Model-independent lower bound on variance swaps

Nabil Kahale1

1ESCP Europe
Paris

Modeling and managing financial risks
Paris, January 2011
Outline

Definition and use of variance swaps

Previous work on pricing of variance swaps

Our results

Examples

Conclusion
S is a stock paying no dividends

Given time-steps $0 = t_0 < \cdots < t_{n+1} = T$, the realized variance over $[0, T]$ is

$$V(t) = \frac{1}{T} \sum_{i=0}^{n} \ln^2 \left(\frac{S_{i+1}}{S_i} \right),$$

where S_i is the value of S at t_i

The realized volatility is the square root of the realized variance
If the volatility of S is constant and equal to σ, then
$V[t] \to \sigma^2$ when $\sup_i t_{i+1} - t_i \to 0$.

Under general conditions, if S is continuous with volatility σ_s at time s,
$V[t] \to \frac{1}{T} \int_0^T \sigma_s^2 ds$
when $\sup_i t_{i+1} - t_i \to 0$.
Volatility and variance swaps

- A variance swap with maturity T and strike K is a contract that pays the realized variance minus K at time T.
- Example: if the realized variance is $20\%^2$ and $K = 0.03$ the payoff of the variance swap is 0.01.
- A volatility swap is a forward contract on future realized volatility.
- Both instruments can be used to
 - speculate on future volatility levels
 - hedge the volatility exposure of other positions
Notation and assumptions

- F_0 is the forward price of S
- $C(K)$ is the forward call price on S with strike K and maturity T
- Assume $C(K)$ are known for all K
- A fair strike K_{fair} is a strike such that the value of the variance swap with strike K_{fair} is 0
- Define a log contract as a contract that pays at T
 \[2T^{-1} \ln\left(\frac{F_0}{S_T}\right) \]
Pricing of variance swaps when the stock is continuous

- Under a continuity assumption on the stock price (Dupire 1993, Neuberger 1994)

\[K_{\text{fair}} = V_{\text{log}}, \]

where \(V_{\text{log}} \) is the forward price of the log contract

- Furthermore

\[V_{\text{log}} = 2 \int_{(0,\infty)} \frac{C(K) - \max(0, F_0 - K)}{K^2} \]

- Thus \(K_{\text{fair}} \) depends only on \(C(K) \), \(K > 0 \).
Consequences of the relation $K_{\text{fair}} = V_{\log}$

- the calculation of the VIX index
- an analytic approximation of K_{fair} in the presence of a volatility skew (Demeterfi, Derman, Kamal & Zou 1999)
- an efficient forecast of future realized volatility (Jiang & Tian 2005, Becker, Clements & McClelland 2009)
Proof of $K_{\text{fair}} = V_{\log}$

Proof.
Assume $r = 0$.
From $e^z = 1 + z + z^2/2 + O(z^3)$,

$$\frac{S_i}{S_{i-1}} \approx 1 + \ln\left(\frac{S_i}{S_{i-1}}\right) + \ln^2\left(\frac{S_i}{S_{i-1}}\right)/2$$

and so

$$\sum_{i=1}^{n+1} \left(\frac{S_i - S_{i-1}}{S_{i-1}}\right) \approx \ln\left(\frac{S_T}{S_0}\right) + (T/2)V[t]$$

Thus, price of derivative paying $V[t]$ is approximately price of log contract. \qed
Pricing of variance swaps without the continuity assumption

In the presence of jumps, the price of a variance swap with strike \(V_{\log} \)

- depends on the jumps size and frequency (Demeterfi, Derman, Kamal & Zou 1999, Broadie & Jain 2008, Carr & Wu 2009)
- can be significantly positive or negative
Our objective

- No assumptions on stock behavior
- What is the supremum lower bound V_{inf} on the hedged payoff, at T, of a long position in the realized variance?
- Equivalently, V_{inf} is the supremum strike K such that an investor with a long position in a variance swap with strike K can ensure to have a non-negative payoff at maturity T.

- $P(K)$: forward price of put struck at K
- μ is a probability measure on $[0, \infty)$ such that $\mu(\{0\}) = 0$ and $C(K) = \int_{(k, \infty)}(z - K)\, d\mu(z)$
- $I = \{y \geq F_0 \text{ with } C_-(y) < 0\}$
- For $y \in I$, let $\psi(y)$ be the unique solution to the equation
 \[
 C(y) + (x - y)C_-(y) = P(x)
 \]
Theorem

If

$$\int_{(0,\infty)} \ln^2(x) \, d\mu(x) = \infty$$

then $V_{\text{inf}} = \infty$.

We assume for now on that

$$\int_{(0,\infty)} \ln^2(x) \, d\mu(x) < \infty.$$
V-convex functions

Definition
f is V-convex on $(0, \infty)$ if, for $0 < x < z < y$,

$$
\frac{f(x) + \ln^2(x/z) - f(z)}{x - z} \leq \frac{f(y) + \ln^2(y/z) - f(z)}{y - z}.
$$

Lemma
Let f be a V-convex function on $(0, \infty)$. For $x, z > 0$,

$$
f(x) - f(z) \leq \ln^2(z/x) + f'_+(x)(x - z).
$$

Example
The function $f(x) = -\ln^2(x)1_{x \geq 1}$ is V-convex on $(0, \infty)$.

The set of V-convex functions is convex.
Lower bounding technique

Theorem

If f is Lipschitz on $[0, \infty)$, V-convex on $(0, \infty)$ and $f(F_0) = 0$, then f is μ-integrable and

$$V_{\text{inf}} \geq -T^{-1} \int_{(0,\infty)} f \, d\mu.$$

Proof (sketch).

Assume $r = 0$.

Let $0 = t_0 < \cdots < t_{n+1} = T$.

For $1 \leq i \leq n + 1$, let

$$\xi_i = f'(S_{i-1}).$$

Then

$$f(S_{i-1}) - f(S_i) \leq \ln^2(S_i/S_{i-1}) + \xi_i(S_{i-1} - S_i)$$

and so

$$-f(S_T) \leq T \, V[t] + \sum_{i=1}^{n+1} \xi_i(S_{i-1} - S_i).$$

\square
Further notation

- \(b = \max \{ x \geq 0 : P(x) = 0 \} \)
- For \(b \leq x < F_0 \)
 \[\phi(x) = \min \{ y \geq F_0 : C(y) + (x - y)C'(y) \leq P(x) \} \]
 and
 \[g(x) = 2 \int_{(x,F_0)} (x - u) \frac{\ln(\phi(u)/u)}{u(\phi(u) - u)} \, du \]
- For \(y \in I \)
 \[g(y) = 2 \int_{(\psi(y),F_0)} (y - u) \frac{\ln(\phi(u)/u)}{u(\phi(u) - u)} \, du - \ln(\frac{y}{\psi(y)}) \]
- \(g(z) = 0 \) if \(z \notin [b,F_0) \cup I \)
Main result: the general case

Theorem

\[V_{\text{inf}} = -T^{-1} \int_{0}^{\infty} g \, d\mu \]

is finite.

- Under general conditions, \(V_{\text{inf}} \) is the forward price of a European option that pays \(-T^{-1}g(S_T) \) at \(T \)
Theorem

If C is differentiable on (F_0, ∞) then

$$V_{\text{inf}} = T^{-1} \int_I \ln^2 \frac{y}{\psi(y)} d\mu(y)$$

Under general conditions, V_{inf} is the forward price of a European option that pays $T^{-1} \ln^2 (S_T/\psi(S_T))$ at T if $S_T \in I$, and 0 otherwise.
Comparing V_{inf} and V_{log}

- Let $g_{\text{log}}(z) = 2(\ln(z/F_0) - z/F_0 + 1)$.
- It can be shown that $g(z) \geq g_{\text{log}}(z)$ for $z \geq 0$.
- But V_{log} is the forward price of a European option that pays $-T^{-1}g_{\text{log}}(S_T)$ at maturity T.
- V_{inf} is the forward price of a European option that pays $-T^{-1}g(S_T)$ at T.
- Thus $V_{\text{inf}} \leq V_{\text{log}}$ if V_{inf} is finite.
Theorem

If the implied volatility is constant and equal to \(\sigma \) for maturity \(T \) and all strikes, then \(V_{inf} = \sigma^2 - c\sigma^3\sqrt{T} + O(\sigma^4) \) as \(\sigma \to 0 \), where

\[
c \approx 0.8721.
\]

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{V_{inf}})</td>
<td>9.782%</td>
<td>14.510%</td>
<td>19.129%</td>
<td>23.641%</td>
<td>28.044%</td>
<td>32.340%</td>
</tr>
<tr>
<td>(\sigma - \sqrt{V_{inf}})</td>
<td>9.782%</td>
<td>14.509%</td>
<td>19.128%</td>
<td>23.637%</td>
<td>28.038%</td>
<td>32.329%</td>
</tr>
</tbody>
</table>

Table: \(\sqrt{V_{inf}} \) and its approximation when \(T = 0.25 \).
A discrete set of strikes example

<table>
<thead>
<tr>
<th>Strike</th>
<th>Implied Volatility</th>
<th>Call price</th>
<th>μ</th>
<th>σ</th>
<th>σ_{log}</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>37%</td>
<td>55.199502</td>
<td>0.000002</td>
<td>-0.5770</td>
<td>-0.9062</td>
</tr>
<tr>
<td>40</td>
<td>36%</td>
<td>56.224448</td>
<td>0.000015</td>
<td>-0.5838</td>
<td>-0.9025</td>
</tr>
<tr>
<td>45</td>
<td>35%</td>
<td>51.248868</td>
<td>0.000088</td>
<td>-0.5066</td>
<td>-0.8123</td>
</tr>
<tr>
<td>50</td>
<td>35%</td>
<td>46.274520</td>
<td>0.000379</td>
<td>-0.2417</td>
<td>-0.3020</td>
</tr>
<tr>
<td>55</td>
<td>34%</td>
<td>40.302540</td>
<td>0.001411</td>
<td>-0.1855</td>
<td>-0.2557</td>
</tr>
<tr>
<td>60</td>
<td>33%</td>
<td>35.338777</td>
<td>0.004189</td>
<td>-0.1387</td>
<td>-0.1651</td>
</tr>
<tr>
<td>65</td>
<td>32%</td>
<td>30.391854</td>
<td>0.010436</td>
<td>-0.0999</td>
<td>-0.1164</td>
</tr>
<tr>
<td>70</td>
<td>31%</td>
<td>25.499063</td>
<td>0.022558</td>
<td>-0.0681</td>
<td>-0.0779</td>
</tr>
<tr>
<td>75</td>
<td>30%</td>
<td>20.718432</td>
<td>0.042895</td>
<td>-0.0431</td>
<td>-0.0483</td>
</tr>
<tr>
<td>80</td>
<td>29%</td>
<td>16.150172</td>
<td>0.071128</td>
<td>-0.0342</td>
<td>-0.0295</td>
</tr>
<tr>
<td>85</td>
<td>28%</td>
<td>11.935778</td>
<td>0.104687</td>
<td>-0.0119</td>
<td>-0.0117</td>
</tr>
<tr>
<td>90</td>
<td>27%</td>
<td>8.242028</td>
<td>0.135842</td>
<td>-0.0030</td>
<td>-0.0031</td>
</tr>
<tr>
<td>95</td>
<td>26%</td>
<td>5.224508</td>
<td>0.164436</td>
<td>-0.0090</td>
<td>-0.0090</td>
</tr>
<tr>
<td>100</td>
<td>25%</td>
<td>2.972460</td>
<td>0.192860</td>
<td>-0.0019</td>
<td>-0.0019</td>
</tr>
<tr>
<td>105</td>
<td>24%</td>
<td>1.682628</td>
<td>0.227328</td>
<td>-0.0081</td>
<td>-0.0084</td>
</tr>
<tr>
<td>110</td>
<td>23%</td>
<td>0.922616</td>
<td>0.268508</td>
<td>-0.0179</td>
<td>-0.0180</td>
</tr>
<tr>
<td>115</td>
<td>22%</td>
<td>0.315609</td>
<td>0.308112</td>
<td>-0.0304</td>
<td>-0.0304</td>
</tr>
<tr>
<td>120</td>
<td>21%</td>
<td>0.087392</td>
<td>0.325458</td>
<td>-0.0447</td>
<td>-0.0452</td>
</tr>
<tr>
<td>125</td>
<td>20%</td>
<td>0.021511</td>
<td>0.338859</td>
<td>-0.0597</td>
<td>-0.0601</td>
</tr>
<tr>
<td>130</td>
<td>19%</td>
<td>0.001437</td>
<td>0.351677</td>
<td>-0.0743</td>
<td>-0.0743</td>
</tr>
<tr>
<td>135</td>
<td>18%</td>
<td>0.000101</td>
<td>0.363485</td>
<td>-0.0886</td>
<td>-0.0886</td>
</tr>
<tr>
<td>140</td>
<td>17%</td>
<td>0.000021</td>
<td>0.374425</td>
<td>-0.1027</td>
<td>-0.1027</td>
</tr>
<tr>
<td>145</td>
<td>16%</td>
<td>0.000004</td>
<td>0.384521</td>
<td>-0.1164</td>
<td>-0.1164</td>
</tr>
<tr>
<td>150</td>
<td>15%</td>
<td>0.000001</td>
<td>0.393750</td>
<td>-0.1297</td>
<td>-0.1297</td>
</tr>
</tbody>
</table>

Table: The spot price is $100, implied volatilities are given for European call options with maturity $T = 0.25$ and strikes ranging from 40 to 145, spaced 5 apart. There are no dividends and the continuously compounded risk-free interest rate with maturity T is 2%.
A discrete set of strikes example (cont.)

<table>
<thead>
<tr>
<th>ΔK</th>
<th>0.1</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{inf}</td>
<td>$(23.955%)^2$</td>
<td>$(23.967%)^2$</td>
<td>$(24.263%)^2$</td>
</tr>
<tr>
<td>V_{log}</td>
<td>$(25.267%)^2$</td>
<td>$(25.280%)^2$</td>
<td>$(25.608%)^2$</td>
</tr>
</tbody>
</table>

Table: Variance rates in the presence of skew. Strikes range in the interval $[40, 200]$.

<table>
<thead>
<tr>
<th>ΔK</th>
<th>0</th>
<th>0.1</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{inf}</td>
<td>$(23.641%)^2$</td>
<td>$(23.641%)^2$</td>
<td>$(23.653%)^2$</td>
<td>$(23.951%)^2$</td>
</tr>
<tr>
<td>V_{log}</td>
<td>$(25.000%)^2$</td>
<td>$(25.000%)^2$</td>
<td>$(25.014%)^2$</td>
<td>$(25.344%)^2$</td>
</tr>
</tbody>
</table>

Table: Variance rates with flat volatility. Strikes range in the interval $[40, 200]$.
Conclusion

- We have given a semi-explicit expression for V_{inf}
- We made no continuity assumptions on S
- We made no assumptions on time division
- A simple approximation for V_{inf} has been given when the implied volatilities for maturity T are constant
- A numerical example with a discrete set of strikes and a volatility skew has been treated

