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Unspecified volatility process

• Ω =
{
ω ∈ C (R+) : ω(0) = 0

}
,

• B coordinate process, F = {Ft , t ≥ 0}, P0 : Wiener measure

Suppose that B is only known to be a continuous local martingale
with quadratic variation 〈B〉 a.c. wrt Lebesgue. Let

P :=
{
P0 ◦ (

∫ .
0 σtdBt)−1 : σ F−prog. meas.,

∫ T
0 |σt |2dt <∞

}
• Zero interest rate, and risky asset defined by :

dSt = StdBt , P − q.s.

where P−quasi-surely means P−a.s. for all P ∈ P
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Model-free bounds

• Super-hedging and Sub-hedging problems of FT−meas. r.v. ξ

U := inf
{

X0 : ∃ H ∈ H : X0 +

∫ T

0
HtdBt ≥ ξ, P − q.s.

}

L := sup
{

X0 : ∃ H ∈ H : X0 +

∫ T

0
HtdBt ≤ ξ, P − q.s.

}
• the portfolio H ∈ H does not depend on a particular P ∈ P...

• Denis-Martini 2005 and Peng 2007 for the bounded volatility case
(σ ≤ σ. ≤ σ)
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Dual formulation

Consider the superhedging problem

U0 := inf
{

X0 : X0 +

∫ T

0
HtdBt ≥ ξ, P − q.s. for some H ∈ H0

}
where

H0 :=
{

H : H ∈ H2
loc(P) and XH ≥ MartP, ∀P ∈ P

}
Theorem (Soner, T., Zhang 2010) For all ξ ∈ L∞P :

U0 = sup
P∈P

EP[ξ]

and existence holds for the problem U0
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Bounds with no further information

For ξ = g(ST ), we find

U0(ξ) = gconc(S0) and L0(ξ) = gconv(S0)

and the corresponding hedging strategy H∗ is of type Buy-and-Hold

=⇒ dynamic hedge does not help to reduce the superhedging cost...

Nizar TOUZI Model independent bounds for options



Super and sub-hedging under uncertain volatility
Connection with previous literature

Exploiting the dual formulation

Model-free bounds with more information

• Suppose that prices of T−maturity call options for all possible
strikes c(k), k ≥ 0 are observed and tradable. Then the map

k 7−→ c(k) := E[(ST − k)+]

characterizes the distribution ST ∼P µ by µ
(
[k ,∞)

)
= −c ′(k)

• The no-arbitrage bounds can be improved to

U(µ) := inf
{

X0 : ∃ H ∈ H, λ ∈ Λ : XH,λ
T ≥ ξ, P − q.s.

}
L(µ) := sup

{
X0 : ∃ H ∈ H, λ ∈ Λ : XH,λ

T ≤ ξ, P − q.s.
}

where Λ = {bdd measurable functions} and

XH,λ
T := X0 +

∫ T
0 HtdBt + λ(ST )− µ(λ)

“ = X0 +
∫ T
0 HtdBt +

∫
λ′′(k)[(ST − k)+ − c(k)]dk ′′

Nizar TOUZI Model independent bounds for options



Super and sub-hedging under uncertain volatility
Connection with previous literature

Exploiting the dual formulation

Model-free bounds with more information

• Suppose that prices of T−maturity call options for all possible
strikes c(k), k ≥ 0 are observed and tradable. Then the map

k 7−→ c(k) := E[(ST − k)+]

characterizes the distribution ST ∼P µ by µ
(
[k ,∞)

)
= −c ′(k)

• The no-arbitrage bounds can be improved to

U(µ) := inf
{

X0 : ∃ H ∈ H, λ ∈ Λ : XH,λ
T ≥ ξ, P − q.s.

}
L(µ) := sup

{
X0 : ∃ H ∈ H, λ ∈ Λ : XH,λ

T ≤ ξ, P − q.s.
}

where Λ = {bdd measurable functions} and

XH,λ
T := X0 +

∫ T
0 HtdBt + λ(ST )− µ(λ)

“ = X0 +
∫ T
0 HtdBt +

∫
λ′′(k)[(ST − k)+ − c(k)]dk ′′

Nizar TOUZI Model independent bounds for options



Super and sub-hedging under uncertain volatility
Connection with previous literature

Exploiting the dual formulation

Duality and stochastic control

• Notice that

U(µ) = infλ∈Λ inf
{
X0 : ∃ H ∈ H,XH

T ≥ ξ − λ(ST ) + µ(λ), P − q.s.
}

L(µ) = supλ∈Λ sup
{
X0 : ∃ H ∈ H,XH

T ≤ ξ − λ(ST ) + µ(λ), P − q.s.
}

• Then, the previous duality implies that

U(µ) := inf
λ∈Λ

sup
P∈P

EP
[
ξ − λ(ST ) + µ(λ)

]
L(µ) := sup

λ∈Λ
inf
P∈P

EP
[
ξ − λ(ST ) + µ(λ)

]
• For every fixed λ : standard stochastic control problem...
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Connection with optimal transportation

• Alternatively, one may formulate the problems as :

U(µ) := sup
P∈P:BT∼Pµ

EP[ξ] and L(µ) := inf
P∈P:BT∼Pµ

EP[ξ]

Optimal transportation problem...
• If L̄ = L̄∗∗, then :

L̄(µ) = sup
φ∈L1(µ)

∫
φ(s)µ(ds)−

∫
φ0(s)δS0(ds)

where φ0 is the value of the stochastic control problem :

φ0(s) := L̄∗(φ) = sup
P∈P

EP
[
φ(ST )− ξ

]
can be characterized by the corresponding dynamic programming
equation in the Markov case, or by a backward SDE...

• Related work by Mikami and Thieullen 2004 (drift control)
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Relation with Skorohod Embedding Problem

Previous literature by D. Hobson, L.C.G. Rogers, A. Cox, J. Obloj,
B. Dupire, P. Carr, R. Lee

• adressed this problem by using results from the SEP :

Given µ probability measure on R with
∫
|x |µ(dx) <∞

Find a stopping time τ such that
Bτ ∼ µ and {Bt∧τ , t ≥ 0} UI martingale

(Hall, Monroe, Azéma, Yor, Perkins, Chacon, Walsh, Rost, Root,
Bass, Vallois)

• More than twenty known solutions (see Obloj for a survey)
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Example : the Azéma-Yor solution

Define the barycenter function :

b(x) :=

∫∞
x sµ(ds)∫∞
x µ(ds)

Then, the Azéma-Yor solution of the SEP is :

τAY := inf {t > 0 : B∗t > b(Bt)} , with B∗t := max
s≤t

Bs

i.e. {Bt∧τAY , t ≥ 0} is UI martingale and BτAY ∼ µ.

For later use

c(ζ)

x − ζ
decreases on

[
0, b−1(x)

]
and increases on

[
b−1(x), x

)
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Connection with our problem

• (Mt)t≥0 continuous martingale, M0 = 0 and MT ∼ µ,

Then Mt = B〈M〉t and 〈M〉T solution of SEP

• Let τ be a solution of SEP

Then Mt := B t
T−t∧τ

is a continuous martingale, M0 = 0 and
Mτ ∼ µ.
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Optimality of the Azéma-Yor solution

Let g be C 1 nondecreasing, and define :

H(m, x) :=

∫ m

0
g ′(r)

r − x
r − b−1(r)

dr so that

{H(B∗t ,Bt), t ≥ 0} is a local martingale
g(m)− H(m, x) ≤ g

(
b(x)

)
− H

(
b(x), x

)
=: G (x)

Then

g
(
B∗τ
)
≤ H

(
B∗τ ,Bτ

)︸ ︷︷ ︸
(loc. mart.)τ

+G
(
Bτ
)

and

sup
P∈P(µ)

EP [g(S∗T )] = max
τ∈T (µ)

E
[
g
(
B∗τ
)]

=

∫
G (x)µ(dx) = E

[
g
(
B∗τAY

)]
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Numerical approximation

• For every fixed λ, build a numerical scheme to approximate the
value function

uλ := inf
P∈P

E [ξ − λ(ST )]

this is a singular stochastic control, which can be characterized by
an elliptic equation... finite differences
• Minimize over λ :

inf
λ
µ(λ)− uλ

numerical approximation by the gradient projection algorithm...

Xiaolu TAN...

Nizar TOUZI Model independent bounds for options



Super and sub-hedging under uncertain volatility
Connection with previous literature

Exploiting the dual formulation

Numerical methods
Lookback options with one known marginal distribution
Extension to many marginals

Numerical approximation

• For every fixed λ, build a numerical scheme to approximate the
value function

uλ := inf
P∈P

E [ξ − λ(ST )]

this is a singular stochastic control, which can be characterized by
an elliptic equation... finite differences
• Minimize over λ :

inf
λ
µ(λ)− uλ

numerical approximation by the gradient projection algorithm...

Xiaolu TAN...

Nizar TOUZI Model independent bounds for options



Super and sub-hedging under uncertain volatility
Connection with previous literature

Exploiting the dual formulation

Numerical methods
Lookback options with one known marginal distribution
Extension to many marginals

Application to Lookback derivatives

From now on :

ξ = g(ST , S∗T ) where S∗T := max
t≤T

St

Our main results :
recover the known explicit bounds in this context (so far, those
induced by the Azéma-Yor embedding)
extend the existing results in the case of n given marginals
(Brown-Hobson-Rogers 98, Madan-Yor 02)
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Dynamic Programming Equation – Fixed λ

Consider first the case :

ξ = g(S∗T ) where S∗T := max
t∈[0,T ]

St

Given λ(.), the stochastic control problem is

uλ(t, s,m) := sup
P∈P

EP [g(Mt,s,m
T )− λ(S t,s

T )
]
, Mt,s,m

T := m ∨max
[t,T ]

S t,s
.

=⇒ Optimal stopping representation and DPE characterization :

uλ(t, s,m) = uλ(s,m) = sup
τ∈T

E [g(Ms,m
τ )− λ(S s

τ )]

min
{

uλ − (g − λ),−uλss
}

= 0 for 0 < s < m

uλm(m,m) = 0
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Lagrange Multipliers reduction

DPE implies that uλ is a supersolution of

min
{

uλ − (g − λconv),−uλss
}
≥ 0

Then, it follows from comparison that :

uλ(s,m) ≥ uλ
conv

(s,m) := sup
τ∈T

E [g(Ms,m
τ )− λconv(S s

τ )]

and the converse inequality is obvious. This implies that

U(µ) = inf
λ′′≥0

sup
τ∈T

µ(λ) + E [g(Ms,m
τ )− λ(S s

τ )]
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Solving the optimal stopping problem

Given λ convex :

uλ(s,m) = sup
τ∈T

E [g(Ms,m
τ )− λ(S s

τ )]

assume g is C 1 increasing, then we expect that there is a boundary
ψ (continuous increasing) so that :

uλ(s,m) = g(m)− λ(s) +

∫ s∨ψ(m)

ψ(m)
(s − k)λ′′(k)dk

The Neuman condition provides an equation for ψ :

(ODE) g ′(m)−
(
m − ψ(m)

)
λ′′
(
ψ(m)

)
ψ′(m) = 0
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Peskir’s maximality principle

Theorem Let λ be C 2 and strictly convex. Then the following are
equivalent :

(i) uλ <∞
(ii) (ODE) has a maximal solution ψ which lies strictly below
the diagonal (ψ(m) < m, m > 0).

In this case uλ is given by

uλ(s,m) = g(m)− λ(s) +

∫ s∨ψ(m)

ψ(m)
(s − k)λ′′(k)dk

and τ∗ := inf {t > 0 : St ≤ ψ(Mt)} is an optimal stopping time.
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The explicit upper bound

W.l.o.g. λ(S0) = 0, then :

U(µ) = g(S0) + inf
λ′′≥0

µ(λ) +

∫ S0∨ψ(M0)

ψ(M0)
(s − k)λ′′(k)dk

≥ g(S0) + inf
λ′′≥0

∫
c(k)λ′′(k)dk

= g(S0) + inf
λ′′≥0

∫
c
(
ψ(x)

)
λ′′(ψ(x))ψ′(x)dx

= g(S0) + inf
ψ∈...

∫
c
(
ψ(x)

) g ′(x)

x − ψ(x)
dx (ODE )

≥ g(S0) +

∫
inf
ψ<x

c(ψ)

x − ψ
g ′(x)dx −→ ψ∗(x) = b−1(x)

Azéma-Yor. The reverse inequality is obvious...
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A recursive sequence of control problems

Given n functions λ = (λi )1≤i≤n define :

uλ := u0(S0,M0) = sup
P∈P

EP

[
g(Mtn)−

n∑
i=1

λi (Stn)

]

Optimal upper bound given that Sti ∼ µi , i ≤ n :

inf
(λi )1≤i≤n

n∑
i=1

µi (λi ) + uλ

Then, we introduce for i = 1, . . . , n :

un(s,m) := g(m)

ui−1(s,m) := sup
P∈P

EP
[
ui (Stn ,Mtn)− λi (Stn)

∣∣∣(S ,M)tn−1 = (s,m)
]
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Extension of Peskir’s maximality principle

Lemma Optimization can be restricted to those λi ’s such that
λi − ui is strictly convex for all i = 1, . . . , n

Theorem For λi s.t. λi − ui is strictly convex, ui−1 <∞ iff there
is a maximal solution ψi of the ODE

ψ′i
(
λ′′i (ψi )− ui

ss(ψi ,m)
)

= ui
sm (ψi ,m) +

ui
m (ψi ,m)

m − ψi

which stays strictly below the diagonal ψi (m) < m, m ≥ 0.
In this case :

ui−1(s,m) = ui (s,m)−λi (s)+

∫ s∨ψi (m)

ψi (m)
(s−k)

(
λ′′i (k)− ui

ss(k ,m)
)
dk
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Explicit finite dimensional optimization problem

Proceeding as in the case of one marginal, we arrive at the
optimization problem :

U(µ1, . . . , µn)

≥
∫

inf
0<ψ.<x

cn(ψn)

x − ψn
+

n−1∑
i=1

(
ci
(
ψi
)

x − ψi
−

ci
(
ψi+1

)
x − ψi+1

)
1I{

ψi<ψi+1

}
where

ψi := ψi ∧ . . . ∧ ψn for all i = 1, . . . , n
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Optimal upper bound given two marginals

The case n = 2 reduces to :

inf
ψi<x

{
c2(ψ2)− 1I{ψ2>ψ1}

(
c1(ψ2)

x − ψ2
− c1(ψ1)

x − ψ1

)}
which recovers Hobson and Rogers 1998 =⇒

ψ1(x) = b−1
1 (x) (Azéma-Yor)

ψ2(x) defined by

inf
ψ2<x

{
c2(ψ2)− 1I{ψ2>ψ1(x)}

(
c1(ψ2)

x − ψ2
− c1(ψ1(x))

x − ψ1(x)

)}
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The n−marginals problem reduces to 2−marginals problems

• First, minimize wrt ψ1 ≤ ψ2, given ψ2, . . . , ψn < x :

min
ψ1≤ψ2

(
c1
(
ψ1
)

x − ψ1
−

c1
(
ψ2
)

x − ψ2

)
1I{

ψ1<ψ2

}
• For i ≤ n, assume ψ∗i−1(x) does not depend on ψi on
{ψ∗i−1(x) < ψi} for all x ≥ 0. Then with ψn+1(x) = x :

min
ψi≤ψi+1

ci
(
ψi
)

x − ψi
−

(
ci−1

(
ψi
)

x − ψi
−

ci−1
(
ψ
∗
i−1(x)

)
x − ψ∗i−1(x)

)
1I{

ψ
∗
i−1(x)<ψi

}
These steps are similar to the 2−marginals case of Brown, Hobson
and Rogers...
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Exploiting the dual formulation

Numerical methods
Lookback options with one known marginal distribution
Extension to many marginals

Solving the n−marginals problem

Step 1 : ψ∗1 = b−1
1

Step i : minimization over ψi ≤ ψi+1, given ψ
∗
i−1 :

• If bi ≤ bi+1, we find ψ∗i = b−1
i (this recovers Madan and Yor)

• In the general case (not covered in the literature), we rely on :

Lemma Let i = 2, . . . , n be fixed, assume that ci ≥ ci−1, and let
ψi
∗
(x) be any minimizer of the Step i problem. Then, the function

x 7−→ ψi
∗
(x) is nondecreasing
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Exploiting the dual formulation

Numerical methods
Lookback options with one known marginal distribution
Extension to many marginals

Future projects

• Continuous-time limit (extension of Madan-Yor 02)

• Construct martingale processes corresponding to the bound

• Lower/upper bound on Variance calls given 1 (and more generally
n) marginals,

• General theory for the treatment of stochastic control problems
given marginals, i.e. optimal transportation along controlled
stochastic dynamics
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