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The Problematic

Position of the problem Basic question from the trader (or
the risk manager)’s point of view :
Having sold an option, what initial capital to allocate and
which strategy to follow in order to hedge the embedded risk

Possible solutions

Static hedging

Use of a combination of market instruments approximately

replicating the terminal payout

Dynamic hedging

Continuously rebalance a portfolio of available assets to

produce the terminal payout
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Modelling Framework

Mathematical Framework
We use a probabilistic model to describe the future evolution of
assets

A filtration (Ft)0≤t≤T on a probability space (Ω,F , P )

N observables Si which could be assets available for trading,
stochastic processes adapted to the filtration (Ft)0≤t≤T

A contingent claim H, which given a fixed and finite time
horizon, is simply an FT measurable random variable
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Markets (In)Completeness

Dynamic Hedging

Classical framework : Using self-financing strategies

Complete markets : every contingent claim is attainable

H̃ = c0 +

∫

T

0

δsdS̃

c0 = E
∗(H̃)

Incomplete markets : min variance hedging, superhedging,

quantile hedging, shortfall minimization, etc.

e.g.

c0 = inf{c|∃δ, c+

∫

T

0

δsdS̃ > H̃ P − ps}
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Quadratic Risk-Minimization

Relaxing the self-financing constraint

Quadratic local risk-minimization :

(δ∗k, V
∗
k ) = argminEk

(

∆Ck+1(δ, V )2
)

Where ∆Ck+1(δ, V ) = ∆Vk+1 − δk∆Sk+1 when there is no
transaction costs and no liquidity effects

Many characterizations available for the optimal strategy, in
discrete time and continuous time through martingale
orthogonality properties

Nicolas Millot nicolas.millot@ecp.fr Managing Financial Risks 2011



Introduction Quadratic Risk-Minimization Non-Quadratic Local Risk-Minimization Conclusion Bibliography

Beyond Quadratic ?

Quadratic local risk-minimization

Fruitful framework, many theoretical results, numerical
schemes available, see bibliography

Yet the main interrogation is : what is the rationale behind
putting the same weight on gains as on losses ?
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Non-Quadratic Local Risk-Minimization

The idea
Relaxing the quadratic hypothesis : using a smooth convex function
f to assess risk due to incremental costs

One time step setting

(δ∗0 , V
∗
0 ) = argminE (f(H − V0 − δ0(ST − S0)))

Characterization of the optimal strategy through first order
optimality conditions

E
(

f ′(H − V0 − δ0(ST − S0))
)

= 0

E
(

f ′(H − V0 − δ0(ST − S0))(ST − S0)
)

= 0
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Non-Quadratic Local Risk-Minimization

Multiple time steps setting
Minimization program working backward : given a contingent
claim H, find Φ∗, admissible strategy such that

∀k ∈ (0, · · · , T − 1), ∆Rk(Φ) ≥ ∆Rk(Φ
∗)∀Φ admissible,

with δk+1 = δ∗k+1 and βk+1 = β∗
k+1

First order optimality conditions
Equivalent characterization : the process
(Cf

k )k=1,..,N =
∑k−1

i=0 f ′(∆Ci+1) is a martingale (strongly)
orthogonal to the martingale part of the process (Sk)
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Continuous Time Limit

Start with a sequence of partitions Pn of [0, T ] tending to the
identity

Define the f -costs process as the following limit, whenever it
exists :

lim
n→∞

ln
∑

k=1

f ′(V τnk − V τnk−1 − δτ
n
k−1(Sτnk − Sτnk−1))

Where convergence is required in ucp topology
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The f -costs Process

When the process St satisfies some regularity constraints and
the strategies satisfy some admissibility conditions the limit
exists and is equal to :

C
f
t = f ′′(0)

(

Vt − V0 −
∫ t

0+ δs−dSs

)

+ f(3)(0)
2

(

[V, V ]ct − 2
∫ t

0+ δs−d[V, S]
c
s +

∫ t

0+ δ2s−d[S, S]
c
t

)

+
∑

0<s≤t f
′(∆Vs − δs∆Ss)− f ′′(0)(∆Vs − δs∆Ss)
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Optimal Strategies

Definition of the (pseudo-)Optimality

By analogy with the discrete time setting, we define optimal
strategies as those strategy such that Cf

t is a martingale
orthogonal to the martingale part of the St process

When the strategy is assumed to be a Markov process, this
allows to express the optimal strategies as solutions of a non
linear parabolic PDE or alternatively of a quadratic BSDE
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The Markovian setting

The case of stochastic volatility models

We model the evolution of S through an SDE with stochastic
volatility

dSt = µtdt+ σtdW
1
t

dσt = γtdt+ΣtdW
2
t

With µt, γt and Σt adapted processes, and
d < W 1,W 2 >t= ρdt

Markovian strategies

δt = δ(t, St, σt)

Vt = V (t, St, σt)
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The f -costs Process

The f -costs process is then

Ct(Φ) =

∫

t

0

[

f
′′
(0)

(

∂V

∂u
+

∂V

∂S
µu +

∂V

∂σ
γu +

1

2

∂2V

∂S2
σ
2
u +

1

2

∂2V

∂σ2
Σ

2
u +

∂2V

∂S∂σ
ρσuΣu − δuµu

)

+
f(3)(0)

2

(

(

∂V
∂S

)2
σ2
u +

(

∂V
∂σ

)2
Σ2

u + 2 ∂V
∂S

∂V
∂σ

ρσuΣu

)

− f(3)(0)δu

(

∂V
∂S

σ2
u + ∂V

∂S
ρσuΣu

)

+
f(3)(0)

2
δ2uσ2

u

]

du

+

∫

t

0
f
′′
(0)

(

∂V

∂S
− δu

)

σudW
1
u +

∫

t

0
f
′′
(0)

∂V

∂σ
ΣudW

2
u
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The Equation Satisfied by δ

Applying to the strategy Φ the second local risk-minimization
criterion gives the equation satisfied by the optimal hedge δ

(

∂V

∂S
− δu

)

σ2
u +

∂V

∂σ
ρσuΣu = 0

⇒ Linearity of the optimal hedge ratio δ with respect to the
portfolio value V

In the case when f is quadratic and Σ = 0 we have δ = ∂V
∂S
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The PDE Satisfied by V

Applying to the strategy Φ the first local risk-minimization criterion
gives the PDE satisfied by the portfolio value V

f
′′
(0)

(

∂V

∂u
+

∂V

∂S
µu +

∂V

∂σ
γu +

1

2

∂2V

∂S2
σ
2
u +

1

2

∂2V

∂σ2
Σ

2
u +

∂2V

∂S∂σ
ρσuΣu − δuµu

)

+
f(3)(0)

2

(

(

∂V

∂S

)2

σ
2
u +

(

∂V

∂σ

)2

Σ
2
u + 2

∂V

∂S

∂V

∂σ
ρσuΣu

)

−f
(3)

(0)δu

(

∂V

∂S
σ
2
u +

∂V

∂S
ρσuΣu

)

+
f(3)(0)

2
δ
2
uσ

2
u = 0

⇒ Non-linearity due to the term in f (3)(0), quadratic growth
in the gradient

In the case when f is quadratic and Σ = 0 we find the B&S

PDE
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Optimality or Pseudo-Optimality ?

Small Perturbations A small perturbation is a bounded
admissible strategy ∆Φ = (β, δ) such that βT = 0 and δT = 0

Local Risk along a Partition

r
τ
f [φ,∆](t, ω) =

∑

ti,ti+1∈τ

∆Rti
(φ + ∆|[ti,ti+1()(ω) − ∆Rti

(φ)(ω)

ti+1 − ti
1[ti,ti+1((t)
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Locally Risk-Minimizing Strategies

Locally Risk-Minimizing Strategies An admissible strategy
φ is called locally risk-minimizing for the option H if for every
small perturbation ∆ and every increasing sequence of
partitions (τn)n∈N tending to the identity, we have

lim inf
n→∞

rτn [φ,∆] ≥ 0 P − a.e.

In a Markovian framework with a market described by Itô
processes we can show that optimality coincides with
pseudo-optimality
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Conclusion and Outlooks

Conclusion

Extending the results of quadratic local risk-minimization to
asymmetric risk, more realistic

Allowing for several characterizations/representations of the
optimal strategies with numerical methods available

Flexibility of the methodology so it can apply to real markets

Outlooks

Incorporating liquidity costs into the picture : forthcoming
paper

Define suitable approach to value the option from the incurred
costs

More numerical studies to be done for analysing the impact of
different choices of risk functions
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