(- \left(\alpha + \beta \right) t \right)}{(\alpha + \beta) t} \]
\]
Scaling limit in dimension 1, $\mu^{\pm} = \mu$

- **Step 1**: price decomposition introducing a martingale

\[X^{(\delta)}(t) = \delta^{1/2} \left(N_{\delta^{-1}t}^{+} - N_{\delta^{-1}t}^{-} \right) \]
\[= M_{t}^{(\delta)} + B^{(\delta)}(t), \]

with

\[M_{t}^{(\delta)} = \delta^{1/2} \left(N_{\delta^{-1}t}^{+} - N_{\delta^{-1}t}^{-} \right) - B_{t}^{(\delta)}, \text{ martingale} \]

and

\[B_{t}^{(\delta)} = \delta^{1/2} \int_{0}^{\delta^{-1}t} \left(\lambda^{+}(s) - \lambda^{-}(s) \right) ds, \text{ predictable} \]
Scaling limit in dimension 1 (cont.)

- **Step 2: Convergence of the compensator**

\[B^{(\delta)}(t) = \delta^{1/2} \int_0^{\delta^{-1}t} ds \int_0^s \Phi(s - u) d(N_u^- - N_u^+) \]

\[= - \int_{[0,t)} dX^{(\delta)}(u) \int_0^{t-u} \delta^{-1} \Phi(\delta^{-1}s) ds \]

\[= - \int_{[0,t)} X^{(\delta)}(u) \left[\Phi(\delta(t - u)) d \left(\delta^{-1} \int_s^t \Phi(\delta^{-1}s) ds \right) \right] du \]

\[\approx - \| \Phi \|_{L^1} X^{(0)}(0) + M_t^{(0)} \]

- **In the limit**
Scaling limit in dimension 1 (cont.)

- **Step 3: Convergence of the martingale part**

\[
\langle M^{(\delta)} \rangle_t = \delta \int_0^{\delta^{-1}t} (\lambda^+(s) + \lambda^-(s)) \, ds
\]

\[
= 2\mu t + \delta \int_0^{\delta^{-1}t} ds \int_0^s \phi(s-u) d(N^+(u) + N^-(u))
\]

\[
= 2\mu t + \int_0^t [M^{(\delta)}]_u \phi_\delta(t-u) \, du
\]

\[
\approx 2\mu t + \int_0^t \langle M^{(\delta)} \rangle_u \phi_\delta(t-u) \, du
\]

\[
\approx 2\mu t + \|\Phi\|_{L^1} \langle M^{(\delta)} \rangle_t
\]

- **Conclusion**

\[
\langle M^{(\delta)} \rangle_t \xrightarrow{\mathbb{P}} \frac{2\mu}{1 - \|\Phi\|_{L^1}} t
\]
Scaling limit in dimension 1 (cont.)

- We obtain a)

\[M^{(\delta)}(t) \overset{d}{\to} \sqrt{\frac{2\mu}{1 - \|\Phi\|_{L^1}}} W_t, \]

where \(W \) is a Wiener process

- and b) the representation

\[X^{(0)}(t) = -\|\Phi\|_{L^1} X^{(0)}(t) + M_t^{(0)} \]

- a) + b) yield the final result:

\[X^{(\delta)}(t) \overset{d}{\to} \frac{1}{1 + \|\Phi\|_{L^1}} \sqrt{\frac{2\mu}{1 - \|\Phi\|_{L^1}}} W_t \]
Discussion

- **Microscopic variance**
 \[\mathbb{E}[\lambda^+ + \lambda^-] = \frac{2\mu}{1 - \|\Phi\|_1}\]

- **Macroscopic variance**
 \[\sigma^2 = \frac{2\mu}{1 - \|\Phi\|_1} \cdot \frac{1}{(1 + \|\Phi\|_1)^2}\]

- **However the influence of \(\Phi\) does not disappear at large scale**

- **This influence can be quantified by looking at the function**
 \[\|\phi\|_1 = x \in [0, 1) \leadsto f(x) = \frac{1}{1 - x} \cdot \frac{1}{(1 + x)^2}\]
 \[f(x) \leq f(0) \implies x \approx 0.61\text{ and } f\text{ minimum at } x = \frac{1}{3} \].
Influence of $||\Phi||_1$ on the macroscopic variance

Histogram of $||\Phi||_1$ fitted (mean square) on the signature plot of
Bund 10Y 140 days - 9:11am - 12am: 2pm - 2:4pm

Mean ≈ 0.34
Price modelling with microstructure via point processes.

E. Bacry, S. Delattre, M.H. and J.F. Muzy

Construction of price models based on Hawkes processes.

Scaling limit in dimension 1 and 2

More scaling limits

Comparing with the additive microstructure noise approach

Mean signature plot on simulated data

Signature plot on 11 hours simulated data
Bund 10Y : 21 days, 9-11 AM - Last Traded Ask (7000 points)
Bund 10Y: 21 days, 9-11 AM - Last Traded Ask

Mean square regression fit

⇒ Fairly good modelling of the 1d microstructure noise.
Bund 10Y : 21 days, 9-11 AM - Last Traded Ask

Maximum likelihood fit
Bund 10Y : 26 days, 9-11 AM - Last Traded Price (29000 points)
10Y Bund data: 26 days, 9-11 AM - Last Traded Price

Mean square regression fit

Maximum likelihood fit

Mean signature plot on real data - MLE
Instabilities of the MLE fit

The 1d model is a very good model for 1d microstructure noise but it remains a ”first-brick” model for tick-by-tick time-series themselves :

- ”Naive” model
 - Arbitrary parametric shape $\phi(t) = \alpha e^{-\beta t}$
 - Fully symmetric constant parameters :
 $\mu^+ = \mu^-$, $\alpha^+ = \alpha^-$, $\beta^+ = \beta^-$
 - No volume in the model !

- tick-by-tick time-series : Arbitrary projection of a very complex phenomenon (orderbook dynamics)
Mean signature plot on real data

- 10Y Bund data: 26 days, 9-11 AM - Last Traded Price
 Volume > 1 - 11000 points

\[
V_{\Delta t}(\text{ticks}) \quad \Delta t (\text{seconds})
\]
Mean signature plot on real data

- 10Y Bund data: 21 days, 9-11 AM - Last Traded Price
 Volume > 1 - 8600 points
Mean signature plot on real data

- 10Y Bund data: 41 days, 9-11 AM - Last Traded Price
 Volume > 1 - 20000 points
For simplicity \(\mu_+ = \mu_- \), \(\Phi_X, X = \Phi_Y, Y = \Phi_{\text{self}} \).

In the same way, \(X(t) = M_X(t) + B_X(t) \) with \(B_X(t) \) given by

\[
\int_0^t \left[\lambda_X^+(s) - \lambda_X^-(s) \right] ds
\]

\[
= \int_0^t \left[\int_0^s (\Phi_{\text{self}}(s - u)dN_X^-(u) + \Phi_{XY}(s - u)dN_Y^+(u))
- \int_0^s (\Phi_{\text{self}}(s - u)dN_X^+(u) + \Phi_{XY}(s - u)dN_Y^-(u)) \right] ds
\]

After scaling, the same kind of approximation as in the 1d case

\[
X^{(\delta)}(t) \approx -\|\Phi_{\text{self}}\|_{L^1} X^{(\delta)}(t) + \|\Phi_{XY}\|_{L^1} Y^{(\delta)}(t) + M_X^{(\delta)}(t).
\]
Scaling limit in dimension 2 (cont.)

- By symmetry, we obtain in the limit

\[X^{(0)}(t) = M^{(0)}_X(t) - \| \Phi_{\text{self}} \|_{L^1} X^{(0)}(t) + \| \Phi_{XY} \|_{L^1} Y^{(0)}(t) \]

\[Y^{(0)}(t) = M^{(0)}_Y(t) - \| \Phi_{\text{self}} \|_{L^1} Y^{(0)}(t) + \| \Phi_{YX} \|_{L^1} X^{(0)}(t) \]

- Convergence of the martingale part

\[(M^{(\delta)}_X, M^{(\delta)}_Y) \overset{d}{\to} \sigma \| \Phi_s \|, \| \Phi_{XY} \|, \| \Phi_{YX} \| (W^{(1)}, W^{(2)}) \]

where \(W^{(1)} \) and \(W^{(2)} \) are two independent Brownian motions. (We need \(t \sim t\Phi_{XY}(t) \) and \(t\Phi_{YX}(t) \) in \(L^1 \).)
Scaling limit in dimension 2 (cont.)

- We have in the limit $\delta \to 0$

$$X(\delta) \xrightarrow{d} \frac{\sigma \|\Phi_s\|,\|\Phi_{XY}\|,\|\Phi_{YX}\|}{(1+\|\Phi_s\|)^2 - \|\Phi_{XY}\|\|\Phi_{YX}\|} \left[(1+\|\Phi_s\|)W^{(1)} + \|\Phi_{XY}\|W^{(2)} \right].$$

and (by symmetry)

$$Y(\delta) \xrightarrow{d} \frac{\sigma \|\Phi_s\|,\|\Phi_{XY}\|,\|\Phi_{YX}\|}{(1+\|\Phi_s\|)^2 - \|\Phi_{XY}\|\|\Phi_{YX}\|} \left[\|\Phi_{YX}\|W^{(1)} + (1+\|\Phi_s\|)W^{(2)} \right].$$

- Macroscopic correlation formula

$$C(X, Y) = \frac{(\|\Phi_{XY}\| + \|\Phi_{YX}\|)(1 + \|\Phi_s\|)}{\|\Phi_{XY}\|\|\Phi_{YX}\| + (1 + \|\Phi_s\|)^2}$$
The mean Epps effect the dimension 2 model

- Daily "correlation" estimator: \(C_{\Delta t} = \tilde{C}_{\Delta t} / \tilde{C}_0 \)

\[
\tilde{C}_{\Delta t} = \frac{1 \text{day}/\Delta t}{\sum_{n=0}^{\infty} (X((n+1)\Delta t) - X(n\Delta t))(Y((n+1)\Delta t) - Y(n\Delta t))}
\]

- The mean Epps effect

\[
MEpps_{\Delta t} = \frac{E(X(\Delta t)Y(\Delta t))}{\sqrt{E(X(\Delta t)^2)E(Y(\Delta t)^2)}} \tag{1}
\]

with initial condition: \(X(0) = 0 \)

- Closed-form formula for the mean Epps effect when \(\Phi_{X,X}, \Phi_{Y,Y}, \Phi_{X,Y}, \Phi_{Y,X} \) are of the form \(\alpha e^{-\beta x} \)

→ through the explicit computation of the Bartlett spectrum (1963).
Closed form for the mean Epps effect in dimension 2

- General case → too many parameters...
- Reducing the parameters
 - μ_X, μ_Y
 - $\alpha_{same} = \alpha_{X,X} = \alpha_{X,Y}$,
 - $\alpha_{cross} = \alpha_{X,Y} = \alpha_{Y,X}$,
 - $\beta = \beta_{X,Y} = \beta_{Y,X} = \beta_{X,X} = \beta_{Y,Y}$
Mean Epps effect on 50 hours simulated data

Mean Epps effect on simulated data

Δt (seconds)
Mean Epps effect on real data

- Bund 10Y / Bobl 5Y: 41 days, 9-11 AM - Last Traded

![Graph showing the mean Epps effect on real data with Bund 10Y and Bobl 5Y.](image-url)
Mean Epps effect on real data

- Bund 10Y / Bobl 5Y: 41 days, 9-11 AM - Last Traded

 dengan

\[\alpha_{Bobl} = \alpha_{Bund} \] no way to perform good fits for the two individual signature plots and the Epps effect at the same time.
The 2d model accounts for 2d microstructure noise but it remains a "first-brick" model for tick-by-tick time-series themselves:

- "Naive" model
 - Arbitrary parametric shape $\phi(t) = \alpha e^{-\beta t}$
 - Fully symmetric constant parameters → clearly not the case at all in the real life!

- tick-by-tick time-series: Arbitrary projection of a complex phenomenon (orderbook dynamics)

Moreover

- "filtering" is even more arbitrary than in the 1d case
 → No reason to use the same filtering rule for each asset
More scaling limits! (in dimension 1)

- **Bachelier** (additive) limit with arbitrary $\mu_+ \neq \mu_-$, $\Phi_+ \neq \Phi_-$
- **Black-Scholes** (multiplicative) limit
- How to – simply– obtain a continuous diffusion process as macroscopic limit
- Toward macroscopic **stochastic volatility diffusion** via a Nelson type argument
The fair/efficient price \((S_t) \) is a diffusion of the form

\[
dS_t = b_t \, dt + \sigma_t \, dB_t, \quad t \in [0, 1]
\]

but cannot be observed.

What we can observe \(= (Y_1, \ldots, Y_{\Delta-1}) \), where

\[
\text{Law}(Y_k \mid (S_t)_t) = K_{\Delta}(S_{k\Delta}, dx)
\]

\(K_{\Delta}(s, dx) \) Markov kernel.

Conditional on the latent \((S_t)_t \), the \(Y_i \) are independent.

Popular model: additive microstructure (white) noise

\[
Y_i = S_{i\Delta} + \xi_{i,\Delta}, \quad i = 1, \ldots, \Delta^{-1}, \quad \mathbb{E}[\xi_{i,\Delta}] = 0
\]
Some references

- Latent price approach
 - In statistics: Gloter and Jacod (2001), Munk and Schmiedt-Hieber (2009), Reiβ (2010)
 - In financial econometrics: Ait-Sahalia, Mykland and Zhang (2003 to 2006).
 - And many more... Podolkii, Vetter, Jacod, Mykland, Zhang, Bandi, Russell, Diebold, Strasser, Barndorff-Nielsen, Hansen, Lund, Shepard,

- Other approaches for modelling microstructure noise:
 - Econophysics literature Order book oriented modelling...
Comparison: additive microstructure noise vs. Hawkes

- **Latent price approach.** One observes

\[Y_{i,\Delta} = S_{i\Delta} + \xi_i^\Delta, \quad \mathbb{E}[\xi_{i,\Delta}] = 0, \quad \mathbb{E}[\xi_{i,\Delta}^2] = \rho^2 > 0, \]

with \(dS_t = \sigma(t)dB_t \).

- Take \(\sigma(t) \equiv \sigma \) for simplicity...

- **This is not a microscopic model** in our terminology!

- Indeed: the observation horizon \([0, 1]\) is fixed **irrespectively** of the sampling observation frequency \(\Delta^{-1} \).
Indeed

- As $\Delta \to 0$, one equivalently observes (in a distributional sense) (Reiß, 2010)

$$Y(dt) = X_t + \rho \Delta^{1/2} \dot{B}(dt), \; t \in [0, 1]$$

- Hence infinite information over fixed time as $\Delta \to 0$.

- In our setting, we can observe continuously $(X(t), t \in [0, 1])$. This observation contains finite information only about μ and Φ. (Equivalently: one cannot recover μ nor Φ from $(X(t), t \in [0, 1])$.)
So?

- How to reconcile both approaches and compare them?
- Recast the additive microstructure noise model into microscopic time, over the horizon \([0, \delta^{-1}]\) with \(\delta \approx 0\).
- In this setting, we have data at (microscopic) times

\[
0, \Delta, 2\Delta, \ldots, n\Delta = \delta^{-1}
\]

- We can compare now additive microstructure noise data \(\{Y_{i\Delta}\}\) and Hawkes data \(\{X^{(\delta)}(i\Delta)\}\), for \(i = 1, \ldots, n\) (same sample size).
Mean “signature plot”

- Recall the time-space renormalization
 \[X^{(\delta)}(t) := \sqrt{\delta}X(\delta^{-1}t), \quad t \in [0, 1] \]

- Realized volatility
 \[
 V_\Delta \{X^{(\delta)}\} := \sum_{i=1}^{\Delta^{-1}} \left(X^{(\delta)}(i\Delta) - X^{(\delta)}((i-1)\Delta) \right)^2
 \approx \frac{1}{\Delta \delta^{-1}} \mathbb{E}[(X(\Delta \delta^{-1}) - X(0))^2]
 \]

- Mean signature plot
 \[
 \mathcal{V}(t) := \frac{1}{t} \mathbb{E}[(X(t) - X(0))^2]
 \]

- Interpretation
 \[
 \mathcal{V}(\Delta \delta^{-1}) \approx V_\Delta \{X^{(\delta)}\}.
 \]
Comparing signature plots

- Transform the **additive microstructure noise model**
 \[Y_{i,\Delta} = \sigma B_{i\Delta} + \rho \xi_{i,\Delta} \]
 into
 \[Y_{i\Delta}^{(\delta)} = \sqrt{\delta} \sigma B_{i\Delta \delta^{-1}} + \rho \sqrt{\delta} \xi_{i,\Delta}. \]

- **Historic volatility approximation** \(V_\Delta \{ Y^{(\delta)} \} \)

\[
\Delta^{-1} \sum_{i=1}^{\Delta^{-1}} (Y_{i\Delta}^{(\delta)} - Y_{(i-1)\Delta}^{(\delta)})^2 \approx \sigma^2 + 2 \rho^2 \delta \Delta^{-1} =: V_{\text{add micro}}^{(\delta^{-1}\Delta)}
\]
Conclusion

- **Additive microstructure** signature plot \((t = \Delta \delta^{-1}) \):
 \[
 \mathcal{V}_{\text{add micro}}(t) = \sigma^2 + \frac{2\rho^2}{t}
 \]

- **Hawkes** signature plot:
 \[
 \mathcal{V}_{\text{Hawkes}}(t) = \sigma^2 + \sigma^2 \left\{ (1 + \|\Phi\|)^2 - 1 \right\} G(t)
 \]
 with \(G(t) = \frac{1-e^{-(\alpha+\beta)t}}{(\alpha+\beta)t} \sim (\alpha + \beta)^{-1}/t \) (large \(t \)) and with the identification
 \[
 \sigma^2 = \frac{2\mu}{1 - \|\Phi\|} \frac{1}{(1 + \|\Phi\|)^2}
 \]

- \(\mathcal{V}_{\text{add micro}}(t) \) cannot be consistent with empirical data in the regime \(t \approx 0 \) unless \(\rho = \rho(t) \).