Model-independent lower bound on variance swaps

Nabil Kahale¹

¹ESCP Europe Paris

Modeling and managing financial risks Paris, January 2011

Outline

Definition and use of variance swaps

Previous work on pricing of variance swaps

Our results

Examples

Conclusion

Realized volatility and variance

Discrete time

- S is a stock paying no dividends
- ► Given time-steps 0 = t₀ < · · · < t_{n+1} = T, the realized variance over [0, T] is

$$V[\mathbf{t}] = \frac{1}{T} \sum_{i=0}^{n} \ln^2(\frac{S_{i+1}}{S_i}),$$

where S_i is the value of S at t_i

The realized volatility is the square root of the realized variance

Realized volatility and variance

Continuous time

- If the volatility of S is constant and equal to σ , then $V[\mathbf{t}] \rightarrow \sigma^2$ when $\sup_i t_{i+1} t_i \rightarrow 0$.
- Under general conditions, if S is continuous with volatility σ_s at time s,

$$V[\mathbf{t}] \to \frac{1}{T} \int_0^T \sigma_s^2 \, ds$$

when $\sup_i t_{i+1} - t_i \rightarrow 0$.

- A variance swap with maturity T and strike K is a contract that pays the realized variance minus K at time T.
- Example: if the realized variance is $20\%^2$ and K = 0.03 the payoff of the variance swap is 0.01.
- A volatility swap is a forward contract on future realized volatility.
- Both instruments can be used to
 - speculate on future volatility levels
 - hedge the volatility exposure of other positions

- ► *F*₀ is the forward price of S
- C(K) is the forward call price on S with strike K and maturity T
- Assume C(K) are known for all K
- A fair strike K_{fair} is a strike such that the value of the variance swap with strike K_{fair} is 0
- Define a *log contract* as a contract that pays at $T 2T^{-1} \ln(F_0/S_T)$

Pricing of variance swaps when the stock is continuous

 Under a continuity assumption on the stock price (Dupire 1993, Neuberger 1994)

$$K_{\text{fair}} = V_{\log},$$

where $\textit{V}_{\textrm{log}}$ is the forward price of the log contract

Furthermore

$$V_{\text{log}} = rac{2}{T} \int_{(0,\infty)} rac{C(K) - \max(0, F_0 - K)}{K^2}$$

• Thus K_{fair} depends only on C(K), K > 0.

- the calculation of the VIX index
- an analytic approximation of K_{fair} in the presence of a volatility skew (Demeterfi, Derman, Kamal & Zou 1999)
- an efficient forecast of future realized volatility (Jiang & Tian 2005, Becker, Clements & McClelland 2009)

Proof.
Assume
$$r = 0$$
.
From $e^z = 1 + z + z^2/2 + O(z^3)$,
 $\frac{S_i}{S_{i-1}} \approx 1 + \ln(\frac{S_i}{S_{i-1}}) + \ln^2(\frac{S_i}{S_{i-1}})/2$

and so

$$\sum_{i=1}^{n+1} (\frac{S_i - S_{i-1}}{S_{i-1}}) \approx \ln(\frac{S_T}{S_0}) + (T/2)V[\mathbf{t}]$$

Thus, price of derivative paying $V[\mathbf{t}]$ is approximately price of log contract.

Pricing of variance swaps without the continuity assumption

In the presence of jumps, the price of a variance swap with strike $V_{\rm log}$

- depends on the jumps size and frequency (Demeterfi, Derman, Kamal & Zou 1999, Broadie & Jain 2008, Carr & Wu 2009)
- can be significantly positive or negative

- No assumptions on stock behavior
- What is the supremum lower bound V_{inf} on the hedged payoff, at T, of a long position in the realized variance?
- Equivalently, V_{inf} is the supremum strike K such that an investor with a long position in a variance swap with strike K can ensure to have a non-negative payoff at maturity T.

- P(K): forward price of put struck at K
- μ is a probability measure on $[0, \infty)$ such that $\mu(\{0\}) = 0$ and $C(K) = \int_{(K,\infty)} (z - K) d\mu(z)$
- $I = \{y \ge F_0 \text{ with } C'_{-}(y) < 0\}$
- For $y \in I$, let $\psi(y)$ be the unique solution to the equation

$$C(y) + (x - y)C'_{-}(y) = P(x)$$

Preliminary result

Theorem If

$$\int_{(0,\infty)} \ln^2(x) \, d\mu(x) = \infty$$

then $V_{\text{inf}} = \infty$. We assume for now on that

$$\int_{(0,\infty)} \ln^2(x) \, d\mu(x) < \infty.$$

V-convex functions

Definition

f is V-convex on $(0, \infty)$ if, for 0 < x < z < y,

$$\frac{f(x) + \ln^2(x/z) - f(z)}{x - z} \le \frac{f(y) + \ln^2(y/z) - f(z)}{y - z}.$$

Lemma

Let f be a V-convex function on $(0,\infty)$. For x, z > 0,

$$f(x) - f(z) \le \ln^2(z/x) + f'_+(x)(x-z).$$

Example

The function $f(x) = -\ln^2(x)\mathbf{1}_{x\geq 1}$ is V-convex on $(0,\infty)$.

The set of V-convex functions is convex.

Lower bounding technique

Theorem

If f is Lipschitz on $[0, \infty)$, V-convex on $(0, \infty)$ and $f(F_0) = 0$, then f is μ -integrable and

$$V_{\inf} \geq -T^{-1} \int_{(0,\infty)} f \, d\mu$$

Proof (sketch).

Assume r = 0. Let $0 = t_0 < \cdots < t_{n+1} = T$. For $1 \le i \le n+1$, let

$$\xi_i = f'_+(S_{i-1}).$$

Then

.

$$f(S_{i-1}) - f(S_i) \leq \ln^2(S_i/S_{i-1}) + \xi_i(S_{i-1} - S_i)$$

and so

$$-f(\mathbf{S}_T) \leq T \ \mathbf{V}[\mathbf{t}] + \sum_{i=1}^{n+1} \xi_i (\mathbf{S}_{i-1} - \mathbf{S}_i).$$

Further notation

- ▶ $b = \max\{x \ge 0 : P(x) = 0\}$
- For $b \le x < F_0$

$$\phi(\mathbf{x}) = \min\{\mathbf{y} \geq F_0 : C(\mathbf{y}) + (\mathbf{x} - \mathbf{y})C'_+(\mathbf{y}) \leq P(\mathbf{x})\}$$

and

$$g(x) = 2 \int_{(x,F_0)} (x-u) \frac{\ln(\phi(u)/u)}{u(\phi(u)-u)} du$$

▶ For *y* ∈ *I*

$$g(y) = 2 \int_{[\psi(y),F_0]} (y-u) \frac{\ln(\phi(u)/u)}{u(\phi(u)-u)} du - \ln^2(\frac{y}{\psi(y)})$$

▶ g(z) = 0 if $z \notin [b, F_0) \cup I$

Main result: the general case

Theorem

$$V_{\rm inf} = -T^{-1} \int_0^\infty g \, d\mu$$

is finite.

Under general conditions, V_{inf} is the forward price of a European option that pays -T⁻¹g(S_T) at T

Theorem If C is differentiable on (F_0, ∞) then

$$V_{\mathsf{inf}} = \mathit{T}^{-1} \int_{\mathit{I}} \mathsf{ln}^2 rac{\mathit{y}}{\psi(\mathit{y})} \, \mathit{d} \mu(\mathit{y})$$

Under general conditions, V_{inf} is the forward price of a European option that pays T⁻¹ In²(S_T/ψ(S_T)) at T if S_T ∈ I, and 0 otherwise

- Let $g_{\log}(z) = 2(\ln(z/F_0) z/F_0 + 1)$.
- It can be shown that $g(z) \ge g_{log}(z)$ for $z \ge 0$
- But V_{log} is the forward price of a European option that pays $-T^{-1}g_{log}(S_T)$ at maturity T and
- V_{inf} is the forward price of a European option that pays $-T^{-1}g(S_T)$ at T.
- Thus $V_{inf} \leq V_{log}$ if V_{inf} is finite.

A constant implied volatilities example

Theorem

If the implied volatility is constant and equal to σ for maturity T and all strikes, then $V_{inf} = \sigma^2 - c\sigma^3\sqrt{T} + O(\sigma^4)$ as $\sigma \to 0$, where

 $c \approx 0.8721.$

σ	10%	15%	20%	25%	30%	35%
$\sqrt{V_{inf}}$	9.782%	14.510%	19.129%	23.641%	28.044%	32.340%
$\sigma - \frac{c}{2}\sigma^2\sqrt{T}$	9.782%	14.509%	19.128%	23.637%	28.038%	32.329%

Table: $\sqrt{V_{inf}}$ and its approximation when T = 0.25.

A discrete set of strikes example

Strike	Implied Volatility	Call price	μ	g	glog
35			0.000000	-0.5770	-0.8062
40	37%	60.199502	0.000002	-0.4725	-0.6386
45	36%	55.224448	0.000015	-0.3832	-0.5025
50	35%	50.249468	0.000088	-0.3066	-0.3913
55	34%	45.274923	0.000394	-0.2411	-0.3002
60	33%	40.302340	0.001411	-0.1855	-0.2257
65	32%	35.336777	0.004169	-0.1387	-0.1651
70	31%	30.391954	0.010436	-0.0998	-0.1164
75	30%	25.499053	0.022568	-0.0681	-0.0779
80	29%	20.718432	0.042685	-0.0431	-0.0483
85	28%	16.150173	0.071128	-0.0242	-0.0266
90	27%	11.935778	0.104687	-0.0109	-0.0117
95	26%	8.242208	0.135842	-0.0030	-0.0031
100	25%	5.224458	0.154436	0.0000	0.0000
105	24%	2.975040	0.152160	-0.0019	-0.0019
110	23%	1.482628	0.127838	-0.0081	-0.0084
115	22%	0.626216	0.089568	-0.0179	-0.0190
120	21%	0.215409	0.050812	-0.0304	-0.0334
125	20%	0.057392	0.022458	-0.0447	-0.0512
130	19%	0.011107	0.007359	-0.0597	-0.0723
135	18%	0.001437	0.001677	-0.0743	-0.0963
140	17%	0.000111	0.000245	-0.0865	-0.1231
145	16%	0.000004	0.000021	-0.0947	-0.1524
150			0.000001	-0.0970	-0.1841

Table: The spot price is \$100, implied volatilities are given for European call options with maturity T = 0.25 and strikes ranging from \$40 to \$145, spaced \$5 apart. There are no dividends and the continuously compounded risk-free interest rate with maturity T is 2%.

A discrete set of strikes example (cont.)

ΔK	0.1	1	5
Vinf	(23.955%) ²	(23.967%) ²	(24.263%) ²
V _{log}	$(25.267\%)^2$	(25.280%) ²	$(25.608\%)^2$

Table: Variance rates in the presence of skew. Strikes range in the interval [40, 200].

ΔK	0	0.1	1	5
V _{inf}	(23.641%) ²	(23.641%) ²	$(23.653\%)^2$	(23.951%) ²
V_{\log}	$(25.000\%)^2$	$(25.000\%)^2$	(25.014%) ²	(25.344%) ²

Table: Variance rates with flat volatility. Strikes range in the interval [40, 200].

- ▶ We have given a semi-explicit expression for V_{inf}
- We made no continuity assumptions on S
- We made no assumptions on time division
- A simple approximation for V_{inf} has been given when the implied volatilities for maturity T are constant
- A numerical example with a discrete set of strikes and a volatility skew has been treated

- Becker, R., Clements, A. E. & McClelland, A. (2009). The jump component of S&P 500 volatility and the VIX index, *Journal of Banking & Finance* **33**(6): 1033–1038.
- Bioadie, M. & Jain, A. (2008). The effect of jumps and discrete sampling on volatility and variance swaps, *Int. J. Theor. Appl. Finance* **11**(8): 761–797.
- Chrr, P. P. & Wu, L. (2009). Variance Risk Premiums, The Review of Financial Studies, 22(3): 1311–1341.
- Demeterfi, K., Derman, E., Kamal, M. & Zou, J. (1999). A guide to volatility and variance swaps, *Journal of Derivatives* 6(4): 9–32.
- Dupire, B. (1993). Model art, *Risk* pp. 118–120.
- Jeng, G. J. & Tian, Y. S. (2005). The Model-Free Implied Volatility and Its Information Content, *Review of Financial Studies* **18**(4): 1305–1342.
- Kahale, N. (2009). Model-independent lower bound on variance swaps. http://ssrn.com/abstract=1493722.
- Mahale, N. (2010). Sparse calibrations of contingent claims, *Mathematical Finance* **20**(1): 105–115.

Meuberger, A. J. (1994). The log contract, *Journal of Portfolio* Management **20**(2): 74–80.