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We are concerned with different properties of backward stochastic differential equations and their
applications to finance. These equations, first introduced by Pardoux and Peng (1990), are useful
for the theory of contingent claim valuation, especially cases with constraints and for the theory of
recursive utilities, introduced by Duffie and Epstein (1992a, 1992b).
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0. INTRODUCTION

We are concerned with backward stochastic differential equations (BSDE) and with their
applications to finance. These equations were introduced by Bismut (1973) for the linear
case and by Pardoux and Peng (1990) in the general case. According to these authors, the
solution of a BSDE consists of a pair of adapted proce€geg) satisfying

(0.2) —dYi = f(t. Y, Zodt— ZidWs Y =&,

where f is the generator andis the terminal condition.

Actually, this type of equation appears in numerous problems in finance (as pointed out
in Quenez’s doctorate 1993). First, the theory of contingent claim valuation in a complete
market studied by Black and Scholes (1973), Merton (1973, 1991), Harrison and Kreps
(1979), Harrison and Pliska (1981), Duffie (1988), and Karatzas (1989), among others,
can be expressed in terms of BSDEs. Indeed, the problem is to determine the price of a
contingent claint > 0 of maturity T, which is a contract that pays an amogrdat time
T. In a complete market it is possible to construct a portfolio which attains as final wealth
the amount. Thus, the dynamics of the value of the replicating portfdiare given
by a BSDE with linear generatdtr, with Z corresponding to the hedging portfolio. Then
the price at time is associated naturally with the value at titnef the hedging portfolio.
However, there exists an infinite number of replicating portfolios and consequently the

1The authors are grateful to Stanley Pliska for his fruitful comments about the revision of this paper and to the
anonymous referees for their careful reading and numerous suggestions.
Manuscript received December 1994; final revision received August 1996.
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Preface

Since the founder paper of Pardoux and Peng concerning general existence and unic-
ity results appeared in 1990, Backward Stochastic Differential Equations have become
a field of increasing activity and interest, due in particular to their connections with
stochastic optimization problems where they proved to be a powerful and elegant tool
to deal with state constraints. At the time of writing, the quantity of new papers on
the topic is still increasing, and it is therefore not in our intentions to present an abso-
lutely definitive theory. However, in the last three yearé, one has begun to understand
better and better the major points of the subject and the time seems appropriate for

taking stock of it.

This was the reason for us to organize a study group on the topic of Backward
Stochastic Differential Equations at the Laboratoire de Probabilités of the University
Paris VI during the academic year 1995-96. This group was followed by specialists and
‘non specialists, and among them PhD students. Our aim was to make a complete basic
introduction to the subject as well as to present applications and recent developments
of the theory. We asked every speaker to write down a text on his conference, as
pedagogical as possible. We now present the collection of these texts and we hope
that it can be a useful bridge between what is already known and the most current
research (the interested reader may consult the program of the Colloque du Mans sur
les Equations Rétrogrades (Le Mans, June 96) to see some very new results).

The contributors were asked to make the papers as self-contained as possible. For
this reason, each chapter of the book possesses its own bibliography, as well as its
own notational system (though we tried to unify them when possible). We however
made an exception for the numbering of sections, theorems, formulas etc. .. which is
continuous and therefore univocal. As the different papers have very different sizes,
we think this could make reading easier.

Now, last but not least, we want to thank all the contibutors for their talks and pa-
pers, Liliane Ney for her help, and Longman’s Pitman Research Notes in Mathematics
Collection for having accepted to publish this collection of talks.

The Editors, Paris, October 1996
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Probability Measure Theory (Kolmogorov,1933)

Foundation of Probability Theory (Q), 7, P)
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Probability Measure Theory (Kolmogorov,1933)

Foundation of Probability Theory (Q), 7, P)

The basic rule of probability theory
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Probability Measure Theory (Kolmogorov,1933 )

The basic rule of probability theory

P(Q)) =1, P(0) =0, P(A+B)=P(A)+ P(B)

(69

P(i A) = > P(A)
i=1

i=1

The basic idea of Kolmogorov:

Using (generalized) Lebesgue integral to calculate the expectation of a
random variable X(w)

E[X] = fQ X(w)dP(w)

v
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Probability Theory

Markov Processes;

It6’s calculus: and pathwise stochastic analysis

Statistics: life science and medical industry; insurance, politics;
Stochastic controls;

Statistic Physics;

Economics, Finance;

Civil engineering;

Communications, internet;

Forecasting: Whether, pollution, - -
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Daniell Expectation (Integral) (1918):

(Q,H,E) vs. (O, F,P)

9H: alinear space of functions on () (random variables)
containingc e R,st. Xe H — |X| e H.
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Daniell Expectation (Integral) (1918):

(Q,H,E) vs. (O, F,P)

9H: alinear space of functions on () (random variables)
containingc e R,st. Xe H — |X| e H.

Linear expectation: E : H — R, s.t.
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Daniell Expectation (Integral) (1918):

(Q,H,E) vs. (O, F,P)

9H: alinear space of functions on () (random variables)
containingc e R,st. Xe H — |X| e H.

Linear expectation: E : H — R, s.t.
(@) E[X] = E[Y], if X>Y,

0 entral Limi eorem /5!



Daniell Expectation (Integral) (1918):

(Q,H,E) vs. (O, F,P)

9H: alinear space of functions on () (random variables)
containingc e R,st. Xe H — |X| e H.

Linear expectation: E : H — R, s.t.
(@) E[X] = E[Y], if X>Y,
(b) Elc] =c,
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Daniell Expectation (Integral) (1918):

(Q,H,E) vs. (O, F,P)

9H: alinear space of functions on () (random variables)
containingc e R,st. Xe H — |X| e H.

Linear expectation: E : H — R, s.t.
(@) E[X] = E[Y], if X>Y,

(b) Elc] =c,

(c) E[X+ Y] = E[X] + E[Y],
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Daniell Expectation (Integral) (1918):

(Q,H,E) vs. (O, F,P)

9H: alinear space of functions on () (random variables)
containingc e R,st. Xe H — |X| e H.

Linear expectation: E : H — R, s.t.
(@) E[X] = E[Y], if X>Y,
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Daniell Expectation (Integral) (1918):

(Q,H,E) vs. (O, F,P)

9H: alinear space of functions on () (random variables)
containingc e R,st. Xe H — |X| e H.

Linear expectation: E : H — R, s.t.
(@) E[X] = E[Y], if X>Y,

c|l =c,

X+ Y] = E[X] + E]Y],

AX] = AE[X], 1>0,

Xi] — 0,if X; | 0.

—_— — o/ —
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Daniell Expectation (Integral) (1918):

(Q,H,E) vs. (O, F,P)

9H: alinear space of functions on () (random variables)
containingc e R,st. Xe H — |X| e H.

Linear expectation: E : H — R, s.t.

X+ Y] = E[X] + E]Y],
AX] = AE[X], 1>0,
Xi] = 0,if X | 0.

| A

Daniell-Stone Theorem

There is a unique probability measure (Q, o-(H), P) such that
E[X] = |, X(w)dP(w) for each X € H.
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For nonlinear expectation:
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For nonlinear expectation:

@ Why nonlinear?
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For nonlinear expectation:

@ Why nonlinear?

@ Question on (Q), ¥, P): Is there a probability measure P for our real
world of uncertainty?
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For nonlinear expectation:

@ Why nonlinear?

@ Question on (Q), ¥, P): Is there a probability measure P for our real
world of uncertainty?

@ Many economists, statisticians, and risk analysts: it is more
reasonable to assume that P has uncertainty (called ambiguity).
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"
A risky position: {X'(w)}ic a random variable(s)

—— the value of X Is uncertain.

F. Knight (1921): Two types of uncertainty

1. “risk”. given a probability space (Q, F, P)
2. Knightian uncertainty (ambiguity):

probabability measure P Is uncertain: P € P

Ellsberg, Ambiguity aversion (1961)
urn I: 50 red balls, 50 black bolls

urn Il: 100 balls, red or black



Choquet expected utility (CEU, Schmeidler (1989))

Uceu(X) = Vvc(u(X))
= j: v(u(xX) > tdt + J‘? [V(u(X) > t) — 1]dt

V(A) = minpp P(A)

Multiple priors, Schmeidler & Gilboa (1989)

UmP(X) = minpep Ep[u(X)]



SEU CEU PT Multiple priors

Continuous Savage(1954) Gilboa(1987)
state space

U linear in de Finetti Chateauneuf Chateauneuf (1991)
money (1931,1937) (1991)

U linear in Anscombe & Schmeidler Gilboa & Schmeidler
probability Aumann (1989) (1989)

mixing (1963)

2-stage

Canonical Raifa(1968) Sarin & Wakker Sarin & Wakker

probability (1992) (1994)

Continuous U Wakker(1984) Wakker(1989) Tversky & Kahneman

tradeof consistency (1992)

Continuous U Nakamura Nakamura X

Multisymmetry (1990) (1990)

Continuous U Cul(1992) Chewé&Karni(1994) x Ghiradato et.al(2003)
act independence Ghiradato et.al(2003) Casadesus-Masanell

et al (2000)



A well-known puzzle:
why normal distribution is so widely used and abused?
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A key explanation:
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A key explanation:

Theorem (Central Limit Theorem (CLT))
{Xi}2, is assumed to be i.i.d., with

u=E[Xi], o®=E[(Xy—pu)?.

Then for each bounded and continuous function ¢ € C(R), we have

5

=
N
Nng
>
J
0

= E[p(X)], X £ N(0,?).
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Dirty work?

@ Practically, normal distributions are so frequently and widely used.

But often it is far from true that the above {X;}: , is i.i.d.
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Dirty work?

@ Practically, normal distributions are so frequently and widely used.

But often it is far from true that the above {X;}: , is i.i.d.

@ Many academic people critiqued that in many cases, i.g., in finance,
this beautiful formulation just have been widely and deeply abused:
‘dirty work’!.

0 entral Limi eorem /5!



Dirty work?

@ Practically, normal distributions are so frequently and widely used.
But often it is far from true that the above {X;}: , is i.i.d.

@ Many academic people critiqued that in many cases, i.g., in finance,
this beautiful formulation just have been widely and deeply abused:
‘dirty work’!.

@ Good dirty workers?
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A new CLT under Distribution-Uncertainty

@ We don’t assume one probability measure P;
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A new CLT under Distribution-Uncertainty

@ We don’t assume one probability measure P;

@ We don't assume X; < X;.
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A new CLT under Distribution-Uncertainty

@ We don’t assume one probability measure P;

@ We don't assume X; < X;.
@ Instead,

Xi € {Fy(x) : 6 € O} : subset of uncertain distributions .

0 entral Limi eorem /5!



Super expectation— A Robust risk valuation

E[X] = sup Eg[X] = sup | XdPy
0e® 0e® JO

{Py, 6 € ©} : the subset of uncertain probabilities.

entral Limi eorem



Sublinear expectation on (Q), H, E)
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Coherent Risk Measures and Sunlinear Expectations

Artzner, Delbean, Eber & Heath [ADEH1999]

p(X) = E[-X]

0 entral Limi eorem /5!



Robust representation of sublinear expectations

@ Huber Robust Statistics (1981).
o (ADEH, 1999)
@ Follmer & Schied (2004)
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Robust representation of sublinear expectations

@ Huber Robust Statistics (1981).
o (ADEH, 1999)
@ Follmer & Schied (2004)

IE[-] is a sublinear expectation on H if and only if there exists a subset of
linear expectation {Ey, 0 € @} such that

E[X] = sup Ey[X], VX eH.
0c®

0 entral Limi eorem /5!



Meaning of the robust representation:

E[X] = sup Ep[X], VX eH.
Pep

The size of the subset P represents the degree of
model uncertainty: The stronger the [E the more the uncertainty

A

]E1[X]>IE2[X], ¥V XeH — P1DPs
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Meaning of the robust representation:

E[X] = sup Ep[X], VX eH.
Pep

The size of the subset P represents the degree of
model uncertainty: The stronger the [E the more the uncertainty

Ei[X] 2 E2[X], VXeH < P1>P,

Advantage:

The information of uncertainty of probabilities is very well kept in IE.

0 entral Limi eorem /5!



Definition

X,Y are said to be identically distributed, denoted by X < Y, if they have
same distributions:

N

Elp(X)] = E[p(Y)]. Vo€ Co(R").
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Definition

X,Y are said to be identically distributed, denoted by X < Y, if they have
same distributions:

N

Elp(X)] = E[p(Y)]. Vo€ Co(R").

The meaning of X gy.
X and Y has the same subset of uncertain distributions.
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Definition

X,Y are said to be identically distributed, denoted by X < Y, if they have
same distributions:

N

Elp(X)] = E[p(Y)]. Vo€ Co(R").

The meaning of X gy.
X and Y has the same subset of uncertain distributions.

Distribution of of X under uncertainty

Fx[e] := Elp(X)].¢ € Cp(R")

(R", Cp(R"),Fx) forms a sublinear expectation.
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Independence under [E

Definition

Y (w) is said to be independent from X (w), denoted by Y 1 X, if we have:

E[e(X,Y)] = E[E[¢(x, Y)]x=x]. Yo(").
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Independence under [E

Definition

Y (w) is said to be independent from X (w), denoted by Y 1 X, if we have:

E[e(X,Y)] = E[E[¢(x, Y)]x=x]. Yo(").

The realization of X does not change the distribution uncertainty of Y.
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Independence under [E

Definition

Y (w) is said to be independent from X (w), denoted by Y 1 X, if we have:

E[e(X,Y)] = E[E[¢(x, Y)]x=x]. Yo(").

The realization of X does not change the distribution uncertainty of Y.

A sequence {X;}:° . is called in (Q,?—(,IE) if

i=1

Xi £ Xy and Xioq 1 (Xo, Xe, . X)), i =1,2,+
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Central Limit Theorem (CLT) [Peng 2007, 2010]

Theorem

Let {X;}*, be iid. in (Q, H,E) and E[X;] = -E[-X;] = 0. Let

im Ble (Sa/ VR)) = Ble(X)]l. X < N(O, [c%.7°).

n—oo

where 7@ = E[X?], o? = -B[-X2].
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Central Limit Theorem (CLT) [Peng 2007, 2010]

Let {X;}*, be iid. in (Q, H,E) and E[X;] = -E[-X;] = 0. Let
Sh=X1+---+ Xn. Then

lim B[p(Sn/ V)] = Ble(X)], X £ N(0, [¢%.77)).

where 7@ = E[X?], o? = -E[-X?]
In particular
1 f°° 2
o(x)e 22dx, ¢ convex,
A 72 —00
Elp (X)) =1 V2

X2
20'
wa Je 22dx ¢ concave.
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Normal distribution under Sublinear expectation

A fundamentally important sublinear distribution

Definition

A random variable X in (Q, H, ) is called normally distributed, denoted
by

X2 N, [025%) i aX+bX< a2+ b2X, Va,b>x0.

where X is an independent copy of X.
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Theorem

X 2 N(0, [0, 7)) iff, for each ¢ € Cy(R), the function
u(t,x) := Elp(x + VtX)], xeR, t>0
is the solution of the PDE

utr = G(UXX)a Ult=0 = ¢.

where G(a) = IE[2X?]: G-normal distribution.
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Law of Large Numbers (LLN)

Let{Y;}, be aiid. in (O, H,IE). Then

lim E[e
n—oo

Vit ot Ya
n

) = Elev)

Y is maximally distributed: aY + bY £ (a+ b)Y
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Law of Large Numbers (LLN)

Let{Y;}, be aiid. in (O, H,IE). Then

(Yt A
Jim Blo(MEE ) — Bjp(v)
— 00 n
Y is maximally distributed: aY + bY £ (a+ b)Y
Maximal distribution
Elp(Y)] = max ¢(v), m=EX], p=-E[-X].
ve[;_;,y]

0 entral Limi eorem /5
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CLT + LLN under Sublinear Expectation

Theorem (Peng2007, 2010)
Let{X;, Yj};2, beiid. s.t.

E[X:12] + B[ Y4]""?] < co and B[Xq] = E[-X;] = 0.
Then

A

Xi+---4+ X Yi4+...4+ Y
nlimlE[¢(1+ X Yot d Vo)
—00 ﬁ n

where (X, Y) is G-distributed with

| =Elp(X+Y). .

o 1
G(p,a) := E[pY; + EaXf]

and u(t,x) := E[p(x + ViX + tY)] solves the PDE

0 entral Limi eorem /5!



@ These new LLN and CLT plays basic roles for the case with
probability and distribution uncertainty;
Certainly more robust than the actual risk measures in finance;
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@ Statistics? Need time to digest;
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probability and distribution uncertainty;
Certainly more robust than the actual risk measures in finance;

@ Statistics? Need time to digest;
@ Many other typical sublinear distributions
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@ These new LLN and CLT plays basic roles for the case with
probability and distribution uncertainty;
Certainly more robust than the actual risk measures in finance;

@ Statistics? Need time to digest;
@ Many other typical sublinear distributions
@ Stochastic analysis, stochastic processes?
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Brownian motion under a sublinear expectation

A process {B;(w)}o in a sublinear expectation space (Q, H, ) is called
a Brownian motion under I if:

@ (i) By(w) =0,
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Brownian motion under a sublinear expectation

A process {B;(w)}o in a sublinear expectation space (Q, H, ) is called
a Brownian motion under I if:

o (i) Bo(w) =0,
o (ii) BT+S_Bt 1 (Bthtg"” ’Btn): Vt‘l,"' ,tn < t,
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Brownian motion under a sublinear expectation

A process {B;(w)}o in a sublinear expectation space (Q, H, ) is called
a Brownian motion under I if:

@ (i) Bo(w) =0,
o (ii) BT+S_Bt 1 (Bthtg"” ’Btn): Vt‘l,"' ,tn < t,
o (iii) Bis— By 2 Bs and E[|B,]/t - Oast | 0.
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Brownian motion under a sublinear expectation

A process {B;(w)}o in a sublinear expectation space (Q, H, ) is called
a Brownian motion under I if:

@ (i) Bo(w) =0,

@ (ii) Biys— Bt 1L (B, By, -+, By ), Yty -+ 1y <

o (iii) Bis— By 2 Bs and E[|B,]/t - Oast | 0.

@ Bis called a symmetric Brownian motion if IE[B;] = —-IE[-B;] = 0.
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Brownian motion under a sublinear expectation

A process {B;(w)}o in a sublinear expectation space (Q, H, ) is called
a Brownian motion under [ if:

@ (i) Bo(w) =0,

o (ii) Bs — By L (By, By . By ), Vi, oty < 1,

o (iii) Bis— By 2 Bs and E[|B,]/t - Oast | 0.

@ Bis called a symmetric Brownian motion if IE[B;] = —-IE[-B;] = 0.

Theorem ( Peng 2007)

For a symmetric Brownian motion B, (iii) <
(ii’) B £ N(0, [2t,52t]), with 72 = B[B2], 02 = —IB[-B2].
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G—Brownian

G-Brownian motion B;(w) = wy, t > 0, can in fact strongly correlated
under the unknown ‘objective probability’, it can even be have very long
memory. But it’s increments are independent. By which we can have many
advantages in analysis, calculus and computation, compare with, e.g.
fractal B.M. O

0 entral Limi eorem /5!



Construction of BM in (Q, H,E)

Main idea.
Following Kolmogorov’s approach of consistent finite dimensional

distributions.
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Following Kolmogorov’s approach of consistent finite dimensional

distributions.

@ Space of continuous paths: Q) = Cy(0, ),
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Construction of BM in (Q, H,E)

Main idea.
Following Kolmogorov’s approach of consistent finite dimensional

distributions.

@ Space of continuous paths: Q) = Cy(0, ),

@ Bi(w) =w;, we,

entral Limi eorem



Construction of BM in (Q, H,E)

Main idea.
Following Kolmogorov’s approach of consistent finite dimensional

distributions.

@ Space of continuous paths: Q) = Cy(0, ),

@ Bi(w) =wi, we),
o Hy = X(w) =1{¢(By, - ,Bt, =B, ,), ti<tit1<t, g€ Cp(RM},

7’{ - th_{t-
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Construction of BM in (Q, H,E)

Main idea.
Following Kolmogorov’s approach of consistent finite dimensional
distributions. O

@ Space of continuous paths: Q) = Cy(0, ),

@ Bi(w) =wi, we),

° 7‘-{? = X((,()) = {()D(BH?”' ’Btn - Btn_1)’ ti < ti+1 < t’ @ € Cb(Rn)}a

H = U Ht.
O
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Construction of BM in (Q, H,E)

Main idea.
Following Kolmogorov’s approach of consistent finite dimensional
distributions. O

@ Space of continuous paths: Q) = Cy(0, ),

@ Bi(w) =wi, we),

° 7‘-{? = X((,()) = {()D(BH?”' ’Btn - Btn_1)’ ti < ti+1 < t’ @ € Cb(Rn)}a

7’{ == Ut 7‘{1.
@ Define
E[X] = E[p(By,--+, Bty = By, , By, — Bty
m]
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Construction of BM in (Q, H,E)

Main idea.
Following Kolmogorov’s approach of consistent finite dimensional
distributions. O

@ Space of continuous paths: Q) = Cy(0, ),

@ Bi(w) =wi, we),

® Hy=X(w) ={¢(Byy, -+ By, = By,.y), ti <tiy1 <t, ¢ € Cp(R)},
7’{ - th_[t-

@ Define
E[X] = E[¢(By,- -, Bt,, = Bt,,» B, — Bt,_,)]

@ Consistency: automatically holds;
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Construction of BM in (Q, H,E)

Main idea.
Following Kolmogorov’s approach of consistent finite dimensional
distributions. O

@ Space of continuous paths: Q) = Cy(0, ),

@ Bi(w) =wi, we),

® Hy=X(w) ={¢(Byy, -+ By, = By,.y), ti <tiy1 <t, ¢ € Cp(R)},
7’{ - th_[t-

@ Define
E[X] = E[p(Bt,* , Bt,; = Bt, », Bt, = Bt )]
@ Consistency: automatically holds;
@ Use|-||IP:= (]E[IXIP])1/p to get the completion LP(H;) of H;.
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lt6’s integral of G—Brownian motion

For each process (1t)t=0 € of the form

N-1

MPO(0,T) i= (mi(w) = ) (@) (1), & €E2(Hy)
j=0
we define
N-1

-
’(77) = fO TI(S)st = jzofj(ij-H - Btl)
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It6’s integral of G—Brownian motion

For each process (1t)t=0 € of the form
M?0(0, T) := {ni(w) = Z ()i g, ) (1), & €LB(H,y))

we define

We have
]E[f s)dBs] =
and =
E[<fo (s)lBs)?] fOIE[u)) Jot




Under the Banach norm |||? := f()T]E[(n(t))z]dt,
I(n) : M*°(0, T) > L2(¥7) is a contract mapping

We then extend I(n) to M?(0, T) and define, the stochastic integral

an(s)st — I(n), neM(0,T).
0
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We have

(i) j: nudBy = Lr nudBy + f,.t nudBy.

(ii) [ (anu + 6,)dBy = a [} nudBy + [} 6,dBy, @ € L' (F5)
(i) BIX + [T nuaBylHs) = B[X], VX € L' (F5).
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Quadratic variation process of G-BM

We denote:
t N-1
B :52—2deB = lim Bn -B)?
( >t t 0 suTs max(tk“—tk)—)ol;( t/<V+1 tk)

(B) is an increasing process called quadratic variation process of B.

E[(B);] =7t but B[-(B)] = -t
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Quaderatic variation process of G-BM

We denote:
t N-1
B :52—2deB = lim Bn -B)?
( >t t 0 suTs max(tkﬂ—tk)—)OI;)( t/<V+1 tk)

(B) is an increasing process called quadratic variation process of B.

E[(B);] =7t but B[-(B)] = -t

B} := Bts — Bs, t > 0 is still a G-Brownian motion. We also have

(B)tys —(B)s = <Bs>t J
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We have the following isometry

T T
B f 1(s)dBs)?] = [ f 72(5)d(B)s]
neM5(0,T)
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[t6’s formula for G=Brownian motion

t t t
0 0 0
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[t0’s formula for G—Brownian motion

t t t
0 0 0

Theorem.

Let @, B and i be process in L5(0, T). Then for each t > 0 and in L5 (H;)
we have

(X)) = D(Xo) + fo B (X,)BudBo + fo @ (Xe)audu

f 1
+ fo [@x(Xo)u + 5 Poc(Xu)BT]d (B
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Stochastic differential equations

Problem
We consider the following SDE:

t t t
xt:xo+f b(XS)ds+f h(XS)d(B)s+f o(Xs)dBs, t > 0.
0 0 0

where Xo € R" is given

b,h,o : R" — R" are given Lip. functions.

The solution: a process X € M2 (0, T;R") satisfying the above SDE.
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Stochastic differential equations

Problem

We consider the following SDE:

t t t
xt:xo+f b(XS)ds+f h(XS)d(B)s+f o(Xs)dBs, t > 0.
0 0 0

where Xo € R" is given
b,h,o : R" — R" are given Lip. functions.

The solution: a process X € Mé(o, T;R") satisfying the above SDE.

| A

Theorem

There exists a unique solution X € Mé(o, T;R") of the stochastic
differential equation.

\
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@ Risk measures and pricing under dynamic volatility uncertainties
([A-L-P1995], [Lyons1995]) —for path dependent options;

@ Stochastic (trajectory) analysis of sublinear and/or nonlinear Markov
process.
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@ Risk measures and pricing under dynamic volatility uncertainties
([A-L-P1995], [Lyons1995]) —for path dependent options;

@ Stochastic (trajectory) analysis of sublinear and/or nonlinear Markov
process.

@ New Feynman-Kac formula for fully nonlinear PDE:
path-interpretation.

u(t x) = IEX[(Bgexp(fotc(Bs)ds)]

du = G(D?u) + c(X)u, Uuli=o = @(x).
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@ Risk measures and pricing under dynamic volatility uncertainties
([A-L-P1995], [Lyons1995]) —for path dependent options;

@ Stochastic (trajectory) analysis of sublinear and/or nonlinear Markov
process.

@ New Feynman-Kac formula for fully nonlinear PDE:
path-interpretation.

u(t x) = IEX[(Bgexp(fotc(Bs)ds)]

du = G(D?u) + c(X)u, Uuli=o = @(x).

@ Fully nonlinear Monte-Carlo simulation.
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@ Risk measures and pricing under dynamic volatility uncertainties
([A-L-P1995], [Lyons1995]) —for path dependent options;

@ Stochastic (trajectory) analysis of sublinear and/or nonlinear Markov
process.

@ New Feynman-Kac formula for fully nonlinear PDE:
path-interpretation.

u(t x) = IEX[(Bgexp(fotc(Bs)ds)]

du = G(D?u) + c(X)u, Uuli=o = @(x).
@ Fully nonlinear Monte-Carlo simulation.
@ BSDE driven by G-Brownian motion: a challenge.
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Probability Space

Nonlinear Expectation Space

Central Limit Theorem

(Q, F, P) (2, H, E)
Distribution | Distribution
X 4y X Ly
Independence Independence
VI X Y 1L X

Normal distribution Maximal distr. Normal distr.

N(, o%) M([u, i) N(O, [o2, 52])
Law of Large Numbers LLN CLT

Brownian Motion
Bt(a)) =

G-Brownian Motion
Bt(a)) —




Quadratic variation
process

<B>t =t
(B); : @ non-symmetric Brownian

Iltd’'s formula

dXt — ,BtdBt + Oltdt

dD(X) = OxD(X)dX,

+ 5 OB (X,) Bl

G-Ité’'s formula

dXt — ﬂtdBt + ntd<B>t + atdt

dD(X) = OxD(X)dX:

+ 5 BRD(X) BRA(B),




I

SDE (Q H,P) dx; = b(x))dt + o(x;)dB;
(Q, H, E) dx; = b(Xydt + o(x;)dB; + ﬂ(Xr)d(B}t
Heat equation o = Au
G-Heat equation U = G(Du. D2u)
i t
Reprosentaion | EDXVF = BIX] + [ 2:08,
EXIF] = EIX] + [ zdBs + K

2 t t
Ki = jo nsd(B), — jo 2G(ns)ds




Results and Prospectives

@ [Peng, 2004-2010] on (fully) Nonlinear expectations, nonlinear
Markov processes, G—Expectation, G—Brownian Motion, LLN and
CLT and relation with fully nonlinear PDE.
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Results and Prospectives

@ [Peng, 2004-2010] on (fully) Nonlinear expectations, nonlinear
Markov processes, G—Expectation, G—Brownian Motion, LLN and
CLT and relation with fully nonlinear PDE.

@ [Denis, Martini 2006], [Cheridito, Soner, Touzi, Victor2007 ], [Zhang,
Xu 2009], [Gao2009, 2010], [Lin2009,2010], [Lin, Y. 2010]
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Results and Prospectives

@ [Peng, 2004-2010] on (fully) Nonlinear expectations, nonlinear
Markov processes, G—Expectation, G—Brownian Motion, LLN and
CLT and relation with fully nonlinear PDE.

@ [Denis, Martini 2006], [Cheridito, Soner, Touzi, Victor2007 ], [Zhang,
Xu 2009], [Gao2009, 2010], [Lin2009,2010], [Lin, Y. 2010]

@ [Hu, Denis, Hu 2009], [Hu, 2009], [Hu, Peng2009], [Xu, Zhang 2010],
[Li, Hu2009],
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Results and Prospectives

@ [Peng, 2004-2010] on (fully) Nonlinear expectations, nonlinear
Markov processes, G—Expectation, G—Brownian Motion, LLN and
CLT and relation with fully nonlinear PDE.

@ [Denis, Martini 2006], [Cheridito, Soner, Touzi, Victor2007 ], [Zhang,
Xu 2009], [Gao2009, 2010], [Lin2009,2010], [Lin, Y. 2010]

@ [Hu, Denis, Hu 2009], [Hu, 2009], [Hu, Peng2009], [Xu, Zhang 2010],
[Li, Hu2009],

@ [Soner, Touzi, Zhang, 2009-2010a,b,c,d], [Hu, Y.-Peng2010], [Song,
2010a] 2010b].
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