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Motivation

Observation from practitioners in finance

Some assets are leading some other assets.

This means that a “lagger” asset may partially reproduce the
behavior of a “leader” asset.

This common behavior is unlikely to be instantaneous. It is
subject to some time delay called “lead-lag”.
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A toy model for Lead-Lag

Bachelier model

For t ∈ [0, 1], and (B(1),B(2)) such that 〈B(1),B(2)〉t = ρt,
set

Xt := x0 + σ1B
(1)
t , Ỹt := ỹ0 + σ2B

(2)
t ,

Define Yt := Ỹt−θ, t ∈ [θ, 1]. Our lead-lag model is given by
the bidimensional process (Xt ,Yt).

We have{
Xt = x0 + σ1B

(1)
t

Yt = y0 + ρ σ2B
(1)
t−θ + σ2(1− ρ2)1/2 Wt−θ

.
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Intuitive estimator in the Bachelier model (1)

Estimation idea (1)

Assume the data arrive at regular and synchronous time
stamps in the Bachelier model, i.e. we have data

(X0,Y0), (X∆n ,Y∆n), (X2∆n ,Y2∆n), . . . , (X1,Y1),

and suppose θ = k0∆n, k0 ∈ Z.

Let

Cn(k) :=
∑

i

(
Xi∆n − X(i−1)∆n

)(
Y(i+k)∆n

− Y(i+k−1)∆n

)
.
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Intuitive estimator in the Bachelier model (2)

Estimation idea (2)

Heuristically, we have

Cn(k) ≈ ∆−1
n E

[
(X·−X·−∆n)(Y·+k∆n −Y·+(k−1)∆n

)
]

+ ∆
1/2
n ξn.

Moreover,

∆−1
n E

[
(X·−X·−∆n)(Y·+k∆n−Y·+(k−1)∆n

)
]

=

{
0 if k 6= k0

ρ σ1σ2 if k = k0.

Thus we can (asymptotically) detect the value k0 that defines
θ in the very special case θ = k0∆n by maximizing in k the
contrast sequence

k  
∣∣Cn(k)

∣∣.
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Covariation estimation

Previous-Tick estimation

Estimating covariation is an intricate problem as soon as non
synchronous data are considered.

Assume now we observe X at times (TX ,i ), i = 1, . . . and Y
at times (TY ,i ), i = 1, . . ., with TX ,i ≤ T , TY ,i ≤ T .

We build
X t = XTX ,i for t ∈ [TX ,i ,TX ,i+1),

Y t = YTY ,i for t ∈ [TY ,i ,TY ,i+1).

For given h, the previous tick covariation estimator is

Vh =
m∑

i=1

(
X ih − X (i−1)h

) (
Y ih − Y (i−1)h

)
.
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Drawback of this estimator

Epps effect

Systematic bias for this estimator.

Example : Assume that X and Y are two Brownian motions
with correlation ρ and that the observation times are arrival
times of two independent Poisson processes, then one can
show that

E[Vh]→ 0, as h→ 0.
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A convergent estimator under asynchronicity

Hayashi-Yoshida estimator

Let IX
i = (TX ,i ,TX ,i+1] and IY

i = (TY ,i ,TY ,i+1]

The Hayashi-Yoshida estimator is

Un =
∑
i ,j

∆X (IX
i )∆Y (IY

j )1{IX
i ∩IY

j 6=∅}.

This estimator does not need any selection of h and is
convergent.
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The lead-lag model

Let θ > 0 (for simplicity, extensions are quite straightforward) and
set Fθ = (Fθt )t≥0, with Fθt = Ft−θ.

Assumptions

We have
X = X c + A, Y = Y c + B.

(X c
t )t≥0 is a continuous F-local martingale, and (Y c

t )t≥0 is a
continuous Fθ-local martingale.

∃vn → 0, v−1
n max

{
sup{|IX

i |}, sup{|IY
i |}

}
→ 0.

The TX ,i are Fvn -stopping times and the TY ,i are
Fθ+vn -stopping times.
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Estimation strategy

Estimator

We set

Un(θ) =
∑
i ,j

∆X (IX
i )∆Y (IY

j )1{IX
i ∩(IY

j )−θ 6=∅},

with (IY
j )−θ = (TY ,j − θ,TY ,j+1 − θ].

Eventually, θ̂n is defined as a solution of∣∣Un(θ̂n)
∣∣ = max

θ∈Gn

∣∣Un(θ)
∣∣,

where Gn is a sufficiently fine grid.
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Result

Theorem

As n→∞,
v−1
n

(
θ̂n − θ

)
→ 0,

in probability, on the event
{
〈X c , Ỹ c〉T 6= 0

}
.
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Synchronous case

Setup

We consider 300 simulations of the Bachelier model with
synchronous equispaced data with period ∆n.

t ∈ [0, 1], θ = 0.1, x0 = ỹ0 = 0, σ1 = σ2 = 1.

The mesh size of the grid hn satisfies hn = ∆n.

We consider the following variations :

- Mesh size : hn ∈ {10−3(FG ), 3. 10−3(MG ), 6. 10−3(CG )}.
- Correlation value : ρ ∈ {0.25, 0.5, 0.75}.
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Results in the synchronous case

θ̂n 0.096 0.099 0.1 0.102 Other

FG, ρ = 0.75 0 0 300 0 0
MG, ρ = 0.75 0 300 0 0 0
CG, ρ = 0.75 1 0 0 299 0

FG, ρ = 0.50 0 0 300 0 0
MG, ρ = 0.50 0 299 0 1 0
CG, ρ = 0.50 13 0 0 280 7

FG, ρ = 0.25 0 0 300 0 0
MG, ρ = 0.25 0 152 0 11 137
CG, ρ = 0.25 10 0 0 66 124

Table 1 : Estimation of θ = 0.1 on 300 simulated samples for
ρ ∈ {0.25, 0.5, 0.75}.
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One sample path, FG, ρ = 0.75
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One sample path, FG, ρ = 0.25
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One sample path, MG, ρ = 0.75
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A random matrices based approach

One sample path, MG, ρ = 0.25
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One sample path, CG, ρ = 0.75
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A random matrices based approach

One sample path, CG, ρ = 0.25
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Non synchronous case

Setup

We randomly pick 300 sampling times for X over [0, 1],
uniformly over a grid of mesh size 10−3.

We randomly pick 300 sampling times for Y likewise, and
independently of the sampling for X .

Fine grid case, with θ = 0.1 and ρ = 0.75.
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Results for the non synchronous case

θ̂ 0.099 0.1 0.101 0.102 0.103 0.104 0.105

FG, ρ = 0.75 16 106 107 46 19 4 2

Table 2 : Estimation of θ = 0.1 on 300 simulated samples for
ρ = 0.75 and non-synchronous data.
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The data

Dataset

We study here the lead-lag relationship between the two following
assets :

The future contract on the DAX index, with maturity
December 2010,

The Euro-Bund future contract, with maturity December
2010.
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Dealing with microstructure noise

Methodology

We want to use high frequency data.

First approach : use of the Uncertainty Zones Model.

Here we just use signature plots in trading times. This enables
to take advantage of non synchronous data.

We keep one trade out of twenty.

We then compute the function Un over these trades.
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Signature plots, October 13, for Bund (left) and FDAX
(right).
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Function Un, October 13, between -10 and 10 minutes,
mesh=30 seconds
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Function Un, October 13, between -5 and 5 seconds,
mesh=0.1 second
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Bund and DAX, lead-lag estimation

Jour Vol.(Bund) Vol.(FDAX) LL. J. Vol.B. Vol.F. LL

1 Oct. 2847 4215 -0.2 18 Oct. 1727 2326 -2.1
5 Oct. 2213 3302 -1.1 19 Oct. 2527 3162 -1.6
6 Oct. 2244 2678 -0.1 20 Oct. 2328 2554 -0.5

7 Oct. 1897 3121 -0.5 21 Oct. 2263 3128 -0.1
8 Oct. 2545 2852 -0.6 22 Oct. 1894 1784 -1.2

11 Oct. 1050 1497 -1.4 25 Oct. 1501 2065 -0.4

12 Oct. 2265 3018 -0.8 26 Oct. 2049 2462 -0.1
13 Oct. 2018 3037 -0.8 27 Oct. 2606 2864 -0.6
14 Oct. 2057 2625 0.0 28 Oct. 1980 2632 -1.3

15 Oct. 2571 3269 -0.7 29 Oct. 2262 2346 -1.6
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Model (1)

Dynamics

We consider two processes (Xt)t∈[0,1] (leader) and (Yt)t∈[0,1]

(lagger) such that

Xt − X0 =

∫ t

0
Ks+θdWs+θ,

Yt − Y0 = ρ

∫ t∧θ

0
KsdW̃s + ρ

∫ t∨θ

θ
KsdWs +

∫ t

0
LsdW ′

s .

The interval [θ, 1] is the set of time where the lead-lag
relation is in force.

For s ∈ [θ, 1],
dYs = ρdXs−θ + LsdW ′

s .
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Model (2)

Observations

We consider m + 1 equidistant data for each process :(
Xi/m,Yi/m), for i = 0, . . . ,m.

m = pbpac where p is a positive integer and a > 0.

Later, p will be the order of magnitude of the number of
“days” the processes will be observed and m + 1 the number
of data per day. This parameter will drive the asymptotic.

Mathieu Rosenbaum On Lead-Lag Estimation 35



Introduction
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Increments

We consider increments of the processes on grids with mesh 1/p.

Notation

For i = 1, . . . , p, and l = 0, . . . , bpac
∆(l ,p)Xi = Xi/p+l/m − X(i−1)/p+l/m.

∆(0,p)Xi and ∆(l ,p)Yi are centered Gaussian with variance

vX
i ,0 =

∫ i/p

(i−1)/p
K 2

s+θds, vY
i ,l =

∫ i/p+l/m

(i−1)/p+l/m
(ρ2K 2

s + L2
s )ds.

Random vector of interest :

Z (l ,p) = p1/2
(
∆(0,p)X1, . . . ,∆

(0,p)Xp,∆
(l ,p)Y1, . . . ,∆

(l ,p)Yp−1

)>
.
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Theoretical covariance

Let bθcp = bpθc /p. Z (l ,p) is a Gaussian vector of size 2p − 1 with
5-diagonal covariance matrix Σ(l ,p). For l = 0, . . . , bm(θ − bθcp)c :

1 ≤ i ≤ p, 1 ≤ j ≤ p, i = j (Σ(l,p))i,j = pvX
i,0

p + 1 ≤ i ≤ 2p − 1, p + 1 ≤ j ≤ 2p − 1, i = j (Σ(l,p))i,j = pvY
j−p,l

1 ≤ i ≤ p, p + 1 ≤ j ≤ 2p − 1, j − p = i + p bθcp (Σ(l,p))i,j = pvXY
i,l,1

1 ≤ i ≤ p, p + 1 ≤ j ≤ 2p, j − p = i + p bθcp + 1 (Σ(l,p))i,j = pvXY
i,l,2

p + 1 ≤ i ≤ 2p − 1, 1 ≤ j ≤ p, i − p = j + p bθcp (Σ(l,p))i,j = pvXY
j,l,1

p + 1 ≤ i ≤ 2p − 1, 1 ≤ j ≤ p, i − p = j + p bθcp + 1 (Σ(l,p))i,j = pvXY
j,l,2

with

vXY
i ,l ,1 = ρ

∫ i/p−(θ−bθcp)+l/m

(i−1)/p
K 2

s+θds and vXY
i ,l ,2 = ρ

∫ i/p

i/p−(θ−bθcp)+l/m
K 2

s+θds.

The parameter θ appears in the location of the diagonals.

Analogous result for l = bm(θ − bθcp)c+ 1, . . . , bpac.
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Result

Theorem

Using random matrices theory results, we can build another
estimator of the lead-lag parameter and provide its asymptotic
theory.
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