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Multi-asset models I
An index is a weighted average of d stocks:

I (t) =
d
∑

j=1

xj Sj(t)

Two types of vanilla options exist:

Single-name call options pay: (Sj(T ) − K)+ at maturity T .
Index call options pay: (I (T ) − K)+ at maturity T .

Benchmark options: liquid options for which, prices are given by the
supply/demand

Figure: Implied Volatility (IV) surface of the Eurostoxx 50 index.
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Multi-asset models II

Merton model driven by a common Poisson process (Nt)t≥0:

dSj(t) = µj Sj(t)dt + σjSj(t) dBj(t) + Sj(t
−)

(

e
Y

N(t)
j − 1

)

dN(t),

with corr(Bi(t), Bj(t)) = ρ
B
i,j t, corr(Yi , Yj) = ρ

J
i,j

CEV diffusion model:

dSj(t) = r Sj(t)dt + αjS
βj

j dBj(t), corr(Bi (t), Bj(t)) = ρ
B
i,j t

Calibration: we observe prices C bid
i , C ask

i of various benchmark option
payoffs Hi with i ∈ I and look for Q (or equivalently the model
parameters) such that

C
bid
i ≤ E

Q[Hi ] ≤ C
ask
i for i ∈ I

Goal: Joint calibration to index and single-name options

Index benchmark options ⇒ (η, ρB
i,j , ρ

J
i,j) or (ρB

i,j)

ill-posed inverse problem

if d = 30 (Dow-Jones index) ⇒ large number of parameters
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Calibration approach: random mixtures of multi-asset models

Select N multi-asset models Q1, .., QN ∈ M(S)

Consider random mixtures QW , 1
N

∑N

k=1 WkQk of these models,

where (W1, · · · , WN) ∼ µN (prior distribution on weights)

For any joint distribution ν of the weights, if we impose that
1
N

∑N

k=1 Eν [Wk ] = 1 then

E
ν [QW] =

1

N

N
∑

k=1

E
ν [Wk ]Qk ∈ M(S)

defines an arbitrage-free pricing model.

Finally, we impose that the pricing model verifies the following
calibration constraints

E
ν

[

1

N

N
∑

k=1

Wk E
Qk
0 [Hi ]

]

∈ [Cbid

i ; C
ask

i ]
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Calibration approach: random mixtures of multi-asset models

Calibration: we want the posterior νN , as close as possible to µN ,
and under which the calibration constraints are satisfied, i.e.

Definition (Minimum entropy random mixture)

inf
ν∈P(RN )

E(ν|µN) := E
µN

[

dν

dµN
ln

(

dν

dµN

)]

under the constraints

∀i ∈ I, C
bid
i ≤ E

ν

[

1

N

N
∑

k=1

Wk E
Qk [Hi ]

]

≤ C
ask
i

E
ν

[

1

N

N
∑

k=1

Wk

]

= 1
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Solution to the calibration problem
Assuming (Wk) are µN -bounded, independent, and (Slater conditions):

(a) : ∃ ν ∈ C s.t. E(ν|µN ) < ∞
(b) : ∃ ǫ > 0 s.t. ]1 − ε, 1 + ǫ[⊂

{

Eν
[

1
N

∑N
k=1 Wk

]

, ν ∈ P(RN )
}

.

(c) : ∃ ν ∈ P(RN ) s.t. ∀i ∈ I

Cbid
i

< Eν
[

1
N

∑N
k=1 Wk EQk [Hi ]

]

< C ask
i

, and Eν
[

1
N

∑N
k=1 Wk

]

= 1.

Theorem (Solution to the calibration problem)

The primal problem has a unique solution νN ∈ P(RN) given by

dνN

dµN
(w) =

exp
[

1
N

∑N

k=1 wk

(
∑

i∈I(λb∗
i − λa∗

i ) EQk [Hi ] + λ∗
0

)

]

ZN(λ∗)
(1)

where (λ∗
0 , λb∗, λa∗) ∈ R × R

2 |I|
+ is the unique maximizer of

max
(λ0,λb,λa)∈R×R

2 |I|
+

{

λ0 +
∑

i∈I

(λb
i C

bid
i − λ

a
i C

ask
i ) − ln

(

Z
N(λ)

)

}

(D)

(D) is an unconstrained convex problem in finite dimension
So, the dual (D) can be solved easily, and by injecting its solution
λ

∗ into (1), we obtain νN
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Motivation for considering random mixtures I

If the weights are chosen to be deterministic, the model
uncertainty analysis which relies on the statistical approach to the
problem (particularly on the posterior distribution of the weights)
can no longer be carried out.

Moreover, for deterministic weights, the choice of the objective
function is less obvious.

The use of the relative entropy as an objective function has several
advantages:

1 It leads to a convex problem
2 The dual problem can be easily solved by gradient descent

algorithm in finite dimension
3 The dimension of the dual problem does not depend on the number

of model considered, but only on the number of constraints

If duality cannot be exploited, the dimension of the optimization
problem can be high. Indeed, in order to insure the existence of a
solution, one would have to increase the number of models, which
in turn would increase the dimension of the optimization problem.
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Motivation for considering random mixtures II

Brigo and Mercurio (2002) propose log-normal mixtures with
deterministic weights. They minimize the calibration error over the
weights and the parameters of the models, which leads to a
non-convex optimization problem!

The Bayesian flavor of this approach relies on the fact that the
weights are random with a distribution updated with market
observation.

Possible extensions of this static framework would require the
weights to evolve randomly in time (e.g. Hidden Markov models).
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Sensitivity to benchmark option prices

Knowing νN , the price of any exotic payoff X is given by:

Π(X ) = E
νN

[

1

N

N
∑

k=1

WkE
Qk [X ]

]

= E
µN

[

dνN

dµN

1

N

N
∑

k=1

WkE
Qk [X ]

]

As in (Avellaneda et al, 2001), the price Π depends on the
benchmark option prices (Ci )i ∈ I via the Lagrange multipliers
(λ∗

i )i∈I

Theorem (Sensitivities to input option prices)

By denoting ∆i the sensitivity of the exotic price Π(X ) to the input
price Ci , we have

∆i =
∂Π(X )

∂Ci

=
∑

j∈I

(H−1)ij CovνN

(

1

N

N
∑

k=1

WkEQk [X ],
1

N

N
∑

k=1

WkEQk [Hj ]

)

,

where Hij = CovνN
(

1
N

∑N

k=1 WkEQk [Hi ],
1
N

∑N

k=1 WkEQk [Hj ]
)

.
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Hedging model uncertainty

The sensitivities (∆i )i∈I correspond to the linear regression coefficients
of 1

N

∑N

k=1 WkEQk [X ] w.r.t. 1
N

∑N

k=1 WkEQk [Hi ] under νN .

Therefore, the sensitivities (∆i)i∈I solve

min
β

{

VarνN

(

1

N

N
∑

k=1

Wk E
Qk

[

X − β0 −
∑

i∈I

βiHi

])}

.

∑

i
∆iHi may be viewed as a control variate to reduce the variance

of the MC estimator.

The ∆i ’s represent a static hedge that minimizes the exposure to
model uncertainty as measured by the variance.

The calibration procedure provides the sensitivities with no
additional computational cost.
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MC algorithm for calibration/pricing/hedging

1 Generate N reference models Q1, .., QN

2 Compute model prices of index vanilla options : EQk [Hi ] for all
i ∈ I and k = 1, .., N.

3 Solve the dual problem.

4 Generate L IID samples W l = (W l
1 , .., W

l
N), for l = 1, .., L of the

model weights from the prior µN .

5 Adjust each weight Wk with density

dνk

dµk

(Wk) =
exp

[

1
N

Wk

(
∑

i∈I(λb∗
i − λa∗

i ) EQk [Hi ] + λ∗
0

)]

Zk(λ∗)
.

6 Compute model prices of the multi-asset exotic option: EQk [X ] for
all k = 1, .., N.

7 An arbitrage-free price of the exotic payoff X is given by

1

L

L
∑

l=1

1

N

N
∑

k=1

dνk

dµk

(W l
k) W

l
k πk

L→∞−→ Π(X )

8 Without running additional Monte Carlo simulation, compute the
sensitivity ∆i of Π(X ) w.r.t. Ci , by linear regression.
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Numerical results

Calibration procedure:

We consider 4 classes of multi-asset models:

(1) Merton model with intensity η = 1
(2) Merton model with intensity η = 2
(3) Merton model with intensity η = 3
(4) CEV model

We calibrate these models to single-name vanilla options available
on the market

We use the random mixture approach to calibrate the remaining
parameters: θ = {ρB

i,j} for the CEV, and θ = {ρB
i,j , ρ

J
i,j} for the

Merton (using index vanilla options):

(1) Choose a correlation structures θ = (ρB
i,j

, ρJ
i,j

) for each multi-asset

model Q1, ..., QN

(2) Choose a prior distribution µN for the weights: IID uniform, IID
truncated exponential, ...

(3) Solve the dual problem (D) with a gradient descent algorithm ⇒ λ∗

(4) From λ∗ we get νN
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Simulated data with Merton model (intensity η = 1)
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Figure: Calibrated IV of the single-names (left) and the index (right).
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Figure: Means of the weights under the posterior distribution. Data simulated
with Merton (η = 1)
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Dow Jones market data
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Figure: Calibrated IV of the DJ
index.

Terminal
η ρB ρJ correlation
1 27 % 93% 30%
5 14 % 95% 32%
5 22 % 77% 30%
10 1.3% 84% 29%
10 -1.5% 85% 28%
10 14 % 70% 28%
10 3.8% 81% 28%

Table: 7 models appear to give DJ index vanilla
prices well within the bid/ask spread
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Figure: Biggest calibration error α(Q) on the DJ index vanilla (nominal = 105)
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Quantifying model uncertainty (Cont, 2006)

We define a set Q of martingale measures on Ω (not necessary
calibrated)

Then, we penalize each element Q ∈ Q by the biggest pricing error
on the benchmark options H1, ..., H|I| using Q:

α(Q) = max
i∈I

max{(C bid
i − E

Q[Hi ])
+
, (EQ[Hi ] − C

ask
i )+}

Note: The nominal of Hi is determined by the (maximal) quantity
of the i-th option available to the investor.

For a given payoff X , we compute the convex risk measures:

π
∗(X ) = sup

Q∈Q

{

E
Q[X ] − α(Q)

}

π∗(X ) = −π
∗(−X ) = inf

Q∈Q

{

E
Q[X ] + α(Q)

}

and build a model uncertainty measure ε as:

ε(X ) = π
∗(X ) − π∗(X ).
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Model uncertainty analysis

Exotic Payoff Strike Confidence interval ǫ(X )/Π̂0(X )

X K for Π̂0(X )

(I (T ) − K)+ 138 [2.71082 ; 2.7113] 3.28%
(I (T ) − K)+ 145 [0.4591 ; 0.4596] 12.35%

(I (T ) − K)+ 1max0≤t≤T I (t)<B 138 [1.2661 ; 1.2677] 11.85%

FT
0

(

min1≤j≤d
Sj (T )

Sj (0)
− K

)+
0.8 [9.6993 ; 9.7106] 5.59%

FT
0

(

max1≤j≤d
Sj (T )

Sj (0)
− K

)+
1.1 [11.4348 ; 11.4491] 14.87%

Table: Model uncertainty measures and 95% confidence intervals for model
prices of different multi-asset exotic options. The maturity of the options is
T = 11 weeks. The barrier for the knock-out option is B = 145.
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Conclusion

We propose a method for constructing an arbitrage-free multi-asset
pricing model which is consistent with a set of observed single- and
multi-asset derivative prices.

CEV models cannot be simultaneously calibrated to index and
single-name vanilla options

Our results are consistent with previous findings, (Branger and
Schlag, 2004), which point to common jumps as an explanation for
the steepness of the index smile.

Among the Merton models which can be perfectly calibrated, the
common jump intensity and the Brownian correlations can be very
different!

Nonetheless, all calibrated models exhibit the same terminal
correlation:

ρ
T ′

i,j =
σiσjρ

B
i,j + (mi mj + ρJ

i,j

√
vi vj)η

√

σ2
i + (m2

i + vi )η
√

σ2
j + (m2

j + vj)η

Low model uncertainty for ATM and worst-of call option.

High model uncertainty for best-of, barrier, deep OTM call options.
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Comparison with the Weighted Monte Carlo Algorithm
(Avellaneda et al, 2001)

Our approach can match the Weighted Monte Carlo setting if:

1 The weights are deterministic
2 The reference probabilities Qk are chosen to be Dirac masses δωk

,
at specific market scenarios ωk ∈ Ω.

It is immediate to see that δωk
is no longer a martingale probability

since it corresponds to a specific path. Therefore, many constraints
need to be added to restore the martingality of the weighted
average 1

N

∑N

k=1 wk δωk
:

1
N(N−1)

2
constraints in discrete time (one for each pair of time)

2 Infinitely many in continuous time.

The duality approach would therefore no longer be useful to
transform the calibration procedure into a finite dimensional
optimization problem.

Hence, our approach can be seen as an arbitrage-free version of the
Weighted Monte Carlo method.
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