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Motivation

I Long term callable path dependent equity options have
generated new modeling challenges.

I The path dependency requires consistency in the equity
asset diffusion.

I The early exercise on long period suggests to take in
account interest rates risk.

I Several works has been done in the case of stochastic
volatility with interest rates (Piterbarg 2005, Balland 2005,
Andreasen 2006 or Haastrecht et al 2008). But, few have
considered local volatility model plus stochastic rates
(Benhamou et al 2008).
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No arbitrage relations

Under the risk neutral probability Q, one has:

dSt

St
= rtdt + σtdW1

t ,

rt = f (0, t) −
∫ t

0
γ(s, t).Γ(s, t)ds +

∫ t

0
γ(s, t)dBs,

where
I σt is the volatility (not nessecary deterministic).
I rt follows the HJM framework ( γ(t,T) = −∂TΓ(t,T)).
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I The pricing of a European option with final payoff ϕ(ST ) can
be reformulated in the forward measures as follows (see
Geman et coauthors 95):

E[e−
∫ T

0 rsdsϕ(ST )] = B(0,T)ET [ϕ(FT
T )]

where (FT
t ) is a martingale under the forward measure QT .

I For path dependent options, we have to use as many
volatility models as many the maturities used in the
options.
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Modeling the asset

I We define a model on the discounted price process:

Sd
t = e−

∫ t
0 rsdsSt

I which is a martingale (under Q). We assume that

dSd
t

Sd
t
= σd(t, Sd

t )dW1
t .

I Equivalently, we study the log discounted process
Xt = log(Sd

t ):

dXt = σ(t,Xt)dW1
t −
σ2

2
(t,Xt)dt, X0 = x0, (1)
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The interest rates framework

rt = f (0, t) −
∫ t

0
γ(s, t).Γ(s, t)ds +

∫ t

0
γ(s, t)dBs.

I We consider Gaussian model for interest rates, by
assuming that Γ, γ : R+ ×R+ � Rn are deterministic
functions (n is the number of Gaussian factors).

I The Brownian motions W1 and B = (B1, · · · ,Bn) are
correlated:

d〈W1,Bi
〉t = ρ

S,r
i,t dt 1 ≤ i ≤ n.

I Hence, the price to compute is now formulated as:

A = E[e−
∫ T

0 rsdsh(
∫ T

0
rsds + XT )]. (2)
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Black Formula

When the volatility σ is deterministic:

I The equivalent volatility σBlack of
∫ T

0 rsds + XT is
deterministic and is defined by:

(σBlack)2T =
∫ T

0
[σ2(t, x0) + |Γ(t,T)|2 − 2σ(t, x0)ρS,r

t .Γ(t,T)]dt.

I Hence, the call price in such model has a closed formula
like the Black Scholes formula with volatility σBlack.

I In tis case, we note XB
T ≡ XT . This model is the proxy of our

approximation.
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Assumptions

I Assumption (R5). The function σ is bounded and of class
C5 w.r.t x. Its derivatives up to order 5 are bounded. Under
(R5), we set

M0 =max(|σ|∞, · · · , |∂5
xσ|∞),

M1 =max(|∂1σ|∞, · · · , |∂
5
xσ|∞).

I Assumption (E). The function σ does not vanish and its
oscillation is bounded, meaning 1 ≤ |σ|∞σinf

≤ CE where
σinf = inf(t,x)∈R+×R σ(t, x).

I Assumption (Rho). The asset is not perfectly correlated
(positively or negatively) to the interest rate:

|ρS,r
|∞ = sup

t∈[0,T]
|ρS,r

t | < 1.
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Table: Historical correlation between assets and short term interest
rate EUR. Period: 23-Sep-2007 to 22-Sep-09.

Asset Historical correlation

ADIDAS 18.32%
BELGACOM 4.09%
CARREFOUR 7.08%
DAIMLER -0.94%
DANONE 7.23%
LVMH 4.53%
NOKIA 4.37%
PHILIPS 5.23%
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The approximation formula

Keep in mind that the Greeks have the following definition:

Greekl(Z) = ∂l
x=0(ET (Z + x))

Theorem
(Second order approximation price formula).
Assume that the model fulfills (R5), (E) and (Rho), and that the
payoff h is a call-put option, we prove that:

E[e−
∫ T
0 rsdsh(

∫ T

0
rsds + XT )] = B(0,T)(ET [h(

∫ T

0
rsds + XB

T )]

+

3∑
i=1

αi,T Greekh
i (
∫ T

0
rsds + XB

T )

+ Resid2),
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I where

α1,T = −

∫ T

0
(ρS,r

t .Γ(t,T)σ(t, x0) −
σ2(t, x0)

2
)(
∫ T

t
as∂

1
xσ(s, x0)ds)dt,

α2,T = − α1,T − α3,T ,

α3,T =

∫ T

0
atσ(t, x0)(

∫ T

t
as∂

1
xσ(s, x0)ds)dt,

at =σ(t, x0) − ρS,r
t .Γ(t,T).

I and the error is estimated by:

|Resid2| ≤C(||h(1)(
∫ T

0
rsds + XB

T )||2 + sup
v∈[0,1]

||h(1)(
∫ T

0
rsds + vXT + (1 − v)XB

T )||2)

M0

σinf

√
1 − |ρS,r |2∞

M1M2
0(
√

T)3.
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Example

In the case of
I homogeneous volatility σ(t, x) = σ(x)
I Hull and White stochastic rate (volatilility of volatility ξ and

mean reversion κ)
one gets:

α1,T =
e−2κTσ(x0)σ(1)(x0)

4κ4 (2ρ2ξ2 + 2eκTρ(κσ(2κT + 1) + 2ρ(κT − 1)ξ)ξ

+ e2κT
(
σ2T2κ4 + ρσ(κT(3κT − 2) − 2)ξκ + 2ρ2(κT − 1)2ξ2

)
,

α2,T = − α1,T − α3,T ,

α3,T =
e−2κTσ(x0)σ(1)(x0)

(
ρξ + eκT (σTκ2 + ρTξκ − ρξ

))2
2κ4 .
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Plan of the proof

I Expand the model XT around the proxy model XB
T .

I Perform a Taylor expansion for the payoff h around the
proxy model by assuming h smooth enough.

I Estimate the corrections as a Greeks using Malliavin
calculus technique.

I Upper bound the errors using a suitable choice of the
Brownian motion used for the Malliavin differentiation and
the estimates of the inverse of the Malliavin covariance.

I use a regularisation method in order to prove the
approximation formula for call-put option.
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Proxy model

How to expand the model XT around the proxy model XB
T ?

I Suitable parameterisation:

dXεt = ε(σ(t,X
ε)dWt −

σ2(t,Xε)
2

dt),Xε0 = x0

so that Xεt |ε=0 +
∂(Xεt )
∂ε |ε=0 = XB

t and Xεt |ε=1 = Xt.
I Hence using a Taylor approximation for the model:

Xt = XB
t +
∂2(Xεt )
2∂ε2

|ε=0 + · · ·
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Perform a Taylor expansion for the payoff h around the proxy model (XB
t ):

E[e−
∫ T
0 rsdsh(

∫ T

0
rsds + XT )] = E[e−

∫ T
0 rsdsh(

∫ T

0
rsds + XB

T +
∂2(XεT )
2∂ε2 |ε=0 + · · · )]

= E[e−
∫ T
0 rsdsh(

∫ T

0
rsds + XB

T )]

+ E[e−
∫ T
0 rsdsh(1)(

∫ T

0
rsds + XB

T )
∂2(XεT )
2∂ε2 |ε=0]

+ Resid2

= B(0,T)ET [h(
∫ T

0
rsds + XB

T )]

+ E[e−
∫ T
0 rsdsh(1)(

∫ T

0
rsds + XB

T )
∂2(XεT )
2∂ε2 |ε=0]

+ Resid2
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Greeks identification

E[e−
∫ T
0 rsdsh(1)(

∫ T

0
rsds + XB

T )
∂2(XεT )
2∂ε2 |ε=0] = B(0,T)(

3∑
i=1

αi,T Greek(i)
h (
∫ T

0
rsds + XB

T )

How we can achieve that? This technique can be seen as an inverse
procedure used in the literature about integration by parts formula and
Malliavin calculus (Fournie et al 99).
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Estimates of the error

In Resid2, there is terms which constains the second derivative
h(2) of the payoff function while the payoff h of interest is only
one time differentiable?
I Lemma Assume (E), (Rho) and (Rk+1) for a given k ≥ 1 . Let Z belong to
∩p≥1Dk,p. For any v ∈ [0, 1], there exists a random variable Zv

k in any Łp

(p ≥ 1) such that for any function l ∈ C∞0 (R), we have

ET [l(k)(
∫ T

0
rsds + vXT + (1 − v)XB

T )Z] = ET [l(v
∫ T

0
rsds + XT + (1 − v)XB

T )Zv
k ].

Moreover, we have ||Zv
k ||p ≤ C

||Z||k,2p

(
√

1−|ρS,r
∞ |

2σinf
√

T)k
, uniformly in v and the

constants C is an increasing constant on the bounds of the model.
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Extensions

I The error of estimation is analyzed for other payoffs
(smooth, digitals): the more the payoff is smooth, the more
the error is small.

I Extensions to third order formula.
I Extension to stochastic convenience yield. This can be

seen as an extension to Gibson Schwartz model to handle
local volatility functions for example:

dSt

St
= (rt − yt)dt + σdW1

t ,

dyt = κ(αt − yt)dt + ξtdW2
t ,

d〈W1,W2
〉t = ρtdt.
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Numerical application

We consider the one factor Hull and White model for interest
rates, the CEV diffusion for the spot and constant correlation ρ.
Then,

γ(t,T) = ξe−κ(T−t), σ(t, x) = νe(β−1)x.

As a benchmark, we use Monte Carlo methods with a variance
reduction technique (3 × 106 simulations using Euler scheme
with 50 time steps per year). Parameters: β = 0.8, ν = 0.2,
ξ = 0.7%, κ = 1%, ρ = 15% and x0 = 0.
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Numerical Application

Table: Implied Black-Scholes volatilities for the second order formula,
the third order formula and the Monte Carlo simulations for maturity
T = 10Y

Relative Strikes 30% 60% 100% 160% 220%

Second Order formula 22.99% 22.16% 21.25% 20.38% 19.77%
Third Order formula 23.54% 22.25% 21.27% 20.40% 19.84%
MC with control variate 23.66% 22.32% 21.34% 20.47% 19.91%
MC- 22.87% 22.18% 21.28% 20.43% 19.87%
MC+ 24.37% 22.47% 21.40% 20.51% 19.94%

MC- and MC+ are the bounds of the 95%-confidence interval of the Monte
Carlo estimator



Introduction Approximation Formula Numerical Application Bibliography

Conclusion

I Efficient modelisation for the hybrid model(local volatility
plus stochastic rates).

I Non asymptotic estimates expressed by all the model
parameters and analysed according to the payoff
smoothness.

I Accurate and fast analytical formulas for the price of
European options.
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Thank you for your
attention!
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