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Realized volatility and variance
Discrete time

I S is a stock paying no dividends
I Given time-steps 0 = t0 < ∙ ∙ ∙ < tn+1 = T , the realized

variance over [0,T ] is

V [t] =
1
T

n∑

i=0

ln2(
Si+1

Si
),

where Si is the value of S at ti
I The realized volatility is the square root of the realized

variance



Realized volatility and variance
Continuous time

I If the volatility of S is constant and equal to σ, then
V [t]→ σ2 when supi ti+1 − ti → 0.

I Under general conditions, if S is continuous with volatility
σs at time s,

V [t]→
1
T

∫ T

0
σ2

s ds

when supi ti+1 − ti → 0.



Volatility and variance swaps

I A variance swap with maturity T and strike K is a contract
that pays the realized variance minus K at time T .

I Example: if the realized variance is 20%2 and K = 0.03 the
payoff of the variance swap is 0.01.

I A volatility swap is a forward contract on future realized
volatility.

I Both instruments can be used to
I speculate on future volatility levels
I hedge the volatility exposure of other positions



Notation and assumptions

I F0 is the forward price of S
I C(K ) is the forward call price on S with strike K and

maturity T
I Assume C(K ) are known for all K
I A fair strike Kfair is a strike such that the value of the

variance swap with strike Kfair is 0
I Define a log contract as a contract that pays at T

2T−1 ln(F0/ST )



Pricing of variance swaps when the stock is
continuous

I Under a continuity assumption on the stock price
(Dupire 1993, Neuberger 1994)

Kfair = Vlog,

where Vlog is the forward price of the log contract
I Furthermore

Vlog =
2
T

∫

(0,∞)

C(K )−max(0,F0 − K )
K 2

I Thus Kfair depends only on C(K ), K > 0.



Consequences of the relation Kfair = Vlog

I the calculation of the VIX index
I an analytic approximation of Kfair in the presence of a

volatility skew (Demeterfi, Derman, Kamal & Zou 1999)
I an efficient forecast of future realized volatility (Jiang &

Tian 2005, Becker, Clements & McClelland 2009)



Proof of Kfair = Vlog

Proof.
Assume r = 0.
From ez = 1+ z + z2/2+O(z3),

Si

Si−1
≈ 1+ ln(

Si

Si−1
) + ln2(

Si

Si−1
)/2

and so
n+1∑

i=1

(
Si − Si−1

Si−1
) ≈ ln(

ST

S0
) + (T/2)V [t]

Thus, price of derivative paying V [t] is approximately price of
log contract.



Pricing of variance swaps without the continuity
assumption

In the presence of jumps, the price of a variance swap with
strike Vlog

I depends on the jumps size and frequency (Demeterfi,
Derman, Kamal & Zou 1999, Broadie & Jain 2008, Carr &
Wu 2009)

I can be significantly positive or negative



Our objective

I No assumptions on stock behavior
I What is the supremum lower bound Vinf on the hedged

payoff, at T , of a long position in the realized variance?
I Equivalently, Vinf is the supremum strike K such that an

investor with a long position in a variance swap with strike
K can ensure to have a non-negative payoff at maturity T .



Notation

I P(K ): forward price of put struck at K
I μ is a probability measure on [0,∞) such that μ({0}) = 0

and C(K ) =
∫
(K ,∞)(z − K ) dμ(z)

I I = {y ≥ F0 with C′−(y) < 0}
I For y ∈ I, let ψ(y) be the unique solution to the equation

C(y) + (x − y)C′−(y) = P(x)



Preliminary result

Theorem
If ∫

(0,∞)
ln2(x) dμ(x) =∞

then Vinf =∞.

We assume for now on that
∫

(0,∞)
ln2(x) dμ(x) <∞.



V-convex functions

Definition
f is V-convex on (0,∞) if, for 0 < x < z < y ,

f (x) + ln2(x/z)− f (z)
x − z

≤
f (y) + ln2(y/z)− f (z)

y − z
.

Lemma
Let f be a V-convex function on (0,∞). For x , z > 0,

f (x)− f (z) ≤ ln2(z/x) + f ′+(x)(x − z).

Example
The function f (x) = − ln2(x)1x≥1 is V-convex on (0,∞).

The set of V-convex functions is convex.



Lower bounding technique
Theorem
If f is Lipschitz on [0,∞), V-convex on (0,∞) and f (F0) = 0,
then f is μ-integrable and

Vinf ≥ −T−1
∫

(0,∞)
f dμ

.

Proof (sketch).
Assume r = 0.
Let 0 = t0 < ∙ ∙ ∙ < tn+1 = T .
For 1 ≤ i ≤ n + 1, let

ξi = f ′+(Si−1).

Then

f (Si−1)− f (Si) ≤ ln2(Si/Si−1) + ξi(Si−1 − Si)

and so

−f (ST ) ≤ T V [t] +
n+1∑

i=1

ξi(Si−1 − Si).



Further notation

I b = max{x ≥ 0 : P(x) = 0}
I For b ≤ x < F0

φ(x) = min{y ≥ F0 : C(y) + (x − y)C′+(y) ≤ P(x)}

and

g(x) = 2
∫

(x ,F0)
(x − u)

ln(φ(u)/u)
u(φ(u)− u)

du

I For y ∈ I

g(y) = 2
∫

[ψ(y),F0)
(y − u)

ln(φ(u)/u)
u(φ(u)− u)

du − ln2(
y

ψ(y)
)

I g(z) = 0 if z /∈ [b,F0) ∪ I



Main result: the general case

Theorem

Vinf = −T−1
∫ ∞

0
g dμ

is finite.

I Under general conditions, Vinf is the forward price of a
European option that pays −T−1g(ST ) at T



Main result: the differentiable case

Theorem
If C is differentiable on (F0,∞) then

Vinf = T−1
∫

I
ln2 y

ψ(y)
dμ(y)

I Under general conditions, Vinf is the forward price of a
European option that pays T−1 ln2(ST/ψ(ST )) at T if
ST ∈ I, and 0 otherwise



Comparing Vinf and Vlog

I Let glog(z) = 2(ln(z/F0)− z/F0 + 1).
I It can be shown that g(z) ≥ glog(z) for z ≥ 0
I But Vlog is the forward price of a European option that pays
−T−1 glog(ST ) at maturity T and

I Vinf is the forward price of a European option that pays
−T−1g(ST ) at T .

I Thus Vinf ≤ Vlog if Vinf is finite.



A constant implied volatilities example

Theorem
If the implied volatility is constant and equal to σ for maturity T
and all strikes, then Vinf = σ

2 − cσ3
√

T +O(σ4) as σ → 0,
where

c ≈ 0.8721.

σ 10% 15% 20% 25% 30% 35%√
Vinf 9.782% 14.510% 19.129% 23.641% 28.044% 32.340%

σ − c
2σ

2√T 9.782% 14.509% 19.128% 23.637% 28.038% 32.329%

Table:
√

Vinf and its approximation when T = 0.25.



A discrete set of strikes example
Strike Implied Volatility Call price μ g glog

35 0.000000 -0.5770 -0.8062
40 37% 60.199502 0.000002 -0.4725 -0.6386
45 36% 55.224448 0.000015 -0.3832 -0.5025
50 35% 50.249468 0.000088 -0.3066 -0.3913
55 34% 45.274923 0.000394 -0.2411 -0.3002
60 33% 40.302340 0.001411 -0.1855 -0.2257
65 32% 35.336777 0.004169 -0.1387 -0.1651
70 31% 30.391954 0.010436 -0.0998 -0.1164
75 30% 25.499053 0.022568 -0.0681 -0.0779
80 29% 20.718432 0.042685 -0.0431 -0.0483
85 28% 16.150173 0.071128 -0.0242 -0.0266
90 27% 11.935778 0.104687 -0.0109 -0.0117
95 26% 8.242208 0.135842 -0.0030 -0.0031

100 25% 5.224458 0.154436 0.0000 0.0000
105 24% 2.975040 0.152160 -0.0019 -0.0019
110 23% 1.482628 0.127838 -0.0081 -0.0084
115 22% 0.626216 0.089568 -0.0179 -0.0190
120 21% 0.215409 0.050812 -0.0304 -0.0334
125 20% 0.057392 0.022458 -0.0447 -0.0512
130 19% 0.011107 0.007359 -0.0597 -0.0723
135 18% 0.001437 0.001677 -0.0743 -0.0963
140 17% 0.000111 0.000245 -0.0865 -0.1231
145 16% 0.000004 0.000021 -0.0947 -0.1524
150 0.000001 -0.0970 -0.1841

Table: The spot price is $100, implied volatilities are given for
European call options with maturity T = 0.25 and strikes ranging from
$40 to $145, spaced $5 apart. There are no dividends and the
continuously compounded risk-free interest rate with maturity T is 2%.



A discrete set of strikes example (cont.)

ΔK 0.1 1 5
Vinf (23.955%)2 (23.967%)2 (24.263%)2

Vlog (25.267%)2 (25.280%)2 (25.608%)2

Table: Variance rates in the presence of skew. Strikes range in the
interval [40, 200].

ΔK 0 0.1 1 5
Vinf (23.641%)2 (23.641%)2 (23.653%)2 (23.951%)2

Vlog (25.000%)2 (25.000%)2 (25.014%)2 (25.344%)2

Table: Variance rates with flat volatility. Strikes range in the interval
[40, 200].



Conclusion

I We have given a semi-explicit expression for Vinf

I We made no continuity assumptions on S
I We made no assumptions on time division
I A simple approximation for Vinf has been given when the

implied volatilities for maturity T are constant
I A numerical example with a discrete set of strikes and a

volatility skew has been treated
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