
On Quasiconvex Conditional Maps
Duality Results and Applications to Finance

Marco Frittelli and Marco Maggis
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Objectives

Recall that ρ : LF → R := R ∪ {−∞} ∪ {∞} is quasiconvex (QCO) if

ρ(λX + (1− λ)Y ) ≤ max{ρ(X ), ρ(Y )}, λ ∈ [0, 1]

or equivalently: ρ is (QCO) if all the lower level sets

{X ∈ LF | ρ(X ) ≤ c} ∀ c ∈ R

are convex

Motivations for the study of quasiconvex maps in Mathematical
Finance

Examples of applications

New results in the dynamic setting.

Marco Maggis (UniMi) On Quasiconvex Conditional Maps Paris 2010 2 / 36



Notations

(Ω,F ,P) is a probability space.

L0 = L0(Ω,F ,P) is the space of all P .a.s. finite random variables.

L∞ is the subspace of all essentially bounded random variables.

LF is a TVS of F-measurable random variables.

We suppose that
L∞ ⊆ LF ⊆ L0.

{Ft}t≥0 will denote a right continuous filtration.
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Monetary Risk Measure

Definition

A map ρ : LF → R is called a monetary risk measure on LF if it has the
following properties:

(CA) Cash additivity :
∀ X ∈ LF and ∀ c ∈ R ρ(X + c) = ρ(X )− c .

(MON ↓) ρ(X ) ≤ ρ(Y ) ∀ X ,Y ∈ LF such that X ≥ Y .

- ρ(0) = 0.
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Coherent and Convex Risk Measures

A convex risk measures is a monetary risk measure which satisfies:

(CO) Convexity : For all λ ∈ [0, 1] and for all X ,Y ∈ LF we have
that ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ).

A coherent risk measure is a convex risk measure that satisfies:

(SA) Subadditivity : ρ(X + Y ) ≤ ρ(X ) + ρ(Y ) ∀ X ,Y ∈ LF .

(PH) Positive homogeneity :
ρ(λX ) = λρ(X ) ∀ X ∈ LF and ∀ λ ≥ 0.
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Robust representation of monetary risk measures

Coherent Risk Measures (Artzner, Delbaen, Eber, Heath (1997))

ρ(X ) = sup
Q∈P ′

EQ [−X ]

where
P ′ ⊆P := {Q << P , Q probability}

Convex Risk Measures (Follmer, Schied (2002) - Frittelli, Rosazza (2002))

ρ(X ) = sup
Q∈P

{EQ [−X ]− α(Q)}

where α is the penalty function α : P → [0,∞].

As enlighten by Follmer-Schied-Weber (2008), the representation results
for risk measures may be used in decision theory for the robust approach
to model uncertainty.
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Stochastic Dynamic Utilities

Definition

A stochastic dynamic utility (SDU)

u : R×[0,∞) × Ω → R∪{−∞}

satisfies the following conditions: for any t ∈ [0,+∞) there exists At ∈ Ft

such that P(At) = 1 and
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A stochastic dynamic utility (SDU)

u : R×[0,∞) × Ω → R∪{−∞}

satisfies the following conditions: for any t ∈ [0,+∞) there exists At ∈ Ft

such that P(At) = 1 and

(a) the effective domain, D(t) := {x ∈ R : u(x , t, ω) > −∞} and the
range R(t) := {u(x , t, ω) | x ∈ D(t)} do not depend on ω ∈ At ;
moreover 0 ∈ intD(t), E [u(0, t)] < +∞ and R(t) ⊆ R(s);
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range R(t) := {u(x , t, ω) | x ∈ D(t)} do not depend on ω ∈ At ;
moreover 0 ∈ intD(t), E [u(0, t)] < +∞ and R(t) ⊆ R(s);

(b) for all ω ∈ At and t ∈ [0,+∞) the function x → u(x , t, ω) is strictly
increasing on D(t) and increasing, concave and upper semicontinuous
on R.

(c) ω → u(x , t, ·) is Ft−measurable for all (x , t) ∈ D(t)×[0,+∞)
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Stochastic Dynamic Utilities

We introduce the following useful notation

Notation:

U(t) = {X ∈ L0(Ω,Ft ,P) | u(X , t) ∈ L1(Ω,F ,P)}.
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Stochastic Dynamic Utilities

We introduce the following useful notation

Notation:

U(t) = {X ∈ L0(Ω,Ft ,P) | u(X , t) ∈ L1(Ω,F ,P)}.

Related literature:

Series of papers by Musiela and Zariphopoulou (2006,2008,...);

Henderson and Hobson (2007);

Berrier, Rogers and Theranchi (2007);

El Karoui and Mrad (2010);

Schweizer and Choulli (2010);

probably many other...
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Conditional Certainty Equivalent

Definition

Let u be a SDU and X be a random variable in U(t). For each s ∈ [0, t],
the backward Conditional Certainty Equivalent Cs,t(X ) of X is the random
variable in U(s) solution of the equation:

u(Cs,t(X ), s) = E [u(X , t)|Fs ] .

Thus the CCE defines the valuation operator

Cs,t : U(t) → U(s), Cs,t(X ) = u−1 (E [u(X , t)|Fs ]) , s).
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Conditional Certainty Equivalent
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Let u be a SDU and X be a random variable in U(t). For each s ∈ [0, t],
the backward Conditional Certainty Equivalent Cs,t(X ) of X is the random
variable in U(s) solution of the equation:

u(Cs,t(X ), s) = E [u(X , t)|Fs ] .

Thus the CCE defines the valuation operator

Cs,t : U(t) → U(s), Cs,t(X ) = u−1 (E [u(X , t)|Fs ]) , s).

Even if u is concave the CCE is not a concave functional, but it is
conditionally quasiconcave
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Other examples popping up the financial world

Dynamic Risk Measures

ρCT ,vt (X )(ω) = ess inf
Y∈L0

Ft

{vt(Y , ω) | X + Y ∈ CT}.

V@R is also quasiconvex if defined on an opportune distribution set.

Acceptability Indices
Conditional Gain Loss Ratio

CGLR(X |G) =
EP[X |G]

EP[X−|G]
1{EP[X |G]>0}.
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Diversification = Quasiconvexity

Let λ ∈ R, 0 ≤ λ ≤ 1

The convexity of ρ : LF → R implies

ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ) ≤ ρ(X ) ∨ ρ(Y ).

Quasiconvexity alone:

ρ(λX + (1− λ)Y ) ≤ ρ(X ) ∨ ρ(Y )

allows to control the risk of a diversified position.

As pointed out in [CVMMM09], the principle that diversification
should not increase the risk has the mathematical counterpart in
QCO, not in convexity .
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Economic motivations for Quasiconvexity

Risk management:

Diversification principle ↔ Quasiconvexity

In economic theory:

convexity of preferences over acts ↔ uncertainty aversion i.e.:

if X and Y are preferred to Z then

any mixture ΛX + (1− Λ)Y is also preferred to Z .

and leads to quasiconcavity of utility functionals
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General Results on Quasiconvex
Conditional Maps
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Dual representation for QCO real valued maps

As a straightforward application of the Hahn-Banach Theorem:

Proposition (Volle 98)

Let E be a locally convex topological vector space and E ∗ be its
topological dual space. If f : E → R := R ∪ {−∞} ∪ {∞} is LSC and
QCO then

f (x) = sup
x∗∈E∗

R(x∗(x), x∗),

where R : R× E ∗ → R is defined by

R(m, x∗) := inf {f (x) | x ∈ E such that x∗(x) ≥ m}.
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Dual representation of STATIC (QCO) cash-subadditive

risk measures

Proposition (Cerreia-Maccheroni-Marinacci-Montrucchio, 2009)

A function ρ : L∞ → R is QCO cash-subadditive MON (↓) if and only if

ρ(X ) = max
Q∈ba+(1)

R(EQ [−X ],Q),

R(m,Q) = inf {ρ(ξ) | ξ ∈ L∞ and EQ [−ξ] = m}

where R : R× ba+(1) → R and R(m,Q) is the reserve amount required
today, under the scenario Q, to cover an expected loss m in the future.
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Questions

Let ρ : LF → R be MON (↓) and QCO, and set:

P :=
{

Q ∈ (LF )
∗
+ | Q(1) = 1

}

1 Under which assumptions on LF and under which continuity property
of ρ do we have the dual representation

ρ(X ) = sup
Q∈P

R(EQ [−X ],Q),

where
R(m,Q) := inf

ξ∈LF
{ρ(ξ) | EQ [−ξ] ≥ m} ?

2 Is it possible to identify a class S of maps S : R× P → R such that:
ρ : LF → R is MON (↓), QCO and “continuous”if and only if

ρ(X ) = sup
Q∈P

S(EQ [−X ],Q),

with S ∈ S. ?
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...continue Questions

3 (Complete duality) For the class L of functions

ρ : LF → R

that are:

MON (↓),
QCO,
“continuous”

is it possible to identify a class R of maps

R : R× P → R

such that there is a complete duality between R and L ?
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On Complete Duality in the QCO setting

Definition

There is a complete duality between a class R of maps

R : R× P → R

and a class L of functions
ρ : LF → R

if for every ρ ∈ L the only R ∈ R such that

ρ(X ) = sup
Q∈P

R(EQ [−X ],Q)

is given by
R(m,Q) = inf

ξ∈LF
{ρ(ξ) | EQ [−ξ] ≥ m};

and conversely for every R ∈ R there is a unique ρ ∈ L satisfying the
above equations.
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Evenly Quasiconvex functions (EVQCO)

Definition

(Fenchel, 1952) A set C is Evenly Convex if it is the intersection of open
half spaces.

Note: both open convex sets and closed convex sets are evenly convex.

Definition

A function ρ : LF → R is Evenly Quasiconvex if all the lower level sets

{X ∈ LF | ρ(X ) ≤ c} , c ∈ R,

are evenly convex.

Lemma

If ρ : LF → R is LSC and QCO then it is EVQCO
If ρ : LF → R is USC and QCO then it is EVQCO
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Literature in the STATIC case ( ρ : LF → R )

Marinacci et al. (2009) provides solutions to all these three questions,
under fairly general conditions, for MON (↑) Evenly Quasiconcave
real valued maps, hence covering both cases of maps ρ : LF → R that
are:

MON (↓), QCO and LSC
MON (↓), QCO and USC

More recently, Drapeau and Kupper (2010) provide similar solutions
to these questions, under different assumptions on the vector space
LF , for maps ρ : LF → R that are:

MON (↓), QCO and LSC
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The conditional setting: let G ⊆ F (or Fs ⊆ Ft , s < t)

A map
π : L(Ω,F ,P) → L(Ω,G,P)

is quasiconvex (QCO) if ∀X ,Y ∈ L(Ω,F ,P) and for all G-measurable r.v.
Λ, 0 ≤ Λ ≤ 1,

π(ΛX + (1− Λ)Y ) ≤ π(X ) ∨ π(Y );
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On question 1: the main message

Convex case
From the static representation (Follmer-Schied; Frittelli - Rosazza
(2002))

ρ(X ) = sup
Q∈P

{EQ [−X ]− α(Q)}

to the conditional one (Detlefsen-Scandolo (2005))

ρG(X ) = ess sup
Q∈PG

{EQ [−X | G]− αG(Q)}

Quasiconvex case
From the static representation (Marinacci et al. (2009))

ρ(X ) = sup
Q∈P

{R(EQ [−X ],Q)}

to the conditional one (Frittelli-M. (2009))

ρG(X ) = ess sup
Q∈PG

{RG(EQ [−X | G],Q)}
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Notations: vector space approach

LpF := Lp(Ω,F ,P), p ∈ [0,∞].

LF := L(Ω,F ,P) ⊆ L0(Ω,F ,P) is a lattice of F measurable random
variables.

LG := L(Ω,G,P) ⊆ L0(Ω,G,P) is a lattice of G measurable random
variables.

L∗F = (LF ,≥)∗ is the order continuous dual of (LF ,≥), which is also
a lattice.
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Standing assumptions on the spaces

1 LF (resp. LG) satisfies the property 1F (resp 1G):

X ∈ LF and A ∈ F =⇒ (X1A) ∈ LF . (1F )

2 (LF , σ(LF , L
∗
F )) is a locally convex TVS.

This condition requires that the order continuous dual L∗F is rich
enough to separate the points of LF .

3 L∗F →֒ L1(Ω,F ,P)

4 L∗F satisfies the property 1F
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Conditions on π : LF → LG

Let X1,X2 ∈ LF

(MON (↑)) X1 ≤ X2 =⇒ π(X1) ≤ π(X2)
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Conditions on π : LF → LG

Let X1,X2 ∈ LF

(MON (↑)) X1 ≤ X2 =⇒ π(X1) ≤ π(X2)

(τ -LSC) the lower level set

AY = {X ∈ LF | π(X ) ≤ Y }

is τ closed for each G-measurable Y
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(MON (↑)) X1 ≤ X2 =⇒ π(X1) ≤ π(X2)

(τ -LSC) the lower level set

AY = {X ∈ LF | π(X ) ≤ Y }

is τ closed for each G-measurable Y

(τ -USC) the strictly lower level set

BY = {X ∈ LF | π(X ) < Y }

is τ open for each G-measurable Y

(REG) ∀A ∈ G, π(X11A + X21
C
A) = π(X1)1A + π(X2)1

C
A
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The dual representation of conditional quasiconvex maps

Theorem (1 - solution to Question 1)

If π : LF → LG is MON (↑), QCO, REG and either σ(LF , L
∗
F )-LSC or

σ(LF , L
∗
F )-USC then

π(X ) = ess sup
Q∈L∗

F
∩P

R(EQ [X |G],Q)

where

R(Y ,Q) := ess inf
ξ∈LF

{π(ξ) | EQ [ξ|G] ≥Q Y }, Y ∈ LG

P =:

{

dQ

dP
| Q << P and Q probability

}

Exactly the same representation of the real valued case, but with
conditional expectations.
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Solution to Question 2 for the (LSC) case

Define the class:

S :=
{

S : L0G × L∗F → L̄0G such that S(·, ξ′) is MON (↑), REG and CFB
}

Note: Any map S : L0G × L∗F → L̄0G such that S(·, ξ′) is MON (↑) and REG
is automatically QCO in the first component.

Theorem (2)

The map π : LF → LG is MON(↑), QCO, REG and σ(LF , L
∗
F )-LSC if and

only if there exists S ∈ S such that

π(X ) = sup
Q∈L∗

F
∩P

S

(

E

[

dQ

dP
X |G

]

,Q

)

.

Marco Maggis (UniMi) On Quasiconvex Conditional Maps Paris 2010 27 / 36



On the L
0(G)-Module (Filipovic Kupper Vogelpoth 2009)

L0(G) equipped with the order of a.s. dominance is a lattice ordered
ring.

For every ε ∈ L0++(G) define the ball Bε = {Y ∈ L0(G) | |Y | ≤ ε}
centered in 0 ∈ L0(G), which gives the neighborhood basis of 0.

Endowed with this topology, (L0(G), | · |) is not a TVS, but it is a
topological L0(G)-module, in the sense of the following:

Definition

A topological L0(G)-module (E , τ) is an L0(G)-module E endowed with
a topology τ such that the module operations
(i) (E , τ)× (E , τ) → (E , τ), (X1,X2) 7→ X1 + X2,
(ii) (L0(G), | · |)× (E , τ) → (E , τ), (Y ,X2) 7→ YX2

are continuous w.r.t. the corresponding product topologies.
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On the L
0(G)-Module LpG(F) (FKV 2009)

For every p ≥ 1 let:

LpG(F) =: {X ∈ L0(Ω,F ,P) | ‖X |G‖p ∈ L0(Ω,G,P)}

where ‖ · |G‖p : L
0
G(F) → L

0
+(G)

‖X |G‖p =:

{

limn→∞ E [|X |p ∧ n|G]
1
p if p < +∞

ess. inf{Y ∈ L̄0(G) | Y ≥ |X |} if p = +∞

Then (LpG(F), ‖ · |G‖p) is an L0(G)-normed module having the product
structure:

LpG(F) = L0(G)Lp(F) = {YX | Y ∈ L0(G), X ∈ Lp(F)}

Marco Maggis (UniMi) On Quasiconvex Conditional Maps Paris 2010 29 / 36



On the dual elements of LpG(F)

The dual elements can be identified with conditional expectations

For p ∈ [1,+∞), any L0(G)-linear continuous functional

µ : LpG(F) → L0(G)

can be identified with a random variable Z ∈ LqG(F), 1
p
+ 1

q
= 1, s.t.

µ(·) = E [Z · |G].

Define the set of normalized dual elements by:

Pq =

{

dQ

dP
∈ LqG(F) | Q probability, E

[

dQ

dP
|G

]

= 1

}
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The class R for the complete duality

Define the class R of maps K : L0(G)× Pq → L̄0(G) with:

K is increasing in the first component.

K (Y 1A,Q)1A = K (Y ,Q)1A for every A ∈ G.

infY∈L0(G) K (Y ,Q) = infY∈L0(G) K (Y ,Q ′) for every Q,Q ′ ∈ Pq .

K is ⋄-evenly L0(G)-quasiconcave: for every (Ȳ , Q̄) ∈ L0(G)× Pq ,
A ∈ G and α ∈ L0(G) such that K (Ȳ , Q̄) < α on A, there exists
(V̄ , X̄ ) ∈ L0++(G) × LpG(F) with

Ȳ V̄ + E

[

X̄
dQ̄

dP
|G

]

< Y V̄ + E

[

X̄
dQ

dP
|G

]

on A

for every (Y ,Q) such that K (Y ,Q) ≥ α on A.

the set K =
{

K (E [X dQ
dP

|G],Q) | Q ∈ Pq
}

is upward directed for
every X ∈ LpG(F) .
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Complete duality (solution to Question 3)

By applying the separation theorem in L0(G)-normed module (FKV2009) -
which directly provides the existence of a dual element in terms of a
conditional expectation - and the idea of the proof in the static case (as in
CVMMM2009) we get:

Theorem (3)

The map π : LpG(F) → L0(G) is an evenly quasiconvex regular risk measure
- i.e. it satisfies MON(↑), REG and EVQCO - if and only if

π(X ) = sup
Q∈Pq

R

(

E

[

dQ

dP
X |G

]

,Q

)

with

R(Y ,Q) = inf
ξ∈Lp

G
(F)

{

π(ξ) | E

[

dQ

dP
ξ|G

]

= Y

}

unique in the class R.
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Idea of the proof for the vector space

The proof is non standard and relies on an approximation argument. The
steps are the follows:

[I] We represent πΓ(X ) :=
∑

A∈Γ

{

supA π(X )
}

1A,= HΓ(X ) where

HΓ(X )=sup
Q

inf
ξ∈LF

{

πΓ(ξ)|EQ [ξ|Fs ] ≥Q EQ [X |Fs ]
}

[II] We deduce π(X ) = infΓH
Γ(X ).

[III] We approximate H(X ) with K (X ,Qε) on a set Aε of probability
arbitrarily close to 1

[IV] We need a key uniform result to show that element Qε does not
depend on the partition.
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Idea of the proof for modules

Dual representation: follows the proof given by Volle 1998 applying
the Hahn Banach separation theorem for modules (Filipovic et al.
2010).

Uniqueness: matches the proof given by Marinacci et al. (2009)
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List of topics under investigation

Conditions under which the sup in the dual representation is attained

The EVQCO conditional case for maps defined on TVS (instead of on
L0-modules)

g -Expectation with g QCO and its dual representations

Local approximations of the Conditional Certainty Equivalent

Time Consistency of Dynamic QCO maps.
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