Model independent bounds for options pricing A stochastic control approach

Nizar TOUZI

Ecole Polytechnique Paris

Joint work with: A. Galichon and P. Henry-Labordère

Conférence de la Chaire Risques Financiers Paris, January 10-13, 2011

Outline

Super and sub-hedging under uncertain volatility

2 Connection with previous literature

- Optimal transportation
- The Skorohod Embedding Problem

3 Exploiting the dual formulation

- Numerical methods
- Lookback options with one known marginal distribution
- Extension to many marginals

(D) (A) (A) (A)

Unspecified volatility process

•
$$\Omega = ig\{\omega \in \mathcal{C}(\mathbb{R}_+) : \omega(0) = 0ig\},$$

• *B* coordinate process, $\mathbb{F} = \{\mathcal{F}_t, t \geq 0\}$, \mathbb{P}_0 : Wiener measure

Suppose that B is only known to be a continuous local martingale with quadratic variation $\langle B \rangle$ a.c. wrt Lebesgue. Let

$$\mathcal{P} := \left\{ \mathbb{P}_0 \circ (\int_0^{\cdot} \sigma_t dB_t)^{-1} : \ \sigma \ \mathbb{F} - \mathsf{prog. meas.}, \ \int_0^{\mathcal{T}} |\sigma_t|^2 dt < \infty \right\}$$

• Zero interest rate, and risky asset defined by :

$$dS_t = S_t dB_t, \mathcal{P} - q.s.$$

where \mathcal{P} -quasi-surely means \mathbb{P} -a.s. for all $\mathbb{P} \in \mathcal{P}$

Model-free bounds

 \bullet Super-hedging and Sub-hedging problems of $\mathcal{F}_{T}-\text{meas.}$ r.v. ξ

$$U := \inf \left\{ X_0 : \exists H \in \mathcal{H} : X_0 + \int_0^T H_t dB_t \ge \xi, \mathcal{P} - q.s. \right\}$$
$$L := \sup \left\{ X_0 : \exists H \in \mathcal{H} : X_0 + \int_0^T H_t dB_t \le \xi, \mathcal{P} - q.s. \right\}$$

- the portfolio $H \in \mathcal{H}$ does not depend on a particular $\mathbb{P} \in \mathcal{P}$...
- Denis-Martini 2005 and Peng 2007 for the bounded volatility case ($\underline{\sigma} \leq \sigma_{.} \leq \overline{\sigma}$)

(ロ) (同) (三) (三)

Dual formulation

Consider the superhedging problem

$$U_0 := \inf \left\{ X_0 : X_0 + \int_0^T H_t dB_t \ge \xi, \ \mathcal{P} - q.s. \text{ for some } H \in \mathcal{H}_0 \right\}$$

where

$$\mathcal{H}_0 := \left\{ H: \ H \in \mathbb{H}^2_{\textit{loc}}(\mathbb{P}) \text{ and } X^H \geq \mathsf{Mart}^\mathbb{P}, \ \forall \mathbb{P} \in \mathcal{P} \right\}$$

Theorem (Soner, T., Zhang 2010) For all $\xi \in \mathcal{L}^{\infty}_{\mathcal{P}}$:

$$U_0 = \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathbb{P}}[\xi]$$

and existence holds for the problem U_0

・ 同 ト ・ ヨ ト ・ ヨ ト

Bounds with no further information

For
$$\xi = g(S_T)$$
, we find

$$U_0(\xi) = g^{\text{conc}}(S_0)$$
 and $L_0(\xi) = g^{\text{conv}}(S_0)$

and the corresponding hedging strategy H^* is of type Buy-and-Hold

 \Longrightarrow dynamic hedge does not help to reduce the superhedging cost...

(D) (A) (A) (A)

Model-free bounds with more information

• Suppose that prices of T-maturity call options for all possible strikes $c(k), k \ge 0$ are observed and tradable. Then the map

$$k \mapsto c(k) := \mathbb{E}[(S_T - k)^+]$$

characterizes the distribution $S_T \sim_{\mathbb{P}} \mu$ by $\mu([k,\infty)) = -c'(k)$ • The no-arbitrage bounds can be improved to

$$U(\mu) := \inf \left\{ X_0 : \exists H \in \mathcal{H}, \ \lambda \in \Lambda : X_T^{H,\lambda} \ge \xi, \ \mathcal{P} - q.s. \right\}$$
$$L(\mu) := \sup \left\{ X_0 : \exists H \in \mathcal{H}, \ \lambda \in \Lambda : X_T^{H,\lambda} \le \xi, \ \mathcal{P} - q.s. \right\}$$

where $\Lambda = \{ bdd measurable functions \}$ and

 $X_T^{H,\lambda} := X_0 + \int_0^T H_t dB_t + \lambda(S_T) - \mu(\lambda)$ " = $X_0 + \int_0^T H_t dB_t + \int \lambda''(k) [(S_T - k)^+ - c(k)] dk$ "

Model-free bounds with more information

• Suppose that prices of T-maturity call options for all possible strikes $c(k), k \ge 0$ are observed and tradable. Then the map

$$k \mapsto c(k) := \mathbb{E}[(S_T - k)^+]$$

characterizes the distribution $S_T \sim_{\mathbb{P}} \mu$ by $\mu([k,\infty)) = -c'(k)$ • The no-arbitrage bounds can be improved to

 $U(\mu) := \inf \left\{ X_0 : \exists H \in \mathcal{H}, \ \lambda \in \Lambda : X_T^{H,\lambda} \ge \xi, \ \mathcal{P} - q.s. \right\}$ $L(\mu) := \sup \left\{ X_0 : \exists H \in \mathcal{H}, \ \lambda \in \Lambda : X_T^{H,\lambda} \le \xi, \ \mathcal{P} - q.s. \right\}$

where $\Lambda = \{bdd \text{ measurable functions}\}$ and

$$X_T^{H,\lambda} := X_0 + \int_0^T H_t dB_t + \lambda(S_T) - \mu(\lambda)$$

" = X_0 + $\int_0^T H_t dB_t + \int \lambda''(k) [(S_T - k)^+ - c(k)] dk$ "

ヘロト 人間ト くほと くほん

Duality and stochastic control

• Notice that

$$U(\mu) = \inf_{\lambda \in \Lambda} \inf \left\{ X_0 : \exists H \in \mathcal{H}, X_T^H \ge \xi - \lambda(S_T) + \mu(\lambda), \mathcal{P} - q.s. \right\}$$
$$L(\mu) = \sup_{\lambda \in \Lambda} \sup \left\{ X_0 : \exists H \in \mathcal{H}, X_T^H \le \xi - \lambda(S_T) + \mu(\lambda), \mathcal{P} - q.s. \right\}$$

• Then, the previous duality implies that

$$U(\mu) := \inf_{\lambda \in \Lambda} \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[\xi - \lambda(S_{T}) + \mu(\lambda) \Big]$$
$$L(\mu) := \sup_{\lambda \in \Lambda} \inf_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \Big[\xi - \lambda(S_{T}) + \mu(\lambda) \Big]$$

 \bullet For every fixed λ : standard stochastic control problem...

A (1) > A (2) > A

Optimal transportation The Skorohod Embedding Problem

Outline

Super and sub-hedging under uncertain volatility

2 Connection with previous literature

- Optimal transportation
- The Skorohod Embedding Problem

3 Exploiting the dual formulation

- Numerical methods
- Lookback options with one known marginal distribution
- Extension to many marginals

(D) (A) (A)

Connection with optimal transportation

• Alternatively, one may formulate the problems as :

 $\overline{U}(\mu) := \sup_{\mathbb{P} \in \mathcal{P} : B_{\mathcal{T}} \sim_{\mathbb{P}} \mu} \mathbb{E}^{\mathbb{P}}[\xi] \quad \text{and} \quad \overline{L}(\mu) := \inf_{\mathbb{P} \in \mathcal{P} : B_{\mathcal{T}} \sim_{\mathbb{P}} \mu} \mathbb{E}^{\mathbb{P}}[\xi]$

Optimal transportation problem...

• If $\overline{L} = \overline{L}^{**}$, then :

$$ar{L}(\mu) = \sup_{\phi \in \mathbb{L}^1(\mu)} \int \phi(s) \mu(ds) - \int \phi_0(s) \delta_{\mathcal{S}_0}(ds)$$

where ϕ_0 is the value of the stochastic control problem :

$$\phi_0(s) := \overline{L}^*(\phi) = \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathbb{P}}\Big[\phi(S_T) - \xi\Big]$$

can be characterized by the corresponding dynamic programming equation in the Markov case, or by a backward SDE...

• Related work by Mikami and Thieullen 2004 (drift control) =

Relation with Skorohod Embedding Problem

Previous literature by D. Hobson, L.C.G. Rogers, A. Cox, J. Obloj, B. Dupire, P. Carr, R. Lee

 \bullet adressed this problem by using results from the SEP :

Given μ probability measure on \mathbb{R} with $\int |x|\mu(dx) < \infty$ Find a stopping time τ such that $B_{\tau} \sim \mu$ and $\{B_{t\wedge\tau}, t \geq 0\}$ UI martingale

(Hall, Monroe, Azéma, Yor, Perkins, Chacon, Walsh, Rost, Root, Bass, Vallois)

• More than twenty known solutions (see Obloj for a survey)

Example : the Azéma-Yor solution

Define the barycenter function :

$$b(x) := \frac{\int_x^\infty s\mu(ds)}{\int_x^\infty \mu(ds)}$$

Then, the Azéma-Yor solution of the SEP is :

$$au_{AY} := \inf \{ t > 0 : B_t^* > b(B_t) \}, \text{ with } B_t^* := \max_{s \le t} B_s$$

i.e. $\{B_{t \wedge \tau_{AY}}, t \ge 0\}$ is UI martingale and $B_{\tau_{AY}} \sim \mu$.

For later use

$$rac{c(\zeta)}{x-\zeta}$$
 decreases on $\left[0, b^{-1}(x)
ight]$ and increases on $\left[b^{-1}(x), x
ight)$

Example : the Azéma-Yor solution

Define the barycenter function :

$$b(x) := \frac{\int_x^\infty s\mu(ds)}{\int_x^\infty \mu(ds)}$$

Then, the Azéma-Yor solution of the SEP is :

$$au_{AY} := \inf \{ t > 0 : B_t^* > b(B_t) \}, \text{ with } B_t^* := \max_{s \le t} B_s$$

i.e. $\{B_{t \wedge \tau_{AY}}, t \ge 0\}$ is UI martingale and $B_{\tau_{AY}} \sim \mu$.

For later use

$$\frac{c(\zeta)}{x-\zeta}$$
 decreases on $[0, b^{-1}(x)]$ and increases on $[b^{-1}(x), x)$

Connection with our problem

• $(M_t)_{t\geq 0}$ continuous martingale, $M_0 = 0$ and $M_T \sim \mu$,

Then $M_t = B_{\langle M \rangle_t}$ and $\langle M \rangle_T$ solution of SEP

 \bullet Let τ be a solution of SEP

Then $M_t := B_{\frac{t}{T-t}\wedge \tau}$ is a continuous martingale, $M_0 = 0$ and $M_\tau \sim \mu$.

Optimal transportation The Skorohod Embedding Problem

Optimality of the Azéma-Yor solution

Let g be C^1 nondecreasing, and define :

$$H(m,x)$$
 := $\int_0^m g'(r) rac{r-x}{r-b^{-1}(r)} dr$ so that

• $\{H(B_t^*, B_t), t \ge 0\}$ is a local martingale

•
$$g(m) - H(m, x) \le g(b(x)) - H(b(x), x) =: G(x)$$

Then

$$g(B^*_{\tau}) \leq \underbrace{H(B^*_{\tau}, B_{\tau})}_{(\text{loc. mart.})_{\tau}} + G(B_{\tau})$$

and

$$\sup_{\mathbb{P}\in\mathcal{P}(\mu)}\mathbb{E}^{\mathbb{P}}\left[g(S_{T}^{*})\right] = \max_{\tau\in\mathcal{T}(\mu)}\mathbb{E}\left[g\left(B_{\tau}^{*}\right)\right] = \int G(x)\mu(dx) = \mathbb{E}\left[g\left(B_{\tau_{\mathsf{AY}}}^{*}\right)\right]$$

 Super and sub-hedging under uncertain volatility
 Numerical methods

 Connection with previous literature
 Lookback options with one known marginal distribution

 Exploiting the dual formulation
 Extension to many marginals

Outline

Super and sub-hedging under uncertain volatility

2 Connection with previous literature

- Optimal transportation
- The Skorohod Embedding Problem

3 Exploiting the dual formulation

- Numerical methods
- Lookback options with one known marginal distribution
- Extension to many marginals

(D) (A) (A)

Numerical approximation

 \bullet For every fixed $\lambda,$ build a numerical scheme to approximate the value function

$$u^{\lambda} := \inf_{\mathbb{P}\in\mathcal{P}} \mathbb{E}\left[\xi - \lambda(S_{T})\right]$$

this is a singular stochastic control, which can be characterized by an elliptic equation... finite differences

• Minimize over λ :

$$\inf_{\lambda} \mu(\lambda) - u^{\lambda}$$

numerical approximation by the gradient projection algorithm...

Xiaolu TAN...

Numerical approximation

 \bullet For every fixed $\lambda,$ build a numerical scheme to approximate the value function

$$u^{\lambda} := \inf_{\mathbb{P}\in\mathcal{P}} \mathbb{E}\left[\xi - \lambda(S_{T})\right]$$

this is a singular stochastic control, which can be characterized by an elliptic equation... finite differences

• Minimize over λ :

$$\inf_{\lambda} \mu(\lambda) - u^{\lambda}$$

numerical approximation by the gradient projection algorithm...

Xiaolu TAN...

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

ヘロト 人間ト くほト くほん

Application to Lookback derivatives

From now on :

$$\xi = g(S_T, S_T^*)$$
 where $S_T^* := \max_{t < T} S_t$

Our main results :

- recover the known explicit bounds in this context (so far, those induced by the Azéma-Yor embedding)
- extend the existing results in the case of *n* given marginals (Brown-Hobson-Rogers 98, Madan-Yor 02)

Dynamic Programming Equation – Fixed λ

Consider first the case :

$$\xi = g(S^*_T)$$
 where $S^*_T := \max_{t \in [0,T]} S_t$

Given $\lambda(.)$, the stochastic control problem is

$$u^{\lambda}(t,s,m) := \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathcal{P}}\left[g(M^{t,s,m}_{T}) - \lambda(S^{t,s}_{T})\right], \quad M^{t,s,m}_{T} := m \vee \max_{[t,T]} S^{t,s}_{\cdot}$$

 \Longrightarrow Optimal stopping representation and DPE characterization :

$$u^{\lambda}(t,s,m) = u^{\lambda}(s,m) = \sup_{\tau \in \mathcal{T}} \mathbb{E}\left[g(M^{s,m}_{\tau}) - \lambda(S^{s}_{\tau})\right]$$

$$egin{array}{lll} \min\left\{ u^\lambda - (g-\lambda), -u^\lambda_{ss}
ight\} &=& 0 ext{ for } 0 < s < m \ u^\lambda_m(m,m) = 0 \end{array}$$

Dynamic Programming Equation – Fixed λ

Consider first the case :

$$\xi = g(S^*_T)$$
 where $S^*_T := \max_{t \in [0,T]} S_t$

Given $\lambda(.)$, the stochastic control problem is

$$u^{\lambda}(t,s,m) := \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathcal{P}}\left[g(M_{T}^{t,s,m}) - \lambda(S_{T}^{t,s})\right], \quad M_{T}^{t,s,m} := m \vee \max_{[t,T]} S^{t,s}$$

 \Longrightarrow Optimal stopping representation and DPE characterization :

$$u^{\lambda}(t,s,m) = u^{\lambda}(s,m) = \sup_{\tau \in \mathcal{T}} \mathbb{E}\left[g(M^{s,m}_{\tau}) - \lambda(S^{s}_{\tau})\right]$$

$$\min \left\{ u^{\lambda} - (g - \lambda), -u^{\lambda}_{ss} \right\} = 0 \text{ for } 0 < s < m$$
$$u^{\lambda}_{m}(m, m) = 0$$

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

Lagrange Multipliers reduction

DPE implies that u^{λ} is a supersolution of

$$\min\left\{u^{\lambda}-(g-\lambda^{\text{conv}}),-u_{ss}^{\lambda}\right\} \geq 0$$

Then, it follows from comparison that :

$$u^{\lambda}(s,m) \geq u^{\lambda^{\operatorname{conv}}}(s,m) := \sup_{ au \in \mathcal{T}} \mathbb{E}\left[g(M^{s,m}_{ au}) - \lambda^{\operatorname{conv}}(S^{s}_{ au})
ight]$$

and the converse inequality is obvious. This implies that

$$U(\mu) = \inf_{\lambda'' \ge 0} \sup_{\tau \in \mathcal{T}} \mu(\lambda) + \mathbb{E} \left[g(M^{s,m}_{\tau}) - \lambda(S^{s}_{\tau}) \right]$$

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

Solving the optimal stopping problem

Given λ convex :

$$u^{\lambda}(s,m) = \sup_{\tau \in \mathcal{T}} \mathbb{E}\left[g(M^{s,m}_{\tau}) - \lambda(S^{s}_{\tau})\right]$$

assume g is C^1 increasing, then we expect that there is a boundary ψ (continuous increasing) so that :

$$u^{\lambda}(s,m) = g(m) - \lambda(s) + \int_{\psi(m)}^{s \vee \psi(m)} (s-k) \lambda''(k) dk$$

The Neuman condition provides an equation for ψ :

(ODE) $g'(m) - (m - \psi(m))\lambda''(\psi(m))\psi'(m) = 0$

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

Peskir's maximality principle

Theorem Let λ be C^2 and strictly convex. Then the following are equivalent :

- (i) $u^\lambda < \infty$
- (ii) (ODE) has a maximal solution ψ which lies strictly below the diagonal ($\psi(m) < m, m > 0$).

In this case u^{λ} is given by

$$u^{\lambda}(s,m) = g(m) - \lambda(s) + \int_{\psi(m)}^{s \vee \psi(m)} (s-k) \lambda''(k) dk$$

and $au^* := \inf \left\{ t > 0 : S_t \leq \psi(M_t) \right\}$ is an optimal stopping time.

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The explicit upper bound

W.l.o.g.
$$\lambda(S_0) = 0$$
, then :

1

$$U(\mu) = g(S_0) + \inf_{\lambda'' \ge 0} \mu(\lambda) + \int_{\psi(M_0)}^{S_0 \lor \psi(M_0)} (s - k) \lambda''(k) dk$$

$$\geq g(S_0) + \inf_{\lambda'' \ge 0} \int c(k) \lambda''(k) dk$$

$$= g(S_0) + \inf_{\lambda'' \ge 0} \int c(\psi(x)) \lambda''(\psi(x)) \psi'(x) dx$$

$$= g(S_0) + \inf_{\psi \in \dots} \int c(\psi(x)) \frac{g'(x)}{x - \psi(x)} dx \quad (ODE)$$

$$\geq g(S_0) + \int \inf_{\psi < x} \frac{c(\psi)}{x - \psi} g'(x) dx \longrightarrow \psi^*(x) = b^{-1}(x)$$

Azéma-Yor. The reverse inequality is obvious...

臣

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

The explicit upper bound

W.l.o.g.
$$\lambda(S_0) = 0$$
, then :

1

$$\begin{array}{lll} U(\mu) &=& g(S_0) + \inf_{\lambda'' \ge 0} \ \mu(\lambda) + \int_{\psi(M_0)}^{S_0 \lor \psi(M_0)} (s-k)\lambda''(k)dk \\ &\geq& g(S_0) + \inf_{\lambda'' \ge 0} \ \int c(k)\lambda''(k)dk \\ &=& g(S_0) + \inf_{\lambda'' \ge 0} \ \int c(\psi(x))\lambda''(\psi(x))\psi'(x)dx \\ &=& g(S_0) + \inf_{\psi \in \dots} \ \int c(\psi(x))\frac{g'(x)}{x - \psi(x)}dx \quad (ODE) \\ &\geq& g(S_0) + \int \inf_{\psi < x} \ \frac{c(\psi)}{x - \psi} \ g'(x)dx \ \longrightarrow \ \psi^*(x) = b^{-1}(x) \end{array}$$

Azéma-Yor. The reverse inequality is obvious...

臣

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

æ

A recursive sequence of control problems

Given *n* functions $\lambda = (\lambda_i)_{1 \le i \le n}$ define :

$$u^{\lambda} := u^0(S_0, M_0) = \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathbb{P}}\left[g(M_{t_n}) - \sum_{i=1}^n \lambda_i(S_{t_n})\right]$$

Optimal upper bound given that $S_{t_i} \sim \mu_i$, $i \leq n$:

$$\inf_{(\lambda_i)_{1\leq i\leq n}} \sum_{i=1}^n \mu_i(\lambda_i) + u^{\lambda}$$

Then, we introduce for $i = 1, \ldots, n$:

 $u^{n}(s,m) := g(m)$ $u^{i-1}(s,m) := \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[u^{i}(S_{t_{n}}, M_{t_{n}}) - \lambda_{i}(S_{t_{n}}) \middle| (S, M)_{t_{n-1}} = (s,m) \right]$

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

A recursive sequence of control problems

Given *n* functions $\lambda = (\lambda_i)_{1 \le i \le n}$ define :

$$u^{\lambda} := u^0(S_0, M_0) = \sup_{\mathbb{P} \in \mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[g(M_{t_n}) - \sum_{i=1}^n \lambda_i(S_{t_n}) \right]$$

Optimal upper bound given that $S_{t_i} \sim \mu_i$, $i \leq n$:

$$\inf_{(\lambda_i)_{1\leq i\leq n}} \quad \sum_{i=1}^n \mu_i(\lambda_i) + u^{\lambda}$$

Then, we introduce for $i = 1, \ldots, n$:

$$u^{n}(s,m) := g(m) u^{i-1}(s,m) := \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}^{\mathbb{P}} \left[u^{i}(S_{t_{n}}, M_{t_{n}}) - \lambda_{i}(S_{t_{n}}) \middle| (S, M)_{t_{n-1}} = (s,m) \right]$$

Extension of Peskir's maximality principle

Lemma Optimization can be restricted to those λ_i 's such that $\lambda^i - u^i$ is strictly convex for all i = 1, ..., n

Theorem For λ^i s.t. $\lambda^i - u^i$ is strictly convex, $u^{i-1} < \infty$ iff there is a maximal solution ψ_i of the ODE

$$\psi_i'\left(\lambda_i''(\psi_i) - u_{ss}^i(\psi_i, m)\right) = u_{sm}^i(\psi_i, m) + \frac{u_m^i(\psi_i, m)}{m - \psi_i}$$

which stays strictly below the diagonal $\psi_i(m) < m, m \ge 0$. In this case :

$$u^{i-1}(s,m) = u^{i}(s,m) - \lambda_{i}(s) + \int_{\psi_{i}(m)}^{s \vee \psi_{i}(m)} (s-k) \left(\lambda_{i}^{\prime\prime}(k) - u_{ss}^{i}(k,m)\right) dk$$

Explicit finite dimensional optimization problem

Proceeding as in the case of one marginal, we arrive at the optimization problem :

$$U(\mu_1,\ldots,\mu_n) \geq \int \inf_{0<\psi_i$$

where

$$\overline{\psi}_i := \psi_i \wedge \ldots \wedge \psi_n$$
 for all $i = 1, \ldots, n$

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

イロト 不得下 イヨト イヨト

Optimal upper bound given two marginals

The case n = 2 reduces to :

$$\inf_{\psi_i < x} \left\{ c_2(\psi_2) - \mathbb{1}_{\{\psi_2 > \psi_1\}} \left(\frac{c_1(\psi_2)}{x - \psi_2} - \frac{c_1(\psi_1)}{x - \psi_1} \right) \right\}$$

which recovers Hobson and Rogers 1998 \Longrightarrow

- $\psi_1(x) = b_1^{-1}(x)$ (Azéma-Yor)
- $\psi_2(x)$ defined by

$$\inf_{\psi_2 < x} \left\{ c_2(\psi_2) - \mathbb{1}_{\{\psi_2 > \psi_1(x)\}} \left(\frac{c_1(\psi_2)}{x - \psi_2} - \frac{c_1(\psi_1(x))}{x - \psi_1(x)} \right) \right\}$$

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

The *n*-marginals problem reduces to 2-marginals problems

• First, minimize wrt
$$\overline{\psi}_1 \leq \overline{\psi}_2$$
, given $\underline{\psi}_2, \dots, \underline{\psi}_n < x$:

$$\min_{\overline{\psi}_1 \leq \overline{\psi}_2} \left(\frac{c_1(\overline{\psi}_1)}{x - \overline{\psi}_1} - \frac{c_1(\overline{\psi}_2)}{x - \overline{\psi}_2} \right) \mathbb{1}_{\left\{ \overline{\psi}_1 < \overline{\psi}_2 \right\}}$$

• For $i \leq n$, assume $\overline{\psi}_{i-1}^*(x)$ does not depend on $\overline{\psi}_i$ on $\{\overline{\psi}_{i-1}^*(x) < \overline{\psi}_i\}$ for all $x \geq 0$. Then with $\psi_{n+1}(x) = x$:

$$\min_{\overline{\psi}_i \leq \overline{\psi}_{i+1}} \frac{c_i(\overline{\psi}_i)}{x - \overline{\psi}_i} - \left(\frac{c_{i-1}(\overline{\psi}_i)}{x - \overline{\psi}_i} - \frac{c_{i-1}(\overline{\psi}_{i-1}^*(x))}{x - \overline{\psi}_{i-1}^*(x)}\right) \mathbb{I}_{\left\{\overline{\psi}_{i-1}^*(x) < \overline{\psi}_i\right\}}$$

These steps are similar to the 2—marginals case of Brown, Hobson and Rogers...

The *n*-marginals problem reduces to 2-marginals problems

• First, minimize wrt
$$\overline{\psi}_1 \leq \overline{\psi}_2$$
, given $\underline{\psi}_2, \dots, \underline{\psi}_n < x$:

$$\min_{\overline{\psi}_1 \leq \overline{\psi}_2} \left(\frac{c_1(\overline{\psi}_1)}{x - \overline{\psi}_1} - \frac{c_1(\overline{\psi}_2)}{x - \overline{\psi}_2} \right) \mathbb{I}_{\left\{ \overline{\psi}_1 < \overline{\psi}_2 \right\}}$$

• For $i \leq n$, assume $\overline{\psi}_{i-1}^*(x)$ does not depend on $\overline{\psi}_i$ on $\{\overline{\psi}_{i-1}^*(x) < \overline{\psi}_i\}$ for all $x \geq 0$. Then with $\psi_{n+1}(x) = x$:

$$\min_{\overline{\psi}_i \leq \overline{\psi}_{i+1}} \frac{c_i(\overline{\psi}_i)}{x - \overline{\psi}_i} - \left(\frac{c_{i-1}(\overline{\psi}_i)}{x - \overline{\psi}_i} - \frac{c_{i-1}(\overline{\psi}_{i-1}^*(x))}{x - \overline{\psi}_{i-1}^*(x)}\right) \mathrm{I}_{\left\{\overline{\psi}_{i-1}^*(x) < \overline{\psi}_i\right\}}$$

These steps are similar to the 2-marginals case of Brown, Hobson and Rogers...

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

イロト 不得下 イヨト イヨト

Solving the *n*-marginals problem

Step 1 : $\psi_1^* = b_1^{-1}$

Step i : minimization over $\overline{\psi}_i \leq \overline{\psi}_{i+1}$, given $\overline{\psi}_{i-1}^*$:

• If $b_i \leq b_{i+1}$, we find $\psi_i^* = b_i^{-1}$ (this recovers Madan and Yor)

• In the general case (not covered in the literature), we rely on :

Lemma Let i = 2, ..., n be fixed, assume that $c_i \ge c_{i-1}$, and let $\overline{\psi_i}^*(x)$ be any minimizer of the Step i problem. Then, the function $x \mapsto \overline{\psi_i}^*(x)$ is nondecreasing

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

Solving the *n*-marginals problem

Step 1 : $\psi_1^* = b_1^{-1}$

- **Step i :** minimization over $\overline{\psi}_i \leq \overline{\psi}_{i+1}$, given $\overline{\psi}_{i-1}^*$:
- If $b_i \leq b_{i+1}$, we find $\psi_i^* = b_i^{-1}$ (this recovers Madan and Yor)

• In the general case (not covered in the literature), we rely on :

Lemma Let i = 2, ..., n be fixed, assume that $c_i \ge c_{i-1}$, and let $\overline{\psi_i}^*(x)$ be any minimizer of the Step i problem. Then, the function $x \mapsto \overline{\psi_i}^*(x)$ is nondecreasing

Numerical methods Lookback options with one known marginal distribution Extension to many marginals

Solving the *n*-marginals problem

Step 1 : $\psi_1^* = b_1^{-1}$

- **Step i :** minimization over $\overline{\psi}_i \leq \overline{\psi}_{i+1}$, given $\overline{\psi}_{i-1}^*$:
- If $b_i \leq b_{i+1}$, we find $\psi_i^* = b_i^{-1}$ (this recovers Madan and Yor)
- In the general case (not covered in the literature), we rely on :

Lemma Let i = 2, ..., n be fixed, assume that $c_i \ge c_{i-1}$, and let $\overline{\psi_i}^*(x)$ be any minimizer of the Step i problem. Then, the function $x \mapsto \overline{\psi_i}^*(x)$ is nondecreasing

Future projects

• Continuous-time limit (extension of Madan-Yor 02)

• Construct martingale processes corresponding to the bound

• Lower/upper bound on Variance calls given 1 (and more generally *n*) marginals,

 General theory for the treatment of stochastic control problems given marginals, i.e. optimal transportation along controlled stochastic dynamics

Future projects

- Continuous-time limit (extension of Madan-Yor 02)
- Construct martingale processes corresponding to the bound

• Lower/upper bound on Variance calls given 1 (and more generally *n*) marginals,

• General theory for the treatment of stochastic control problems given marginals, i.e. optimal transportation along controlled stochastic dynamics

Future projects

- Continuous-time limit (extension of Madan-Yor 02)
- Construct martingale processes corresponding to the bound
- Lower/upper bound on Variance calls given 1 (and more generally *n*) marginals,

• General theory for the treatment of stochastic control problems given marginals, i.e. optimal transportation along controlled stochastic dynamics

Future projects

- Continuous-time limit (extension of Madan-Yor 02)
- Construct martingale processes corresponding to the bound
- Lower/upper bound on Variance calls given 1 (and more generally *n*) marginals,
- General theory for the treatment of stochastic control problems given marginals, i.e. optimal transportation along controlled stochastic dynamics

• • • • • • • • • • • • •