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Introduction

Motivation

Observation from practitioners in finance

@ Some assets are leading some other assets.
@ This means that a “lagger” asset may partially reproduce the
behavior of a “leader” asset.

@ This common behavior is unlikely to be instantaneous. It is
subject to some time delay called “lead-lag”.
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Introduction

A toy model for Lead-Lag

Bachelier model
e For t € [0,1], and (B, B®) such that (BM), B(?)), = pt,
set
X = x0+ 1B, Vi := 5o + 2B,
o Define Yy := Yy_g, t € [0, 1]. Our lead-lag model is given by
the bidimensional process (X:, Y3).

@ We have

X: = xo+0BY
Yi = }/o+p025( )9+0'2(1 p?)H2 Wi_g
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Introduction

Intuitive estimator in the Bachelier model (1)

Estimation idea (1)

@ Assume the data arrive at regular and synchronous time
stamps in the Bachelier model, i.e. we have data

(X0, Y0), (Xa,, Ya,), (Xea,, Yaa,), - -, (X1, Y1),

and suppose 0 = koA, ko € Z.
o Let

Cn(k) := Z (Xin, — Xi—1)a,) Yitoa, = Yitk-1)a,)-

i
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Introduction

Intuitive estimator in the Bachelier model (2)

Estimation idea (2)

@ Heuristically, we have
1 1/2.n
Ca(k) = A'E[(X. = X—a,)(Yirka, = Yop-1)a,)] + A5 €™
@ Moreover,

0 if Kk ko

—1 _
An E[(X=Xa )(Vorka, =Y hnan)] = { poioy if k= ko.

@ Thus we can (asymptotically) detect the value ko that defines
0 in the very special case 8 = koA, by maximizing in k the
contrast sequence

k ~> [Cn(K)|.
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Lead-Lag estimation from non synchronous data

Covariation estimation

Previous-Tick estimation

o Estimating covariation is an intricate problem as soon as non
synchronous data are considered.

o Assume now we observe X at times (T%),i=1,...and Y
at times (TY),i=1,..., with TX/ < T, TY/ < T,
e We build

Xt = Xyx,i for t € [TX7i, TX’i+1),
Ye=Ypviforte [TV TV,

@ For given h, the previous tick covariation estimator is

m
Vi = Z (Xin — X(i—1yn) (Yin = Y(i—1)n) -
i=1
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Lead-Lag estimation from non synchronous data

Drawback of this estimator

Epps effect

@ Systematic bias for this estimator.

@ Example : Assume that X and Y are two Brownian motions
with correlation p and that the observation times are arrival
times of two independent Poisson processes, then one can
show that

E[V4] — 0, as h — 0.
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Lead-Lag estimation from non synchronous data

A convergent estimator under asynchronicity

Hayashi-Yoshida estimator
o Let [X = (TX/ TX " and IV = (T, TV
@ The Hayashi-Yoshida estimator is
Un = ZAX(II'X)AY(I_].Y)]'{/,.XOIJY;IEQ}'
ij
@ This estimator does not need any selection of h and is
convergent.
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Lead-Lag estimation from non synchronous data

The lead-lag model

Let & > 0 (for simplicity, extensions are quite straightforward) and
set FO = (F9)¢>0, with F¢ = F;_g.

o We have
X=X"4+A Y=Y"+B.
@ (Xf)e>o is a continuous F-local martingale, and (Y{)>0 is a
continuous F?-local martingale.
o Jv, — 0, v, ! max { sup{|l,?<\},sup{|liy]}} — 0.
o The TX/ are F"-stopping times and the TY" are
[F9+Vr_stopping times.
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Lead-Lag estimation from non synchronous data

Estimation strategy

o We set

Un(0) = AX(/iX)AY(’jy)l{/,Xm(/jY)_#;a}y
ij
with (1Y) g = (T4 -0, T+ — 4.

e Eventually, 0, is defined as a solution of

u(0)

‘U” ‘—max
0egn

)

where G is a sufficiently fine grid.
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Lead-Lag estimation from non synchronous data

Result

As n — oo, N
vyt (0, —0) — 0,

n

in probability, on the event {(X¢, Y £ 0}.
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Simulations
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Simulations

Synchronous case

@ We consider 300 simulations of the Bachelier model with
synchronous equispaced data with period A,,.

e te0,1], =01, xo=y0=0, 01 =02 =1

@ The mesh size of the grid h, satisfies h, = A,,.

@ We consider the following variations :

~ Mesh size : h, € {10-3(FG),3.10~3(MG),6.10~3(CG)}.
- Correlation value : p € {0.25,0.5,0.75}.
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Simulations

Results in the synchronous case

| 0,  0.096 | 0.099 | 0.1 | 0.102 | Other |
FG, p=075] 0 0 [300] O 0
MG, p=075| 0 | 300 | 0 | © 0
CG, p=075| 1 0 | 0|29 | o0
FG, p=050 | 0 0 [300] O 0
MG, p=050| 0 | 209 | 0 | 1 0
CG,p=050| 13 | 0 | 0 | 280 | 7
FG, p=025| 0 0 [300] O 0
MG, p=025| 0 | 152 | 0 | 11 | 137
CG,p=025| 10 | 0 | 0 | 66 | 124

Table 1 : Estimation of § = 0.1 on 300 simulated samples for
p € {0.25,0.5,0.75}.
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Simulations

One sample path, FG, p = 0.75
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Simulations
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Simulations

One sample path, MG, p =0.75
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Simulations

One sample path, MG, p = 0.25
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Simulations

One sample path, CG, p = 0.75
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Simulations

One sample path, CG, p = 0.25
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Simulations

Non synchronous case

e We randomly pick 300 sampling times for X over [0, 1],
uniformly over a grid of mesh size 1073,

@ We randomly pick 300 sampling times for Y likewise, and
independently of the sampling for X.

@ Fine grid case, with 6 = 0.1 and p = 0.75.
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Simulations

Results for the non synchronous case

| 0  0.099 | 0.1 | 0.101 | 0.102 | 0.103 | 0.104 | 0.105 |
|FG, p=075] 16 [106] 107 | 46 | 190 [ 4 [ 2 |

Table 2 : Estimation of 6 = 0.1 on 300 simulated samples for
p = 0.75 and non-synchronous data.
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Real Data

Outline

@ Real Data
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Real Data

We study here the lead-lag relationship between the two following
assets :

@ The future contract on the DAX index, with maturity
December 2010,

@ The Euro-Bund future contract, with maturity December
2010.
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Real Data

Dealing with microstructure noise

Methodology

@ We want to use high frequency data.
@ First approach : use of the Uncertainty Zones Model.

@ Here we just use signature plots in trading times. This enables
to take advantage of non synchronous data.

@ We keep one trade out of twenty.

@ We then compute the function U" over these trades.
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Real Data

Signature plots, October 13, for Bund (left) and FDAX
(right).
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Real Data

Function U", October 13, between -10 and 10 minutes,
mesh—30 seconds

Contrast function
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Real Data

Function U", October 13, between -5 and 5 seconds,
mesh=0.1 second
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Real Data

Bund and DAX, lead-lag estimation

Jour Vol.(Bund) | Vol.(FDAX) | LL. J. Vol.B. | Vol.F. | LL
1 Oct. 2847 4215 -0.2 || 18 Oct. 1727 2326 | -2.1
5 Oct. 2213 3302 -1.1 || 19 Oct. 2527 3162 | -1.6
6 Oct. 2244 2678 -0.1 || 20 Oct. | 2328 2554 | -0.5
7 Oct. 1897 3121 -0.5 || 21 Oct. 2263 3128 | -0.1
8 Oct. 2545 2852 -0.6 || 22 Oct. | 1894 1784 | -1.2
11 Oct. 1050 1497 -1.4 || 25 Oct. | 1501 2065 | -0.4
12 Oct. 2265 3018 -0.8 || 26 Oct. | 2049 2462 | -0.1
13 Oct. 2018 3037 -0.8 || 27 Oct. | 2606 2864 | -0.6
14 Oct. 2057 2625 0.0 28 Oct. 1980 2632 | -1.3
15 Oct. 2571 3269 -0.7 || 29 Oct. | 2262 2346 | -1.6
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A random matrices based approach

Outline
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A random matrices based approach

Model (1)

We consider two processes (Xt):cjo,1] (leader) and (Y:)eeqo,y
(lagger) such that

t
X; — Xo = / KopgdW, s,
0

tAf ~ tVveo t
Yt—YO:p/ KSdWs+p/ stWs+/ LdW..
0 0 0

@ The interval [0,1] is the set of time where the lead-lag
relation is in force.
e Fors e [6,1],
dYs = pdXs_g + LsdW;.
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A random matrices based approach

Model (2)

@ We consider m + 1 equidistant data for each process :
(Xi/ma Y,'/m), fori=0,...,m.

e m = p|p?] where p is a positive integer and a > 0.

@ Later, p will be the order of magnitude of the number of
“days” the processes will be observed and m + 1 the number
of data per day. This parameter will drive the asymptotic.

Mathieu Rosenbaum On Lead-Lag Estimation 35



A random matrices based approach

Increments

We consider increments of the processes on grids with mesh 1/p.

Fori=1,...,p,and I =0,...,[p?]
o AUPIX; = X/ 1/m — X(i—1)/p+1/m-
° A(O’p)X,- and A(”p)Y; are centered Gaussian with variance
i/p i/p+1/m
v,-)j) = / K2, ods, v,-?/, = / (P?°K2 4 L2)ds.
(i-1)/p (i—1)/p+1/m

@ Random vector of interest :

zUp) = pl2(AOP X, ACP X, AUPY, . AUPY, )T,
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A random matrices based approach

Theoretical covariance

Let [0, = [p0]/p. Z(P) is a Gaussian vector of size 2p — 1 with

5-diagonal covariance matrix ;). For [ =0,...,|[m(0 — [6],)]
1<i<p 1<j<pi=j (Zap)i = PVo
p+1<i<2p—-1,p+1<j<2p-1i=j (Z0.0)id = PV, p.i
1<i<p p+1<j<2p—1,j—p=i+plb], (Z(p))ii = PViTH
1<i<p p+1<j<2p,j—p=i+plb],+1 (Z.0)is = PVY2
p+1<i<2p-1,1<j<p i-p=j+pll], (Z(p))ii = PV
p+1<i<2p—1,1<j<pi—p=j+pl0l,+1 (Zup)ij=pvi
with
i/p—(0—10),)+1/m i/p
XY 2 XY 2
Vil = P/. Ksigds and vij5 = P/ Kstgds.
(i-1)/p i/p—=(0—16],)+!/m

@ The parameter 6 appears in the location of the diagonals.
o Analogous result for I = [m(6 — [0] )] +1,...,|p?].
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A random matrices based approach

Using random matrices theory results, we can build another
estimator of the lead-lag parameter and provide its asymptotic
theory.
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