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L LogL Doob inequality
Let L. be a continuous positive exponential submartingale and L. its running
supremum.

• L LogL Doob inequality (Protter) gives NS Condition on Lζ for L to be in H1.

• Sharp estimates are proposed by P.Harremoës (2010) in discrete time.

Theorem For any m > 0, let vm(x) be the convex function defined on R+ by
vm(x) = x−m−m ln(x), v1(x) := v(x).

• (Doob) If L. is a u.i. integrable martingale with L0 = 1, then maxLT is an
integrable variable if and only if E

(
LT ln(LT )

)
<∞

• (Harremoës) Then, the following sharpe inequality holds true

v
(
E(LT)

)
≤ E

(
LT ln(LT)

)
,

• Assume L to be a positive (D)-submartingale. Then

vm

(
E(LT)

)
− vm(L0) ≤ E

(
LT ln(LT)

)
− E(LT)E

(
ln(LT)

)
, m = E(LT)
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The inequality is sharp

Sketch of the proof Dellacherie (79) and Harremoës (2010)

• Since L is continuous, and Ls only increases on{L. = L.},
maxLt = 1 +

∫ t
0
dLs = 1 +

∫ t
0
Ls

Ls
dLs and

E
(
LT
)
− 1 = E

(
LT ln(LT )

)
≥ E

(
LT (ln(LT ))

+
)
.

• The converse is obtained by comparing E
(
LT ln(LT )

)
and E

(
LT ln(LT )

)
using

the convavity of the function ln, around the level x∗ = E(LT ).

E
(
LT ln(LT /LT )

)
≤ E

(
LT (lnx

∗ +
1

x∗
(
LT
LT
− x∗)

)
= lnx∗

Then, reorganize the terms in the inequality.

• E
(
LT ln(LT )

)
− E(LT )E

(
ln(LT )

)
is the Shannon entropy of L
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Portfolio, Duality and Incomplete Market
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MMRisk Paris Stochastic Volatility

Stochastic Volatility
In option world, use stochastic volatility models with specific
uncertainty

dXt

Xt

= µ(t,Xt, Yt)dt+ σ(t,Xt, Yt)dW
1
t ,

dYt = η(t,Xt, Yt) + γ(t,Xt, Yt) dW
2
t

where dW 1 and dW 2 are two correlated Brownian motions. γ is the
volatility of the volatility.
What does it change ? In fact, everything !
• Perfect replication is not possible any more ;
• Notion of unique price does not exist any longer...
But, such a situation is often the general case.
What kind of answer may we bring to such a problem ?
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Robust Hedging
Let us now suppose the interest rate r = 0.
• The option problem is still a target problem CT , to be hedged by an
admissible portfolio

VT (π, δ) = π +

∫ T

0

δt.dXt

• Investment decisions,( control parameter) (δt) are taken from
available information at time t (δt ∈ F(Xs, Ys); s ≤ t).
Some other constraints (size, sign...) may also be imposed
• Let VT be the set of all derivatives, replicable at time T by an
admissible portfolio. The 0-price of such derivatives ĈT is the unique
value of replicating portfolios
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Super-Replication
Definition: Super-replicating CT is finding the smallest derivative
ĈT ∈ VT which dominates CT a.s..
• The ĈT replicating portfolio, V Ĉ , is (def) the CT robust hedge.
• The super-replication price, Ĉ0 is the ĈT price = V Ĥ

0 .
Duality
Let QT the dual space of VT , that is the set of probabilities
QT = {Q,EQ(VT ) = V0 VT ∈ VT} . The main result is the dual
characterization (Hahn-Banach)

Ĉ0 = sup
Q∈QT

EQ(CT ).

More generally, if VT is rich enough, Ĉt = esssupQ∈QTEQ(CT |Ft) is a
QT -supermartingale, and a QT -martingale if and only if CT ∈ VT .
(EKQ, CviKa, Foell-Kram,Delb-Scha,Yan.+...100..)
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Super-price with Stochastic Volatility Model
The super-replication price essentially depends on the values set of
stochastic volatility:
• If it is R+, then the super-replicating derivative of h(XT ) is ĥ(XT )

where ĥ is the concave envelope of h ; the replicating strategy is the
trivial one: buying ĥ′x(x0) stocks and holding them till maturity.
• If the volatility is bounded (up and down relatively to 0), the
super-replication price is a (not depending on y) solution of

ĥ′t(t, x) +
1

2
sup
y

(σ2(t, x, y)ĥ′′xx(t, x)) = 0, ĥ(T, x) = h(x) (1)

• When h is convex, ĥ(t, x) is convex and the super-replication price is
the one calculated with the upper volatility (in y).
(Avellaneda, Pham, Touzi+...100..)
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Coherent and Convex Risk Measures
When super-replicating is too expensive, the trader has to measure his market risk
exposure. The traditional measure is the variance of the replicating error.

Characterization of Risk Measure

• (Artz,Delb.97) have shown that sub-additive and homogeneous, cash
invariante risk measures are an average estimation of losses w.r. to a probability
measures family :

ρ(X) = sup
Q∈QT

EQ(−X).

• convex monetary risk measures (FoelSc 02), by adding a penalization term on
probability density

ρ(X) = sup
Q∈QT

EQ(−X)− α(Q)

• Dynamic risk measures (the same+Delbaen+Bion Nadal+BSDEs 2003-..)
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Entropic Risk measure

A typical example is entropic risk measure

ρent(X) = sup
Q∈QT

(EQ(−X)− 1

γ
H(Q|P ))

H(Q|P ) = EP
(dQ
dP

ln(
dQ

dP
)
)

ρent(X) =
1

γ
Ln(E(exp(−γξT ))
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Risk measures and Reserve Price

• A trader willing to relax the super-replication assumption is looking
for the smallest portfolio, generating an acceptable loss.

• The initial value of this portfolio is called the reserve price.

• Mean-variance and entropic problems have now a complete solution

• More surprisingly (because of non-convexity), this also holds for the
quantile hedging problem (FoLe,99).

• Sub-products of portfolio optimisation in incomplete markets.

(Fritelli, RoEK, CvKa or Scha, Carmona book (Indifference Pricing) .
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Hedging in Practice
In a continuous arbitrage-free complete market, the Black-Scholes
framework states that
The price of a derivative is the present value of the dynamical
replicating portfolio
• In a real market, practitioners use basket of vanilla trading
instruments such that very liquid Call or Put options to hedge complex
options. With static strategies, a perfect hedge will not be possible
regardless of risk aversion and market parameters, but transaction
costs are reduced.
• Such strategies can be viewed as a particular case of constrained
strategies in continuous framework.
The goal of the risk adverse investor is to maximize the expected
utility of the global static portfolio
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Calibration
The goal of the calibration is
• to identify parameters of underlying assets dynamics
• by adjusting the parameters of the distribution in such way that the
fit between theoretical prices and market prices is “perfect”.
In other words, the problem is to select a probability measure Q? such
that, for a given contingent claims family {Ci

Tj
; i ∈ I, j ∈ J}

EQ? [C
i
Tj
|Ft] = Ci,j

obs(t)

where Ci,j
obs(t) is the market price of the contingent claim Ci

Tj
.

Ex : Avellaneda propose to adjust the distribution via Monte Carlo
simulation based on prior distribution. ( Weighted Monte Carlo)
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Pricing in Constrained Market
The initial wealth of the static strategy includes the premium of the
contingent claim B. But how is defined this premium ? .
Let be Xx,π

t the present value of constrained portfolio tailored by the
investor. Different ways are proposed to pricing the derivative B.

Super-replication

-Nek-Quenez(93), Cvitanic and Karatzas (95), Foellmer-Kramkov(97)
Price= smallest initial amount of wealth such that there exists a
super-replicating portfolio

p∗(t, B) = inf{Xx,π
t ;Xx,π

T ≥ B}

NEK, UPMC/CMAP, January 2011
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Minimization of the quadratic error

− Duffie-Richardson(92), Foellmer-Schweitzer(93), Gourieroux,
Laurent, Pham (1998) and many others........

inf
x,π

E[(Xx,π
t −B)2]

The price is given by the minimal investment.
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Pricing via Utility Maximization
• In 1989, Hodges and Neuberger(1989) link the price of a contingent
claim with the opportunity for the investor to deliver this option.
• Given a utility function U , let Û(x,B) be the maximal expected
utility for a portfolio with initial wealth x, if a contingent claim B is
delivered.They define a preference relation by

(x,B) � (x′, B′)⇐⇒ V (x,B) > V (x′, B′)

• The price of the claim is defined in such a way that the investor is
indifferent to deliver the option or not, that is

(x+ p,B) ∼ (x, 0) ⇐⇒ V(x + p,B) = V(x,0)

• M.Davis, Karatzas and Kou (95-97) Avelanedda, define the price in reference to
the marginal utility of the wealth.
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Exponential Utility

U(x) = −αexp(−γx) x ∈ R

Motivation

• Given that the risk-aversion coefficient γ is constant, the complexity
of the problem is reduced.
• Unlike of power utilities, this utility allows portfolios with negative
values
• by duality , relationship with entropy
• for small γ, mean-variance optimization
• for large γ, the asymptotic problem is related to the control problem
of the maximal loss and super-replication
Drawbacks
Optimality does not depend on the initial wealth.
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Static Problem : Portfolio
• Based on a (stochastic) zero-coupon bond B(t, T ) with maturity T ,
and d liquid instruments (Ci

t)
d
i=1, for instance very liquid Call and Put

options with different strikes and maturities. They are used for
hedging and calibration. The initial wealth is x.
• A static strategy [y = (y1, y2, ..., yd), α] where yi is the holding of the
trading asset i, with yi > 0 for long position in Ci, yi < 0 for short
position.
• The present value of the portfolio is :
− At time 0,

x =
d∑
i=1

yiCi
0 + αB(0, T )

NEK, UPMC/CMAP, January 2011
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− At maturityT ,

X
(x,y)
T −B =

d∑
i=1

yiCi
T + α−B

=
x

B(0, T )
+

d∑
i=1

yi(Ci
T −

Ci
0

B(0, T )
)−B

since the strategy is static and self-financing. In short,

X
(x,y)
T = x̂+ < y, ĈT >

We assume
• no linear redundancy on the set of trading instruments
• The target is non-attainable
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Primal Optimization Problem
The Program Pγ: to maximize w.r. y

−V (x,B) = max
y

(
−E[exp(−γ(x̂+ < y, ĈT > −B))]

)
We assume that the Laplace transform is defined in the neighborhood
of 0.

Φ(y, γ) = E[exp(− < y, ĈT > −γB)]

We introduce the family of probability measures Ry

dRy

dP
=

exp(−γ < y, ĈT > +γB)

E[exp(−γ < y, ĈT > +γB)]

NEK, UPMC/CMAP, January 2011
21



MMRisk Paris Primal Optimization Problem

Necessary conditions

The following properties are equivalent :

• y∗ is optimal

• V (x,B) = E[exp(−γ(x̂+ < y∗, ĈT > −B))]

• ER∗(Ci
T ) =

Ci0
B(0,T )

, i = 1.....d, for R∗ = Ry∗ is “forward-neutral"

• the covariance matrix (covR∗(Ci
T , C

j
T )) is strictly positive.

• R∗ is the minimal entropy measure in the class of R satisfying
ER∗(Ci

T ) =
Ci0

B(0,T )
, ∀i

• Not enough to be sure that R∗ is a martingale-measure.(Weighted MC,
Avellaneda)
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Dual formulation, Entropy and Game versus the
market

Dual formulation,

Let us denote by ν a probability measure a.continuous w.r. to P, and
the relative entropy by

H(ν) = Eν [Ln(
dν

dP
)] = EP[

dν

dP
Ln(

dν

dP
)] ≥ 0

1

γ
LnE[exp(−γX)] = sup

ν
{−Eν(X)− 1

γ
Eν [Ln(

dν

dP
)]}

Game versus the Market
1

γ
Vγ(x,B) = inf

y
sup
ν
{Eν(B −X(x,y)

T )− 1

γ
H(ν)}
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The market chooses the worst case scenario that is the loses
maximizing "distribution".
Static Forward-neutral formulation
Let be Qs the set of equivalent (static) forward-neutral probability
measures

Qs = {Q ∼ P;EQ(X
(x,y)
T ) =

x

B(0, T )
}

1

γ
LnVγ(0, B) = sup

Q∈Qs
{EQ(B)− 1

γ
H(Q)}
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Derivatives Pricing

Pricing via calibration

Two steps (Avellaneda,-Douady, Davis, Karatzas- Kou)
• first, by solving the problem without contingent claim and denote by
R? the optimal static risk-neutral probability measure
• Then, by pricing any contingent claim via risk-neutral point of view

Πt(B) = ER? [B|Ft]

• the hedge portfolio is the portfolio with minimum variance w.r. to R?

Pricing via utility maximization
To find p s.t.

Vγ(x+ p,B) = Vγ(x, 0)

NEK, UPMC/CMAP, January 2011
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MMRisk Paris Derivatives Pricing

or equivalently

Πt(B) = sup
Q∈Qs

(−1

γ
H(Q)} − sup

Q∈Qs
{EQ(B)− 1

γ
H(Q)}

General Dynamic risk measures : Technically difficult extension of
these results ( Many papers+J.Bion-Nadal+....

Volatility control : Not in the same family of problems as not
associated with equivalent martingale-measures.
Hence use G- expectation, second order BSDEs, weak control
problems.
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Optimal Portfolio and “Hedging” of the Claim
• The previous identities hold if an optimal portfolio, or equivalently
an optimal probability measure exists.

• Optimal portfolio and optimal forward-neutral probability measure
are related by

X?,B
T = B − 1

γ

[
LnVγ(x,B) + Ln[

dR?,γ

dP
]

]
• The hedging portfolio can be viewed as

X?,B
T −X?,0

T = B − Π0(B)− 1

γ
Ln[

dR?,γ,B

dR?,γ,0
]
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Asymptotic or Risk Sensitive Analysis
Asymptotic Analysis
• The function 1

γ
LnVγ(0, B) is increasing w.r to γ.

• If the set Qs is not empty,
( in particular if the trading assets are priced w.r.to the assumption of
no arbitrage opportunity),

limγ(
1

γ
LnVγ(0, B)) = sup

Q∈Qs
{EQ(B)}

Asymptotic Game
The limit is the super-replicating price given by the static constrained
strategies.

sup
Q∈Qs
{EQ(B)} = inf

y
esssupω{(B(ω)− < y, ĈT (ω) >)+}
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or equivalently for the optimal strategy y∗

sup
Q∈Q
{EQ(B)}+ < y∗, ĈT (ω) >≥ B(ω) ∀ω

and that is the smallest dominating static portfolio.
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Dynamic Constrained strategies
Let us consider the same problem with continuous dynamic strategies.
Typical set-up for continuous-time asset pricing :
• One Bond with short rate rt

dS0
t = S0

t rt dt,

• d ≥ k risky securities are continuously traded, with No Arbitrage
Opportunities

dSit = Sit [b
i
t dt +

k∑
j=1

σi,jt dW j
t ], bt − rt1 = σt ηt, dt⊗ P a.s,

• A k-dimensional Wiener process W = (W 1, . . . ,W d)∗

σi = (σi,j)kj=1, bi and r are adapted and bounded.
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• A self-financing portfolio strategy is a continuously traded portfolio

dXt = rtXtdt+
d∑
i=1

yitS
i
t

k∑
j=1

σi,jt (dW j
t + ηjt )

Examples of constraints

• Limitation on the trading assets : πit = yitS
i
t = 0 ∀i ≥ n

• Limitation on the amounts to be traded : |πit| ≤ Ki

• More generally, the vector πt is supposed in a convex space K.

• The bonds B(t, T ) satisfy the constraint with volatility σ(t, T ).
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Optimization Problem
From above, the optimization problem is equivalent to

1

γ
LnVγ(x,B) = −x̂+ inf

π
{1

γ
LnE[exp− γ(Xx,π

T − x̂−B)]}

1

γ
LnVγ(x,B) = −x̂+ sup

Q∈Q
{EQ(B)− 1

γ
H(Q)}

where Q is now the set of probability measures such that all
constrained portfolio Xx,π

t

B(t,T )
are Q-martingales.

Complete Market
Q is reduced to one element : the forward-neutral probability QT , with
state price density density

dHθ
t = Hθ

t [θ∗t dWt], H0
0 = 1
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where θ = η + σ(., T ).

1

γ
LnVγ(0, B) = −x̂+ EQT [B − 1

2γ

∫ T

0

|θt|2dt]
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Incomplete Market
Q is the probability set with martingale density Hν such that

< νs, πs >= 0, ∀πs

1

γ
LnVγ(x,B) = −x̂+ Eν [B −

1

2γ

∫ T

0

|θt + νt|2dt]

from classical result about entropy.
The price via utility is

p(0, B) = B(0, T ) sup
ν
{Eν [B −

1

2γ

∫ T

0

|θt + νt|2dt]}

− B(0, T ) sup
ν
{Eν [−

1

2γ

∫ T

0

|θt + νt|2dt]}
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Dynamic Point of view : Put

UB,ν
t = E[Hν

t,T (B − 1

2γ

∫ T

t

|θu + νu|2du)|Ft], Y B
t = esssup(UB,ν

t )

Since Hν
t U

B,ν
t + 1

2γ

∫ t
0
|θu + νu|2du is a martingale, there exists ZB,ν

t

such that (UB,ν
t , ZB,ν

t ) is sol of the Linear BSDE with UB,ν
T = B,

−dUB,ν
t = dtfν(t, U

B,ν
t , ZB,ν

t )− (ZB,ν
t )∗dWt

fν(t, y, z) = (− 1

2γ
|θt + νt|2 − (θt + νt)

∗z)
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Backward Stochastic Differential Equations
Pardoux-Peng(1989), El Karoui, Peng-Quenez(1997)

−dYt = f(t, Yt, Zt)dt− Z∗t dWt, YT = B

A solution is a par of adapted processes (Y, Z).
Existence and uniqueness hold
• in H2 for f unif.Lipschitz.
• in H∞ ⊗H2 for fy with quadratic growth in z and fz with linear
growth ( Kobylansky 98)
• A comparison theorem holds
(similar to the maximum principle for PDE)

NEK, UPMC/CMAP, January 2011
36



MMRisk Paris Quadratic BSDE for the Seller Price

Quadratic BSDE for the Seller Price
Formally, by the comparison theorem, the log of the value function of
the optimization problem satisfies,

−dY B
t = esssup(UB,ν

t )

= f(t, Y B
t , Z

B
t )dt− ZB

t dWt, Y B
T = B

f(t, y, z) = esssupν∈K(− 1

2γ
|θt + νt|2 − (θt + νt)

∗z)

When K is a vector space

f(t, y, z) = − 1

2γ
||θt − πθt||2 + (πθt − θt)?z +

γ

2
||πz||2

where π is the projection operator on the orthogonal space K?
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Seller price BSDE
Recall that pt = Y 0

t − Y B
t

−dpt = −rtpt − (θt + ν0t )?Zt +
γ

2
||πtZt||2 − Z?

t dWt, pT = B

The price process satisfies (if comparison holds true)

• The map B ⇒ pγt (B) is increasing and convex

• The price is increasing w.r. to γ

limγ→0 p
γ
t (B) = calibration price

limγ→+∞ p
γ
t (B) = superreplication price
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