On Quasiconvex Conditional Maps Duality Results and Applications to Finance

Marco Frittelli and Marco Maggis

Università degli Studi di Milano

Modeling and Managing Financial Risks, Paris, January 11, 2011

DQC

Recall that $\rho: L_{\mathcal{F}} \to \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ is quasiconvex (QCO) if

 $\rho(\lambda X + (1 - \lambda)Y) \le \max\{\rho(X), \rho(Y)\}, \ \lambda \in [0, 1]$

or equivalently: ρ is (QCO) if all the lower level sets

 $\{X \in L_{\mathcal{F}} \mid
ho(X) \leq c\} \quad \forall c \in \mathbb{R}$

are convex

- Motivations for the study of quasiconvex maps in Mathematical Finance
- Examples of applications
- New results in the dynamic setting.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

- (Ω, \mathcal{F}, P) is a probability space.
- $L^0 = L^0(\Omega, \mathcal{F}, P)$ is the space of all *P*.a.s. finite random variables.
- L^{∞} is the subspace of all essentially bounded random variables.
- $L_{\mathcal{F}}$ is a TVS of \mathcal{F} -measurable random variables.
- We suppose that

$$L^{\infty} \subseteq L_{\mathcal{F}} \subseteq L^{0}.$$

• $\{\mathcal{F}_t\}_{t\geq 0}$ will denote a right continuous filtration.

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

A map $\rho: L_F \to \mathbb{R}$ is called a *monetary risk measure* on L_F if it has the following properties:

(CA) Cash additivity : $\forall X \in L_{\mathcal{F}} \text{ and } \forall c \in \mathbb{R} \ \rho(X + c) = \rho(X) - c.$ (MON \downarrow) $\rho(X) \leq \rho(Y) \ \forall X, Y \in L_{\mathcal{F}} \text{ such that } X \geq Y.$ $- \rho(0) = 0.$

A convex risk measures is a monetary risk measure which satisfies:

(CO) Convexity : For all
$$\lambda \in [0, 1]$$
 and for all $X, Y \in L_F$ we have that $\rho(\lambda X + (1 - \lambda)Y) \le \lambda \rho(X) + (1 - \lambda)\rho(Y)$.

A coherent risk measure is a convex risk measure that satisfies:

(SA) Subadditivity : $\rho(X + Y) \le \rho(X) + \rho(Y) \quad \forall X, Y \in L_F.$ (PH) Positive homogeneity : $\rho(\lambda X) = \lambda \rho(X) \quad \forall X \in L_F \text{ and } \forall \lambda \ge 0.$

Coherent Risk Measures (Artzner, Delbaen, Eber, Heath (1997))

 $\rho(X) = \sup_{Q \in \mathcal{P}'} E_Q[-X]$

where

$$\mathcal{P}' \subseteq \mathcal{P} := \{ Q << P, \ Q \text{ probability} \}$$

Convex Risk Measures (Follmer, Schied (2002) - Frittelli, Rosazza (2002))

$$\rho(X) = \sup_{Q \in \mathcal{P}} \left\{ E_Q[-X] - \alpha(Q) \right\}$$

where α is the penalty function $\alpha: \mathcal{P} \to [0, \infty]$.

As enlighten by Follmer-Schied-Weber (2008), the representation results for risk measures may be used in decision theory for the robust approach to model uncertainty.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シック

A stochastic dynamic utility (SDU)

$$u: \mathbb{R} \times [0,\infty) \times \Omega \to \mathbb{R} \cup \{-\infty\}$$

satisfies the following conditions: for any $t \in [0, +\infty)$ there exists $A_t \in \mathcal{F}_t$ such that $\mathbb{P}(A_t) = 1$ and

Image: A match a ma

DQA

A stochastic dynamic utility (SDU)

$$u: \mathbb{R} \times [0,\infty) \times \Omega \to \mathbb{R} \cup \{-\infty\}$$

satisfies the following conditions: for any $t \in [0, +\infty)$ there exists $A_t \in \mathcal{F}_t$ such that $\mathbb{P}(A_t) = 1$ and

(a) the effective domain, $\mathcal{D}(t) := \{x \in \mathbb{R} : u(x, t, \omega) > -\infty\}$ and the range $\mathcal{R}(t) := \{u(x, t, \omega) \mid x \in \mathcal{D}(t)\}$ do not depend on $\omega \in A_t$; moreover $0 \in int\mathcal{D}(t)$, $E[u(0, t)] < +\infty$ and $\mathcal{R}(t) \subseteq \mathcal{R}(s)$;

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A stochastic dynamic utility (SDU)

$$u: \mathbb{R} \times [0,\infty) \times \Omega \to \mathbb{R} \cup \{-\infty\}$$

satisfies the following conditions: for any $t \in [0, +\infty)$ there exists $A_t \in \mathcal{F}_t$ such that $\mathbb{P}(A_t) = 1$ and

(a) the effective domain, $\mathcal{D}(t) := \{x \in \mathbb{R} : u(x, t, \omega) > -\infty\}$ and the range $\mathcal{R}(t) := \{u(x, t, \omega) \mid x \in \mathcal{D}(t)\}$ do not depend on $\omega \in A_t$; moreover $0 \in int\mathcal{D}(t)$, $E[u(0, t)] < +\infty$ and $\mathcal{R}(t) \subseteq \mathcal{R}(s)$;

(b) for all $\omega \in A_t$ and $t \in [0, +\infty)$ the function $x \to u(x, t, \omega)$ is strictly increasing on $\mathcal{D}(t)$ and increasing, concave and upper semicontinuous on \mathbb{R} .

・ロト ・回ト ・ヨト

A stochastic dynamic utility (SDU)

$$u: \mathbb{R} \times [0,\infty) \times \Omega \to \mathbb{R} \cup \{-\infty\}$$

satisfies the following conditions: for any $t \in [0, +\infty)$ there exists $A_t \in \mathcal{F}_t$ such that $\mathbb{P}(A_t) = 1$ and

- (a) the effective domain, $\mathcal{D}(t) := \{x \in \mathbb{R} : u(x, t, \omega) > -\infty\}$ and the range $\mathcal{R}(t) := \{u(x, t, \omega) \mid x \in \mathcal{D}(t)\}$ do not depend on $\omega \in A_t$; moreover $0 \in int\mathcal{D}(t)$, $E[u(0, t)] < +\infty$ and $\mathcal{R}(t) \subseteq \mathcal{R}(s)$;
- (b) for all $\omega \in A_t$ and $t \in [0, +\infty)$ the function $x \to u(x, t, \omega)$ is strictly increasing on $\mathcal{D}(t)$ and increasing, concave and upper semicontinuous on \mathbb{R} .

(c)
$$\omega o u(x,t,\cdot)$$
 is \mathcal{F}_t -measurable for all $(x,t) \in \mathcal{D}(t) imes [0,+\infty)$

・ロト ・回ト ・ヨト

Stochastic Dynamic Utilities

We introduce the following useful notation

Notation:

$$\mathcal{U}(t) = \{ X \in L^0(\Omega, \mathcal{F}_t, \mathbb{P}) \mid u(X, t) \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \}.$$

∃ ≻

We introduce the following useful notation

Notation:

$$\mathcal{U}(t) = \{ X \in L^0(\Omega, \mathcal{F}_t, \mathbb{P}) \mid u(X, t) \in L^1(\Omega, \mathcal{F}, \mathbb{P}) \}.$$

Related literature:

- Series of papers by Musiela and Zariphopoulou (2006,2008,...);
- Henderson and Hobson (2007);
- Berrier, Rogers and Theranchi (2007);
- El Karoui and Mrad (2010);
- Schweizer and Choulli (2010);
- probably many other...

Let *u* be a SDU and *X* be a random variable in $\mathcal{U}(t)$. For each $s \in [0, t]$, the backward Conditional Certainty Equivalent $C_{s,t}(X)$ of *X* is the random variable in $\mathcal{U}(s)$ solution of the equation:

$$u(C_{s,t}(X),s) = E[u(X,t)|\mathcal{F}_s].$$

Thus the CCE defines the valuation operator

$$C_{s,t}: \mathcal{U}(t) \rightarrow \mathcal{U}(s), \ C_{s,t}(X) = u^{-1}\left(E\left[u(X,t)|\mathcal{F}_s\right]\right), s\right).$$

Let *u* be a SDU and *X* be a random variable in $\mathcal{U}(t)$. For each $s \in [0, t]$, the backward Conditional Certainty Equivalent $C_{s,t}(X)$ of *X* is the random variable in $\mathcal{U}(s)$ solution of the equation:

$$u(C_{s,t}(X),s) = E[u(X,t)|\mathcal{F}_s].$$

Thus the CCE defines the valuation operator

$$C_{s,t}: \mathcal{U}(t) \rightarrow \mathcal{U}(s), \ C_{s,t}(X) = u^{-1}\left(E\left[u(X,t)|\mathcal{F}_s\right]\right), s\right).$$

Even if u is concave the CCE is not a concave functional, but it is conditionally quasiconcave

Dynamic Risk Measures

$$\rho_{C_{\mathcal{T}},v_t}(X)(\omega) = \operatorname{ess\,inf}_{Y \in \mathcal{L}^0_{\mathcal{F}_t}} \{ v_t(Y,\omega) \mid X + Y \in C_{\mathcal{T}} \}.$$

V@R is also quasiconvex if defined on an opportune distribution set.

Acceptability Indices Conditional Gain Loss Ratio

$$CGLR(X|\mathcal{G}) = \frac{E_{\mathbb{P}}[X|\mathcal{G}]}{E_{\mathbb{P}}[X^{-}|\mathcal{G}]} \mathbf{1}_{\{E_{\mathbb{P}}[X|\mathcal{G}]>0\}}.$$

(日) (同) (三) (1)

Let $\lambda \in \mathbb{R}$, $0 \leq \lambda \leq 1$

• The convexity of $\rho: L_{\mathcal{F}} \to \mathbb{R}$ implies

$$\rho(\lambda X + (1 - \lambda)Y) \leq \lambda \rho(X) + (1 - \lambda)\rho(Y) \leq \rho(X) \lor \rho(Y).$$

• Quasiconvexity alone:

$$\rho(\lambda X + (1 - \lambda)Y) \le \rho(X) \lor \rho(Y)$$

allows to control the risk of a diversified position.

• As pointed out in [CVMMM09], the principle that diversification should not increase the risk has the mathematical counterpart in QCO, not in convexity .

イロト 不得下 イヨト イヨト 二日

Economic motivations for Quasiconvexity

• Risk management:

 $\mathsf{Diversification}\ \mathsf{principle} \leftrightarrow \mathsf{Quasiconvexity}$

• In economic theory:

convexity of preferences over acts \leftrightarrow uncertainty aversion i.e.:

if \overline{X} and \overline{Y} are preferred to \overline{Z} then any mixture $\Lambda \overline{X} + (1 - \Lambda)\overline{Y}$ is also preferred to \overline{Z} .

and leads to quasiconcavity of utility functionals

General Results on Quasiconvex Conditional Maps

► < ∃ ►</p>

As a straightforward application of the Hahn-Banach Theorem:

Proposition (Volle 98)

Let E be a locally convex topological vector space and E^{*} be its topological dual space. If $f : E \to \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$ is LSC and QCO then

$$f(x) = \sup_{x^* \in E^*} R(x^*(x), x^*),$$

where $R : \mathbb{R} \times E^* \to \overline{\mathbb{R}}$ is defined by

 $R(m, x^*) := \inf \{ f(x) \mid x \in E \text{ such that } x^*(x) \ge m \}.$

Dual representation of STATIC (QCO) cash-subadditive risk measures

Proposition (Cerreia-Maccheroni-Marinacci-Montrucchio, 2009)

A function $\rho: L^{\infty} \to \overline{\mathbb{R}}$ is QCO cash-subadditive MON (\downarrow) if and only if

$$\rho(X) = \max_{Q \in ba_+(1)} R(E_Q[-X], Q),$$

$$R(m, Q) = \inf \{\rho(\xi) \mid \xi \in L^{\infty} \text{ and } E_Q[-\xi] = m\}$$

where $R : \mathbb{R} \times ba_+(1) \to \overline{\mathbb{R}}$ and R(m, Q) is the reserve amount required today, under the scenario Q, to cover an expected loss m in the future.

Questions

Let $\rho: L_{\mathcal{F}} \to \overline{\mathbb{R}}$ be MON (\downarrow) and QCO, and set: $\mathcal{P} := \left\{ Q \in (L_{\mathcal{F}})^*_+ \mid Q(1) = 1 \right\}$

1 Under which assumptions on L_F and under which continuity property of ρ do we have the dual representation

$$\rho(X) = \sup_{Q \in \mathcal{P}} R(E_Q[-X], Q),$$

where

$$R(m,Q):=\inf_{\xi\in L_{\mathcal{F}}}\left\{\rho(\xi)\mid E_Q[-\xi]\geq m\right\}?$$

2 Is it possible to identify a class S of maps $S : \mathbb{R} \times \mathcal{P} \to \overline{\mathbb{R}}$ such that: $\rho : L_{\mathcal{F}} \to \overline{\mathbb{R}}$ is MON (\downarrow), QCO and "continuous" if and only if

$$\rho(X) = \sup_{Q \in \mathcal{P}} S(E_Q[-X], Q),$$

with $S \in S$. ?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

3 (Complete duality) For the class ${\cal L}$ of functions

$$\rho: L_{\mathcal{F}} \to \overline{\mathbb{R}}$$

that are:

- MON (↓),
- QCO,
- "continuous"

is it possible to identify a class ${\mathcal R}$ of maps

$$R:\mathbb{R}\times\mathcal{P}\to\overline{\mathbb{R}}$$

such that there is a complete duality between $\mathcal R$ and $\mathcal L$?

イロト イポト イヨト イヨ

On Complete Duality in the QCO setting

Definition

There is a complete duality between a class ${\mathcal R}$ of maps

 $R:\mathbb{R}\times\mathcal{P}\to\overline{\mathbb{R}}$

and a class ${\mathcal L}$ of functions

$$\rho: \mathcal{L}_{\mathcal{F}} \to \overline{\mathbb{R}}$$

if for every $\rho \in \mathcal{L}$ the only $R \in \mathcal{R}$ such that

$$\rho(X) = \sup_{Q \in \mathcal{P}} R(E_Q[-X], Q)$$

is given by

$$R(m,Q) = \inf_{\xi \in L_{\mathcal{F}}} \{ \rho(\xi) \mid E_Q[-\xi] \ge m \};$$

and conversely for every $R \in \mathcal{R}$ there is a unique $\rho \in \mathcal{L}$ satisfying the above equations.

Marco Maggis (UniMi)

Evenly Quasiconvex functions (EVQCO)

Definition

(Fenchel, 1952) A set C is Evenly Convex if it is the intersection of open half spaces.

Note: both open convex sets and closed convex sets are evenly convex.

Definition

A function $\rho: L_{\mathcal{F}} \to \mathbb{R}$ is Evenly Quasiconvex if all the lower level sets

$$\{X\in L_{\mathcal{F}}\mid
ho(X)\leq c\}$$
 , $c\in\mathbb{R},$

are evenly convex.

Lemma

If $\rho : L_F \to \mathbb{R}$ is LSC and QCO then it is EVQCO If $\rho : L_F \to \mathbb{R}$ is USC and QCO then it is EVQCO

Marco Maggis (UniMi)

 Marinacci et al. (2009) provides solutions to all these three questions, under fairly general conditions, for MON (↑) Evenly Quasiconcave real valued maps, hence covering both cases of maps ρ : L_F → ℝ that are:

MON (\downarrow), QCO and LSC MON (\downarrow), QCO and USC

• More recently, Drapeau and Kupper (2010) provide similar solutions to these questions, under different assumptions on the vector space L_F , for maps $\rho: L_F \to \mathbb{R}$ that are:

MON (\downarrow), QCO and LSC

イロト イポト イヨト イヨト 二日

A map

$$\pi: L(\Omega, \mathcal{F}, P) \to L(\Omega, \mathcal{G}, P)$$

is quasiconvex (QCO) if $\forall X, Y \in L(\Omega, \mathcal{F}, P)$ and for all \mathcal{G} -measurable r.v. $\Lambda, 0 \leq \Lambda \leq 1$,

 $\pi(\Lambda X + (1 - \Lambda)Y) \leq \pi(X) \vee \pi(Y);$

イロト イポト イヨト イヨト

On question 1: the main message

• Convex case

From the static representation (Follmer-Schied; Frittelli - Rosazza (2002))

$$\rho(X) = \sup_{Q \in \mathcal{P}} \{ E_Q[-X] - \alpha(Q) \}$$

to the conditional one (Detlefsen-Scandolo (2005))

$$\rho_{\mathcal{G}}(X) = ess \sup_{Q \in \mathcal{P}_{\mathcal{G}}} \{ E_Q[-X \mid \mathcal{G}] - \alpha_{\mathcal{G}}(Q) \}$$

• Quasiconvex case From the static representation (Marinacci et al. (2009))

$$\rho(X) = \sup_{Q \in \mathcal{P}} \{ R(E_Q[-X], Q) \}$$

to the conditional one (Frittelli-M. (2009))

$$\rho_{\mathcal{G}}(X) = ess \sup_{Q \in \mathcal{P}_{\mathcal{G}}} \left\{ R_{\mathcal{G}}(E_Q[-X \mid \mathcal{G}], Q) \right\}$$

- $L^p_{\mathcal{F}} := L^p(\Omega, \mathcal{F}, P), \ p \in [0, \infty].$
- L_F := L(Ω, F, P) ⊆ L⁰(Ω, F, P) is a lattice of F measurable random variables.
- L_G := L(Ω, G, P) ⊆ L⁰(Ω, G, P) is a lattice of G measurable random variables.
- $L_{\mathcal{F}}^* = (L_{\mathcal{F}}, \geq)^*$ is the order continuous dual of $(L_{\mathcal{F}}, \geq)$, which is also a lattice.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

• $L_{\mathcal{F}}$ (resp. $L_{\mathcal{G}}$) satisfies the property $1_{\mathcal{F}}$ (resp $1_{\mathcal{G}}$):

$$X \in L_{\mathcal{F}} \text{ and } A \in \mathcal{F} \Longrightarrow (X \mathbf{1}_A) \in L_{\mathcal{F}}.$$
 $(1_{\mathcal{F}})$

$(L_{\mathcal{F}}, \sigma(L_{\mathcal{F}}, L_{\mathcal{F}}^*)) \text{ is a locally convex TVS.}$

This condition requires that the order continuous dual $L_{\mathcal{F}}^*$ is rich enough to separate the points of $L_{\mathcal{F}}$.

- $L^*_{\mathcal{F}}$ satisfies the property $1_{\mathcal{F}}$

イロト 不得 トイヨト イヨト ヨー シタウ

 $(\tau$ -LSC) the lower level set

$$\mathcal{A}_Y = \{X \in \mathcal{L}_\mathcal{F} \mid \pi(X) \leq Y\}$$

is au closed for each $extsf{G}$ -measurable $extsf{Y}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シック

 $(\tau$ -LSC) the lower level set

$$\mathcal{A}_Y = \{X \in L_\mathcal{F} \mid \pi(X) \leq Y\}$$

is au closed for each $extsf{G}$ -measurable $extsf{Y}$

 $(\tau$ -USC) the strictly lower level set

$$\mathcal{B}_Y = \{ X \in L_\mathcal{F} \mid \pi(X) < Y \}$$

is τ open for each \mathcal{G} -measurable Y

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

 $(\tau$ -LSC) the lower level set

$$\mathcal{A}_Y = \{X \in \mathcal{L}_\mathcal{F} \mid \pi(X) \leq Y\}$$

is τ closed for each \mathcal{G} -measurable Y

 $(\tau$ -USC) the strictly lower level set

$$\mathcal{B}_Y = \{X \in L_\mathcal{F} \mid \pi(X) < Y\}$$

is τ open for each \mathcal{G} -measurable Y

(REG) $\forall A \in \mathcal{G}, \ \pi(X_1 \mathbf{1}_A + X_2 \mathbf{1}_A^C) = \pi(X_1) \mathbf{1}_A + \pi(X_2) \mathbf{1}_A^C$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

The dual representation of conditional quasiconvex maps

Theorem (1 - solution to Question 1)

If $\pi : L_{\mathcal{F}} \to L_{\mathcal{G}}$ is MON (†), QCO, REG and either $\sigma(L_{\mathcal{F}}, L_{\mathcal{F}}^*)$ -LSC or $\sigma(L_{\mathcal{F}}, L_{\mathcal{F}}^*)$ -USC then

$$\pi(X) = ess \sup_{Q \in L^*_{\mathcal{F}} \cap \mathcal{P}} R(E_Q[X|\mathcal{G}], Q)$$

where

$$R(Y, Q) := ess \inf_{\xi \in L_{\mathcal{F}}} \{ \pi(\xi) \mid E_Q[\xi|\mathcal{G}] \ge_Q Y \}, \ Y \in L_{\mathcal{G}}$$
$$\mathcal{P} =: \left\{ \frac{dQ}{dP} \mid Q << P \text{ and } Q \text{ probability} \right\}$$

Exactly the same representation of the real valued case, but with conditional expectations.

Marco Maggis (UniMi)

Paris 2010 26 / 36

イロト 不得下 イヨト イヨト 二日

Define the class:

 $\mathcal{S} := \left\{ S : L^0_{\mathcal{G}} \times L^*_{\mathcal{F}} \to \overline{L}^0_{\mathcal{G}} \text{ such that } S(\cdot, \xi') \text{ is MON } (\uparrow), \text{ REG and CFB} \right\}$

Note: Any map $S : L^0_{\mathcal{G}} \times L^*_{\mathcal{F}} \to \overline{L}^0_{\mathcal{G}}$ such that $S(\cdot, \xi')$ is MON (\uparrow) and REG is automatically QCO in the first component.

Theorem (2)

The map $\pi : L_F \to L_G$ is MON(\uparrow), QCO, REG and $\sigma(L_F, L_F^*)$ -LSC if and only if there exists $S \in S$ such that

$$\pi(X) = \sup_{Q \in L^*_{\mathcal{F}} \cap \mathcal{P}} S\left(E\left[\frac{dQ}{d\mathbb{P}}X|\mathcal{G}\right], Q\right).$$

イロト イポト イヨト イヨト 二日

On the $L^0(\mathcal{G})$ -Module (Filipovic Kupper Vogelpoth 2009)

- $L^0(\mathcal{G})$ equipped with the order of a.s. dominance is a lattice ordered ring.
- For every $\varepsilon \in L^0_{++}(\mathcal{G})$ define the ball $B_{\varepsilon} = \{Y \in L^0(\mathcal{G}) \mid |Y| \le \varepsilon\}$ centered in $0 \in L^0(\mathcal{G})$, which gives the neighborhood basis of 0.
- Endowed with this topology, (L⁰(G), | · |) is not a TVS, but it is a topological L⁰(G)-module, in the sense of the following:

Definition

A **topological** $L^{0}(\mathcal{G})$ -**module** (E, τ) is an $L^{0}(\mathcal{G})$ -module E endowed with a topology τ such that the module operations (i) $(E, \tau) \times (E, \tau) \rightarrow (E, \tau)$, $(X_{1}, X_{2}) \mapsto X_{1} + X_{2}$, (ii) $(L^{0}(\mathcal{G}), |\cdot|) \times (E, \tau) \rightarrow (E, \tau)$, $(Y, X_{2}) \mapsto YX_{2}$ are continuous w.r.t. the corresponding product topologies.

Sac

イロト 不得下 イヨト イヨト 二日

On the $L^0(\mathcal{G})$ -Module $L^p_{\mathcal{G}}(\mathcal{F})$ (FKV 2009)

For every $p \ge 1$ let:

$$L^{p}_{\mathcal{G}}(\mathcal{F}) =: \{ X \in L^{0}(\Omega, \mathcal{F}, \mathbb{P}) \mid \|X|\mathcal{G}\|_{p} \in L^{0}(\Omega, \mathcal{G}, \mathbb{P}) \}$$

where $\|\cdot|\mathcal{G}\|_p:\overline{L}^0_{\mathcal{G}}(\mathcal{F})\to\overline{L}^0_+(\mathcal{G})$

$$\|X|\mathcal{G}\|_{p} =: \begin{cases} \lim_{n \to \infty} E[|X|^{p} \wedge n|\mathcal{G}]^{\frac{1}{p}} & \text{if } p < +\infty \\ ess. \inf\{Y \in \overline{L}^{0}(\mathcal{G}) \mid Y \ge |X|\} & \text{if } p = +\infty \end{cases}$$

Then $(L^p_{\mathcal{G}}(\mathcal{F}), \|\cdot |\mathcal{G}\|_p)$ is an $L^0(\mathcal{G})$ -normed module having the product structure:

$$L^{p}_{\mathcal{G}}(\mathcal{F}) = L^{0}(\mathcal{G})L^{p}(\mathcal{F}) = \{YX \mid Y \in L^{0}(\mathcal{G}), \ X \in L^{p}(\mathcal{F})\}$$

イロト イロト イヨト 一日

The dual elements can be identified with conditional expectations For $p \in [1, +\infty)$, any $L^0(\mathcal{G})$ -linear continuous functional

$$\mu: L^p_{\mathcal{G}}(\mathcal{F}) \to L^0(\mathcal{G})$$

can be identified with a random variable $Z \in L^q_{\mathcal{G}}(\mathcal{F})$, $\frac{1}{p} + \frac{1}{q} = 1$, s.t.

 $\mu(\cdot) = E[Z \cdot |\mathcal{G}].$

Define the set of normalized dual elements by:

$$\mathcal{P}^q = \left\{ rac{dQ}{dP} \in L^q_\mathcal{G}(\mathcal{F}) \mid Q ext{ probability}, \ E\left[rac{dQ}{dP}|\mathcal{G}
ight] = 1
ight\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

The class \mathcal{R} for the complete duality

Define the class \mathcal{R} of maps $\mathcal{K}: L^0(\mathcal{G}) \times \mathcal{P}^q \to \overline{L}^0(\mathcal{G})$ with:

• K is increasing in the first component.

•
$$\mathcal{K}(Y\mathbf{1}_A, Q)\mathbf{1}_A = \mathcal{K}(Y, Q)\mathbf{1}_A$$
 for every $A \in \mathcal{G}$.

- $\inf_{Y \in L^0(\mathcal{G})} K(Y, Q) = \inf_{Y \in L^0(\mathcal{G})} K(Y, Q')$ for every $Q, Q' \in \mathcal{P}^q$.
- K is \diamond -evenly $L^0(\mathcal{G})$ -quasiconcave: for every $(\bar{Y}, \bar{Q}) \in L^0(\mathcal{G}) \times \mathcal{P}^q$, $A \in \mathcal{G}$ and $\alpha \in L^0(\mathcal{G})$ such that $K(\bar{Y}, \bar{Q}) < \alpha$ on A, there exists $(\bar{V}, \bar{X}) \in L^0_{++}(\mathcal{G}) \times L^p_{\mathcal{G}}(\mathcal{F})$ with

$$ar{Y}ar{V} + E\left[ar{X}rac{dar{Q}}{dP}|oldsymbol{\mathcal{G}}
ight] < Yar{V} + E\left[ar{X}rac{dQ}{dP}|oldsymbol{\mathcal{G}}
ight] ext{ on } A$$

for every (Y, Q) such that $K(Y, Q) \ge \alpha$ on A.

• the set $\mathcal{K} = \left\{ K(E[X \frac{dQ}{dP} | \mathcal{G}], Q) \mid Q \in \mathcal{P}^q \right\}$ is upward directed for every $X \in L^p_{\mathcal{G}}(\mathcal{F})$.

イロト 不得 トイヨト イヨト ヨー シタウ

Complete duality (solution to Question 3)

By applying the separation theorem in $L^0(\mathcal{G})$ -normed module (FKV2009) - which directly provides the existence of a dual element in terms of a conditional expectation - and the idea of the proof in the static case (as in CVMMM2009) we get:

Theorem (3)

The map $\pi : L^{p}_{\mathcal{G}}(\mathcal{F}) \to L^{0}(\mathcal{G})$ is an evenly quasiconvex regular risk measure - i.e. it satisfies $MON(\uparrow)$, REG and EVQCO - if and only if

$$\pi(X) = \sup_{Q \in \mathcal{P}^q} R\left(E\left[\frac{dQ}{dP}X|\mathcal{G}\right], Q\right)$$

with

$$R(Y,Q) = \inf_{\xi \in L^p_{\mathcal{G}}(\mathcal{F})} \left\{ \pi(\xi) \mid E\left[\frac{dQ}{dP}\xi|\mathcal{G}\right] = Y \right\}$$

unique in the class \mathcal{R} .

The proof is non standard and relies on an approximation argument. The steps are the follows:

[I] We represent $\pi^{\Gamma}(X) := \sum_{A \in \Gamma} \left\{ \sup_{A} \pi(X) \right\} \mathbf{1}_{A} = H^{\Gamma}(X)$ where $H^{\Gamma}(X) = \sup_{Q} \inf_{\xi \in L_{\mathcal{F}}} \left\{ \pi^{\Gamma}(\xi) | E_{Q}[\xi|\mathcal{F}_{s}] \ge_{Q} E_{Q}[X|\mathcal{F}_{s}] \right\}$

[II] We deduce $\pi(X) = \inf_{\Gamma} H^{\Gamma}(X)$.

[III] We approximate H(X) with $K(X, Q_{\varepsilon})$ on a set A_{ε} of probability arbitrarily close to 1

[IV] We need a key *uniform* result to show that element Q_{ε} does not depend on the partition.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- **Dual representation**: follows the proof given by Volle 1998 applying the Hahn Banach separation theorem for modules (Filipovic et al. 2010).
- Uniqueness: matches the proof given by Marinacci et al. (2009)

- Conditions under which the *sup* in the dual representation is attained
- The EVQCO conditional case for maps defined on TVS (instead of on L⁰-modules)
- g-Expectation with g QCO and its dual representations
- Local approximations of the Conditional Certainty Equivalent
- Time Consistency of Dynamic QCO maps.

- Dual representation of Quasiconvex Conditional maps, Joint with Frittelli, M. (2009), resubmitted after first revision.
- Conditional Certainty Equivalent, Joint with Frittelli, M. (2010), to appear on the International Journal of Theoretical and Applied Finance.
- Complete Duality for Quasiconvex Risk Measures on L⁰-Modules of the L^p type, Joint with Frittelli, M. (2010), Preprint.
- On quasiconvex conditional maps, Maggis, M. (2010), PhD Thesis.

- Dual representation of Quasiconvex Conditional maps, Joint with Frittelli, M. (2009), resubmitted after first revision.
- Conditional Certainty Equivalent, Joint with Frittelli, M. (2010), to appear on the International Journal of Theoretical and Applied Finance.
- Complete Duality for Quasiconvex Risk Measures on L⁰-Modules of the L^p type, Joint with Frittelli, M. (2010), Preprint.
- On quasiconvex conditional maps, Maggis, M. (2010), PhD Thesis.

THANK YOU FOR YOUR ATTENTION!!!