Analytical formulas for local volatility model with stochastic rates
Mohammed Miri
Joint work with Eric Benhamou (Pricing Partners) and Emmanuel Gobet (Ecole Polytechnique
Long term callable path dependent equity options have generated new modeling challenges.

The path dependency requires consistency in the equity asset diffusion.

The early exercise on long period suggests to take in account interest rates risk.

Several works has been done in the case of stochastic volatility with interest rates (Piterbarg 2005, Balland 2005, Andreasen 2006 or Haastrecht et al 2008). But, few have considered local volatility model plus stochastic rates (Benhamou et al 2008).
No arbitrage relations

Under the risk neutral probability Q, one has:

$$\frac{dS_t}{S_t} = r_t dt + \sigma_t dW^1_t,$$

$$r_t = f(0, t) - \int_0^t \gamma(s, t) . \Gamma(s, t) ds + \int_0^t \gamma(s, t) dB_s,$$

where

- σ_t is the volatility (not necessary deterministic).
- r_t follows the HJM framework ($\gamma(t, T) = -\partial_T \Gamma(t, T)$).
The pricing of a European option with final payoff $\varphi(S_T)$ can be reformulated in the forward measures as follows (see Geman et coauthors 95):

$$\mathbb{E}[e^{-\int_0^T r_s ds} \varphi(S_T)] = B(0, T)\mathbb{E}_T[\varphi(F^T_T)]$$

where (F^T_t) is a martingale under the forward measure Q^T.

For path dependent options, we have to use as many volatility models as many the maturities used in the options.
Modeling the asset

- We define a model on the discounted price process:

\[S_t^d = e^{-\int_0^t r_s ds} S_t \]

- which is a martingale (under \(Q \)). We assume that

\[\frac{dS_t^d}{S_t^d} = \sigma^d(t, S_t^d) dW_t^1. \]

- Equivalently, we study the log discounted process \(X_t = \log(S_t^d) \):

\[dX_t = \sigma(t, X_t) dW_t^1 - \frac{\sigma^2}{2}(t, X_t) dt, \quad X_0 = x_0, \quad (1) \]
The interest rates framework

\[r_t = f(0, t) - \int_0^t \gamma(s, t) \Gamma(s, t) ds + \int_0^t \gamma(s, t) dB_s. \]

- We consider Gaussian model for interest rates, by assuming that \(\Gamma, \gamma : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^n \) are deterministic functions (\(n \) is the number of Gaussian factors).
- The Brownian motions \(W^1 \) and \(B = (B^1, \cdots, B^n) \) are correlated:
 \[d\langle W^1, B^i \rangle_t = \rho_{i,t}^{S,r} dt \quad 1 \leq i \leq n. \]
- Hence, the price to compute is now formulated as:
 \[A = \mathbb{E}[e^{-\int_0^T r_s ds} h(\int_0^T r_s ds + X_T)]. \]
When the volatility σ is deterministic:

- The equivalent volatility σ^{Black} of $\int_0^T r_s ds + X_T$ is deterministic and is defined by:

$$ (\sigma^{Black})^2 T = \int_0^T \left[\sigma^2(t, x_0) + |\Gamma(t, T)|^2 - 2\sigma(t, x_0)\rho^{S,r}_t \cdot \Gamma(t, T) \right] dt. $$

- Hence, the call price in such model has a closed formula like the Black Scholes formula with volatility σ^{Black}.

- In this case, we note $X^B_T \equiv X_T$. This model is the proxy of our approximation.
Summary

Introduction

Approximation Formula

Numerical Application

Bibliography
Assumptions

- **Assumption (R5).** The function σ is bounded and of class C^5 w.r.t x. Its derivatives up to order 5 are bounded. Under (R_5), we set

$$M_0 = \max(|\sigma|_\infty, \ldots, |\partial_x^5 \sigma|_\infty),$$

$$M_1 = \max(|\partial^1 \sigma|_\infty, \ldots, |\partial_x^5 \sigma|_\infty).$$

- **Assumption (E).** The function σ does not vanish and its oscillation is bounded, meaning $1 \leq \frac{|\sigma|_\infty}{\sigma_{\text{inf}}} \leq C_E$ where

$$\sigma_{\text{inf}} = \inf_{(t,x) \in \mathbb{R}^+ \times \mathbb{R}} \sigma(t, x).$$

- **Assumption (Rho).** The asset is not perfectly correlated (positively or negatively) to the interest rate:

$$|\rho_{S,r}|_\infty = \sup_{t \in [0,T]} |\rho_t^{S,r}| < 1.$$
Table: Historical correlation between assets and short term interest rate EUR. Period: 23-Sep-2007 to 22-Sep-09.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Historical correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADIDAS</td>
<td>18.32%</td>
</tr>
<tr>
<td>BELGACOM</td>
<td>4.09%</td>
</tr>
<tr>
<td>CARREFOUR</td>
<td>7.08%</td>
</tr>
<tr>
<td>DAIMLER</td>
<td>-0.94%</td>
</tr>
<tr>
<td>DANONE</td>
<td>7.23%</td>
</tr>
<tr>
<td>LVMH</td>
<td>4.53%</td>
</tr>
<tr>
<td>NOKIA</td>
<td>4.37%</td>
</tr>
<tr>
<td>PHILIPS</td>
<td>5.23%</td>
</tr>
</tbody>
</table>
The approximation formula

Keep in mind that the Greeks have the following definition:

\[\text{Greek}^I(Z) = \partial^I_{x=0}(E_T(Z + x)) \]

Theorem

(Second order approximation price formula). Assume that the model fulfills \((R_5), (E)\) and \((Rho)\), and that the payoff \(h\) is a call-put option, we prove that:

\[
E[e^{-\int_0^T r_s ds} h(\int_0^T r_s ds + X_T)] = B(0, T)(E_T[h(\int_0^T r_s ds + X_T^B)]) + \sum_{i=1}^3 \alpha_{i,T} \text{Greek}^i h(\int_0^T r_s ds + X_T^B) + \text{Resid}_2,
\]
where

\[\alpha_{1,T} = - \int_0^T (\rho^r_t \cdot \Gamma(t, T) \sigma(t, x_0) - \frac{\sigma^2(t, x_0)}{2}) (\int_t^T a_s \partial_x^1 \sigma(s, x_0) ds) dt, \]

\[\alpha_{2,T} = - \alpha_{1,T} - \alpha_{3,T}, \]

\[\alpha_{3,T} = \int_0^T a_t \sigma(t, x_0) (\int_t^T a_s \partial_x^1 \sigma(s, x_0) ds) dt, \]

\[a_t = \sigma(t, x_0) - \rho^r_t \cdot \Gamma(t, T). \]

and the error is estimated by:

\[|\text{Resid}_2| \leq C(\|h^{(1)}(\int_0^T r_s ds + X^B_T)\|_2 + \sup_{v \in [0,1]} \|h^{(1)}(\int_0^T r_s ds + vX_T + (1 - v)X^B_T)\|_2) \]

\[\frac{M_0}{\sigma_{\inf} \sqrt{1 - |\rho^S|^2}} M_1 M_0^2 (\sqrt{T})^3. \]
Example

In the case of

- homogeneous volatility $\sigma(t, x) = \sigma(x)$
- Hull and White stochastic rate (volatility of volatility ξ and mean reversion κ)

one gets:

\[
\alpha_{1,T} = \frac{e^{-2\kappa T} \sigma(x_0) \sigma^{(1)}(x_0)}{4\kappa^4} (2\rho^2 \xi^2 + 2e^{\kappa T} \rho(\kappa \sigma(2\kappa T + 1) + 2\rho(\kappa T - 1)\xi)\xi
+ e^{2\kappa T} \left(\sigma^2 T^2 \kappa^4 + \rho \sigma(\kappa T(3\kappa T - 2) - 2)\xi \kappa + 2\rho^2(\kappa T - 1)^2 \xi^2\right),
\]

\[
\alpha_{2,T} = -\alpha_{1,T} - \alpha_{3,T},
\]

\[
\alpha_{3,T} = \frac{e^{-2\kappa T} \sigma(x_0) \sigma^{(1)}(x_0) \left(\rho \xi + e^{\kappa T} (\sigma T \kappa^2 + \rho T \xi \kappa - \rho \xi)\right)^2}{2\kappa^4}.
\]
Plan of the proof

- Expand the model X_T around the proxy model X^B_T.
- Perform a Taylor expansion for the payoff h around the proxy model by assuming h smooth enough.
- Estimate the corrections as a Greeks using Malliavin calculus technique.
- Upper bound the errors using a suitable choice of the Brownian motion used for the Malliavin differentiation and the estimates of the inverse of the Malliavin covariance.
- Use a regularisation method in order to prove the approximation formula for call-put option.
Proxy model

How to expand the model X_T around the proxy model X_T^B?

- Suitable parameterisation:

$$dX_t^e = \epsilon(\sigma(t, X_t^e) dW_t - \frac{\sigma^2(t, X_t^e)}{2} dt), X_0^e = x_0$$

so that $X_t^e|_{\epsilon=0} + \frac{\partial(X_t^e)}{\partial\epsilon}|_{\epsilon=0} = X_t^B$ and $X_t^e|_{\epsilon=1} = X_t$.

- Hence using a Taylor approximation for the model:

$$X_t = X_t^B + \frac{\partial^2(X_t^e)}{2\partial\epsilon^2}|_{\epsilon=0} + \cdots$$
Perform a Taylor expansion for the payoff h around the proxy model (X^B_t):

$$\mathbb{E}[e^{-\int_0^T r_s ds} h(\int_0^T r_s ds + X_T)] = \mathbb{E}[e^{-\int_0^T r_s ds} h(\int_0^T r_s ds + X^B_T + \frac{\partial^2 (X^e_T)}{2\partial \epsilon^2} |_{\epsilon=0} + \cdots)]$$

$$= \mathbb{E}[e^{-\int_0^T r_s ds} h(\int_0^T r_s ds + X^B_T)]$$

$$+ \mathbb{E}[e^{-\int_0^T r_s ds} h^{(1)}(\int_0^T r_s ds + X^B_T) \frac{\partial^2 (X^e_T)}{2\partial \epsilon^2} |_{\epsilon=0}]$$

$$+ \text{Resid}_2$$

$$= B(0, T) \mathbb{E}_T[h(\int_0^T r_s ds + X^B_T)]$$

$$+ \mathbb{E}[e^{-\int_0^T r_s ds} h^{(1)}(\int_0^T r_s ds + X^B_T) \frac{\partial^2 (X^e_T)}{2\partial \epsilon^2} |_{\epsilon=0}]$$

$$+ \text{Resid}_2$$

Greeks identification

\[
\mathbb{E}[e^{-\int_0^T r_s ds}h^{(1)}(\int_0^T r_s ds + X_T^B)\frac{\partial^2 (X_T^e)}{2\partial \epsilon^2}|\epsilon = 0] = B(0, T)(\sum_{i=1}^{3} \alpha_{i,T}\text{Greek}_{h}^{(i)}(\int_0^T r_s ds + X_T^B))
\]

How we can achieve that? This technique can be seen as an inverse procedure used in the literature about integration by parts formula and Malliavin calculus (Fournie et al 99).
In $Resid_2$, there is terms which contains the second derivative $h^{(2)}$ of the payoff function while the payoff h of interest is only one time differentiable?

Lemma Assume (E), (Rho) and (R_{k+1}) for a given $k \geq 1$. Let Z belong to $\cap_{p \geq 1} D^{k,p}$. For any $v \in [0, 1]$, there exists a random variable Z^v_k in any ℓ_p ($p \geq 1$) such that for any function $l \in C^\infty_0(\mathbb{R})$, we have

$$E_T[l^{(k)}(\int_0^T r_s ds + vX_T + (1 - v)X^B_T)Z] = E_T[l(v \int_0^T r_s ds + X_T + (1 - v)X^B_T)Z^v_k].$$

Moreover, we have $\|Z^v_k\|_p \leq C \frac{\|Z\|_{k,2p}}{(\sqrt{1 - \rho^2_{\infty}} \sigma_{\inf}) \sqrt{T}^k}$, uniformly in v and the constants C is an increasing constant on the bounds of the model.
Extensions

- The error of estimation is analyzed for other payoffs (smooth, digital): the more the payoff is smooth, the more the error is small.
- Extensions to third order formula.
- Extension to stochastic convenience yield. This can be seen as an extension to Gibson Schwartz model to handle local volatility functions for example:

\[
\frac{dS_t}{S_t} = (r_t - y_t)dt + \sigma dW^1_t,
\]

\[
\frac{dy_t}{\kappa (\alpha_t - y_t) + \xi_t dW^2_t,}
\]

\[
d\langle W^1, W^2 \rangle_t = \rho_t dt.
\]
Numerical application

We consider the one factor Hull and White model for interest rates, the CEV diffusion for the spot and constant correlation ρ. Then,

$$
\gamma(t, T) = \xi e^{-\kappa(T-t)}, \sigma(t, x) = \nu e^{(\beta-1)x}.
$$

As a benchmark, we use Monte Carlo methods with a variance reduction technique (3×10^6 simulations using Euler scheme with 50 time steps per year). Parameters: $\beta = 0.8$, $\nu = 0.2$, $\xi = 0.7\%$, $\kappa = 1\%$, $\rho = 15\%$ and $x_0 = 0$.
Numerical Application

Table: Implied Black-Scholes volatilities for the second order formula, the third order formula and the Monte Carlo simulations for maturity $T = 10Y$

<table>
<thead>
<tr>
<th>Relative Strikes</th>
<th>30%</th>
<th>60%</th>
<th>100%</th>
<th>160%</th>
<th>220%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Order formula</td>
<td>22.99%</td>
<td>22.16%</td>
<td>21.25%</td>
<td>20.38%</td>
<td>19.77%</td>
</tr>
<tr>
<td>Third Order formula</td>
<td>23.54%</td>
<td>22.25%</td>
<td>21.27%</td>
<td>20.40%</td>
<td>19.84%</td>
</tr>
<tr>
<td>MC with control variate</td>
<td>23.66%</td>
<td>22.32%</td>
<td>21.34%</td>
<td>20.47%</td>
<td>19.91%</td>
</tr>
<tr>
<td>MC-</td>
<td>22.87%</td>
<td>22.18%</td>
<td>21.28%</td>
<td>20.43%</td>
<td>19.87%</td>
</tr>
<tr>
<td>MC+</td>
<td>24.37%</td>
<td>22.47%</td>
<td>21.40%</td>
<td>20.51%</td>
<td>19.94%</td>
</tr>
</tbody>
</table>

MC- and MC+ are the bounds of the 95%-confidence interval of the Monte Carlo estimator.
Conclusion

- Efficient modelisation for the hybrid model (local volatility plus stochastic rates).
- Non asymptotic estimates expressed by all the model parameters and analysed according to the payoff smoothness.
- Accurate and fast analytical formulas for the price of European options.
Summary

Introduction

Approximation Formula

Numerical Application

Bibliography
Bibliography

Benhamou E., Gobet E. and Miri M. Analytical formulas for local volatility model with stochastic rates. *Forthcoming in Quantitative Finance*.

Piterbarg, V. V. *A multi-currency model with FX volatility skew*. ssrn working paper.
Thank you for your attention!