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Dependences of daily stock returns: what copula?

Good afternoon to everyone.

The talk I’m going to give bases on the results of a paper we wrote together with
Jean-Philippe Bouchaud some months ago and that is currently being reviewed.

I will be presenting some empirical observations on daily stock returns and their
dependences, and argue that their distribution is not compatible with a well-known
class of multivariate distribution, namely the elliptical distributions.

I will then procede and expose our attempts in modeling the stock dependences with a

structural model, the intuition of which relies on hierarchical classification.
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Goal
Preliminary observations
Tools

Understand — and eventually model — the origin and structure of
dependences across financial data, like changes in traded stock prices,
companies default probabilities, etc.

Motivations:

◮ Risk Management (Optimal diversification, VaR, contagion and cascades,
Expected Shortfall, etc.)

◮ Optimal portfolio
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Studying dependences

Goal

The aim of this work is to isolate stylized facts regarding assets dependences, come up
with a description of the structure of dependences, and to make sense out of it.

Potential application ranges are in Risk Management and Optimal Portfolio design
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Goal
Preliminary observations
Tools

Linear covariances 〈rirj〉 are often not sufficient

◮ Crises and extreme market conditions: large events

◮ Gamma-risk of ∆-hedged option portfolios:
˙

r2
i r2

j

¸

−
˙

r2
i

¸ ˙

r2
j

¸

◮ Correlated companies defaults: tail probabilities

Higher-order correlations needed . . . but empirically noisier

The copula fashion: how relevant is this description of multivariate dependences

In what extent could alternative dependence measures be described through the
standard linear correlation coefficient? What “new” information do they
provide?
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Studying dependences

Preliminary observations

In terms of dependences, several preliminary observations and motivating questions
can be formulated.

• extreme market conditions: non-linear regime of correlations

• portfolios of derivatives with non-linear payoff: higher-order correlations of
underlying asset

• defaults: rare events

Higher order correlations: noisy, in particular for tail dependences (by definition)

The copula, and alternative measures
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Goal
Preliminary observations
Tools

Measures of dependence (pairwise)

Pearson’s correlation coefficients

ρ(d) =
Cov(Rd

i , Rd
j )

q

V[Rd
i ]V[Rd

j ]
, d ∈ N ρ(a) =

Cov(|Ri|, |Rj |)
p

V[|Ri|]V[|Rj |]

Coefficient of tail dependence

τUU(p) = P
ˆ

Ri > P−1
i< (p) | Rj > P−1

j< (p)
˜

and similarly for τLL, τUL, τLU
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Studying dependences

Tools

Measures of dependence (pairwise)

Let me introduce some tools and define the observables that I will be talking about
later

Similarly to the moments of a univariate distibution, define the covariance of the
powered variables of a pair

Tail dependence: the joint — or rather conditional — probability that one variable of
a pair is beyond its p-th quantile knowing that the other one is, too.

Symmetric, provided the marginal cdf’s are identical Pi<(p) = Pj<(p) (Bayes
formula)

Mostly interesting when p ≈ 1
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Goal
Preliminary observations
Tools

Copulas: a global picture of dependences

Sklar’s theorem: any N -variate distribution can be decomposed into

◮ its univariate marginals Pi(ri)

◮ a “copula” (or copula density) function describing the dependence
structure between N U [0, 1] r.v.: c(u1, u2, . . . , uN )

c(u, v) = dP[R1 ≤ P−1
1< (u) and R2 ≤ P−1

2< (v)]

Construction:

◮ from its very definition and properties: e.g. Archimedean copulas
Almost any c(u1, u2, . . . , uN ) with required properties is allowed

◮ Sklar’s theorem applied to mathematically convenient multivariate
distributions: e.g. Gaussian, or Elliptically Contoured copulas
Brute force parametric estimation for calibration

◮ structural model
Statistical tests are not enough: intuition and interpretation are needed
(underlying structure, mechanisms of dependence).
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Studying dependences

Tools

Copulas: a global picture of dependences

Copulas provide a global picture of dependences because, according to Sklar’s
theorem, blabla (s’arreter sur la definition)

Example for a pair (N = 2).

The copula is the joint probability that the variables are all below given quantiles of
their marginal distributions

A copula can be buid essentially in three ways:

• from definition: independence copula, Archimedean copulas (Clayton, Frank,
Joe, Gumbel, ...) . C(u) = Φ−1 (Φ(u1) + . . . + Φ(uN )),
where Φ (the generator function) is N − 2 times continuously differentiable, and
such that Φ(1) = 0, lim

u→0
Φ(u) = ∞ and Φ(N−2) is decreasing convexe.

• Sklar’s theorem: usual classes of multivariate distributions, max. likelihood

• implicit in a structural model for underlying variables



Studying dependences
Empirics

Model building and simulations

Goal
Preliminary observations
Tools

Copulas (bivariate)

Much information is located on the diagonals C(p, p) and C(p, 1−p), and in
particular at C( 1

2
, 1

2
), which is the probability that both variables are below

their median.

0 1
0

1

C(p, p)

u=p

v=p

C(p, 1−p)

u=p

v=1−p

τUU (p)

u=p

v=p

τLL(p)

τLU (p)

τUL(p)

τLL

τLU

τUL

τUU

τUU(p) =
1 − 2p + C(p, p)

1 − p
;

C(p, p) − CG(p, p)

p(1 − p)
= τUU(p)+ τLL(1−p)−1

and similarly for τLL, τUL, τLU
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Studying dependences

Tools

Copulas (bivariate)

We’re not looking at the copula over the whole space, but instead reduce the
dimension by considering only two directions: diagonals do a good job, and are
naturally linked to the coefficients of tail dependence

normalized difference with respect to gaussian case better catches fine differences, and

has interesting limits
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Elliptical distribution: definition and properties

Let R = σǫ, with ǫ ∼ N (0, Σ) and σ ∼ P(σ; ν)

Denote rij =
Σij√
ΣiiΣjj

and f (d) =
˙

σ2d
¸

/
˙

σd
¸2

Then

◮ ρ(1)

ij = rij

◮ ρ(2)

ij =
f(2)(1+2r2

ij)−1

3f(2)
−1

◮ ρ(a)

ij =
f(1)(

q

1−r2
ij

+rij arcsin rij)−1

π
2

f(1)
−1

◮ Cij(
1
2
, 1

2
) = 1

4
+ 1

2π
arcsin rij

◮ the tail dependences τ(p) have a finite limit when p → 1: simultaneous
extreme events are made possible because of the common volatility.

The linear correlation coefficient and Cij(
1
2
, 1

2
) are invariant in the class of

elliptical r.v. The tail dependence coefficients, are invariant in the subclass of
(aproximate) power-law decaying distributions.
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Studying dependences

Tools

Elliptical distribution: definition and properties

First, what are elliptically distributed variables in the language of finance?

I’m not going to be too technical, it will be sufficient here to see elliptical distributions
as generated by a stochastic volatility model of multivariate data.

ǫ is a random vector, σ is a random variable, COMMON TO ALL INDIVIDUALS, with
its own distribution P possibly indexed by a parameter ν (ex: Student, when P is
inverse-Gamma).

Pearson’s correlations are just ... the normalized elements of the dispersion matrix Σ

the higher order correlations are related to the moments of the stochastic volatility

f (2) = κσ+1
3
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Data: scope of the study
Elliptical copulas predictions and Empirical data
Conclusions

Data

◮ US daily stock returns since 1990

◮ rescaled time series

◮ a pair is only relevant if 200 common trading dates

◮ First: 6 pools (LMS Caps × 2 subperiods)

◮ Then: 4 pools (all caps over 4 subperiods)

◮ Same thing for Japan
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Empirics

Data: scope of the study

Data

rescaled time series: not a study/model of stock prices but dependences
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Data: scope of the study
Elliptical copulas predictions and Empirical data
Conclusions

absolute vs linear correlation: data and Student

2000-2004

“more Gaussian” for small ρ
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“more Gaussian” for small ρ
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Empirics

Elliptical copulas predictions and Empirical data

absolute vs linear correlation: data and Student

ρ
(a)

ij =
f(1)(

q

1−r2
ij

+rij arcsin rij)−1

π
2

f(1)
−1

, f (1) = 2
ν−2

„

Γ( ν
2
)

Γ( ν−1
2

)

«2

As a first observable, we looked at the relationship between the absolute correlation (Y
axis) and linear correlation coefficients (X axis).
The black point and dispersion bars correspond to the empirical data averaged in bins
of rho.
The coloured lines are the Student predictions (equivalent for any elliptical
distribution) for different values of the degree of freedom parameter ν
Link to tail index (lower ν, fatter tails, more probability of jointly large events)

The larger ρ, the more “Student-like” with low degree of freedom !
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Tail dependence coefficients: Time series

Cross the set of Student predictions + asymmetry
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Empirics

Elliptical copulas predictions and Empirical data

Tail dependence coefficients: Time series

I present here the time evolution of the tail dependence at a quantile level p = 0.95
(95-th centile): data in black for U and L tails. Given the time-evolving ρ, Student
descriptions predict a tail dependence , drawn here for ν = 4 and ν = ∞.

The larger ρ, the more “Student-like” with low degree of freedom !



Studying dependences
Empirics

Model building and simulations

Data: scope of the study
Elliptical copulas predictions and Empirical data
Conclusions

Center point of the copula

Cemp(
1
2
, 1

2
| ρ) 6= 1

4
+

1

2π
arcsin ρ i.e. − cos

`

2πCemp(
1
2
, 1

2
| ρ)

´

− ρ 6= 0
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Empirics

Elliptical copulas predictions and Empirical data

Center point of the copula

NOT a trivial consequence of the asymmetry in the tails !
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Conclusions

Copula diagonal: C(p,p)−CG(p,p)
p(1−p)

ρ = 0.1, 0.3, 0.5

Incompatible with a Student (ν = 5, turquoise) or Frank (blue) copula.
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Empirics

Elliptical copulas predictions and Empirical data

Copula diagonal:
C(p,p)−CG(p,p)

p(1−p)

• curvature

• tail limits

• copula center point

Frank: Φ(p) = − log e−θp
−1

e−θ
−1

The larger ρ, the more “Student-like” with low degree of freedom !
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Conclusions of the empirical study

◮ Elliptical copulas fail in describing the multivariate dependence structure
of stocks

◮ Obvious intuitive reason: one expects more than one volatility factor to
affect stocks !

◮ How to describe entanglement of volatility factors with idiosyncratic
returns?
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Empirics

Conclusions

Conclusions of the empirical study

Bla bla

We have to find something inbetween: add structure inside the vol, but depart from

“pseudo-elliptical” constructions.
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To be continued ...

Intuitions

1. Events occurence/amplitudes rely on factors

2. Factors are hierarchical. In what sense?

Take a one-factor model,
Ri = βiI0 + ηi

Empirical fact:
the dispersion of residuals ηi increases with the vol of the market index I0.

Or, expliciting the stochastic volatilities,

Ri = βiσ0ǫ0 + σα
0 σiǫi, α > 0
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Model building and simulations

Factors and hierarchy

Intuitions

Now, how to procede from here? The conclusions of the empirical study suggest a rich
structure of the volatilities. The following intuitions shall guide us toward a model of
stock dependences.

Obviously, the stock return is driven by the factor it is exposed to. (see literature on
hierarchical clustering). Here we go farther in considering hierarchy also for the
volatilities.

α > 0 (increase), but discuss α < 1 or α > 1.

α = 1 ⇒ factorize σ, so back to roughly elliptical case.
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To be continued ...

A hierarchical model

More levels generalization: the vol of the market influences that of sectors,
which in turn influence that of more indisyncratic factors.

Example: 2 levels (market + sectors) with log-normal volatilities:

I0 = ǫ0 es0ξ0

Ff = Γf I0 + ǫf eαI
f s0ξ0+sf ξf

Ri = βi Ff + ǫi eαI
i s0ξ0+αF

i sf ξf +siξi

with ǫ, ξ Gaussian.
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Model building and simulations

Factors and hierarchy

A hierarchical model

Bla bla

Spend time defining and explaining (“financial meaning”) each parameter.
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Exposure parameters

Usual way: regress Ri on Ff to get βi, and Ff on I0 to get Γf . But

◮ what is Ff and I0?

◮ endogeneity

Instead: use the predicted correlations

〈RiRj〉 =

8

<

:

1 , i = j
βiβj , fi = fj , i 6= j (same sector)
βiΓfi

βjΓfj
, fi 6= fj (diff. sector)

(Almost) no knowledge needed of what the factors are, how they are built.
Still relies on predefined hierarchical classification: for us, 9 Bloomberg sectors!

(back)
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Model building and simulations

Calibration

Exposure parameters

Bla bla
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Eigenvalues of the correlation matrix

S&P500 2000–2004
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Eigenvalues of the correlation matrix

S&P500 2000–2004
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Model building and simulations

Calibration

Eigenvalues of the correlation matrix

9 sectors

First 10 eigenvalue sorted by decreasing size

black: raw correlation matrix

red: calibration matrix of model with calibrated parameters
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Eigenvectors of the correlation matrix

S&P500 2000–2004
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Eigenvectors of the correlation matrix

S&P500 2000–2004
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Model building and simulations

Calibration

Eigenvectors of the correlation matrix

Three first eigenvectors, according to the ranking of their corresponding eigenvalues.

Evoquer le role des stocks ”bi” et l’implication en terme de cleaning des vecteurs
propres

black: raw correlation matrix
red: calibration matrix of model with calibrated parameters

CLEANING. We couldn’t have done it by naked eye (what is noise and what is

structure)
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To be continued ...

Volatility amplifiers and volatility dispersion

αI
f ≈ 0.9 − 1.5 & 1

αF
i ≈ 0 − 1 < 1 (very noisy, though)

αI
i ≈ 0.6 − 1 . 1

s0 ≈ 0.4 (νeff ≈ 5)

sf ≈ 0.15 − 0.25

si distributed around 0.37 ± 0.13
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To be continued ...

First results

Portfolio risk: the implicit cleaning scheme “calibrated model” has the lowest
out-of-sample risk, better than eigenvalue clipping.

Simulated series with estimated parameters: not everything works, but at least
the copula center does
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Dependences of daily stock returns: what copula?

Model building and simulations

Calibration

First results

linear correl: meilleur out-of-sample risque (cleaning scheme), rappeler le role des
stocks ”bi”

non-linear correl: pas très bon pour l’instant. (Theoretical) Noise reduction?

étude des résidus: α > 1 ou α < 1? Discussion
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◮ Classification algo: either rely on outside clustering techniques, or generate
moves in existing classification (e.g. Bloomberg) and evaluate a cost
function. What are the optimal moves? Cost function? (go)

◮ Revealed factor structure ⇒ noise undressing of correlation matrix (values
AND vectors !!!)

◮ Extension to account for U/L asymmetry and leverage effects

◮ Higher frequency: intra-day data

◮ Another field of application: default probabilities of companies — spreads
of CDS’s
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