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Motivation

The coexistence of a liquid market for options and volatility
derivatives such as VIX options, VIX futures

a well developed over-the-counter market for options on variance
swaps, and

the use of variance swaps and volatility index futures as hedging
instruments

have led to the need for a pricing framework in which volatility derivatives
and derivatives on the underlying asset can be priced in a consistent
manner.
In order to yield derivative prices in line with their hedging costs, such
models should be based on a realistic and consistent joint dynamics of the
underlying asset and their variance swaps and match the observed prices of
liquid derivatives –futures, calls, puts and variance swaps– used as hedging
instruments.
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Motivation: Market Models of Volatility

In principle, any continuous-time model with stochastic volatility
and/or jumps implies some joint dynamics for variance swaps and the
underlying asset price but in practice this joint dynamics can be
highly intractable and/or unrealistic (Bergomi 2004).
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Motivation: Market Models of Volatility

In principle, any continuous-time model with stochastic volatility
and/or jumps implies some joint dynamics for variance swaps and the
underlying asset price but in practice this joint dynamics can be
highly intractable and/or unrealistic (Bergomi 2004).

Opposed to the modeling of instantaneous (unobservable) volatility, a
modeling approach motivated by the availability of variance swap/VIX
quotes is proposed in Dupire (1993) and recently developed in
Bergomi (2005,2008), Buehler (2006), and Gatheral (2008), in which
volatility risk is modelled through observable volatility indicators, such
as spot and forward variance swap rates (or spot VIX and VIX
futures),
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Motivation: Objectives

We propose an arbitrage-free modeling framework for the joint dynamics
of forward variance swap rates along with the underlying index, which

1 captures the information in index option prices by matching the index
implied volatility smiles.

2 can reproduce the term structure of variance swap rates

3 captures the information in options on VIX futures by matching their
prices/smiles.

4 is compatible with empirical properties of index/ variance swap
dynamics, allowing in particular for jumps in volatility and returns
(see e.g. Todorov and Tauchen (2010), Jacod and Todorov (2009))
and the type of correlations observed in data.

5 enables efficient pricing of vanilla options, a key point for calibration
and implementation of the model.
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Figure: Time series of the VIX index (bottom) depicted together with the S&P
500 (top) covering the period from September 22nd, 2003 to February 27th, 2009.

Thomas Kokholm (ASBSS, AU) January 13th, 2011 6 / 31



Conditional Correlation

Table: Conditional correlation between the daily returns on S&P 500 and the VIX from
September 22nd, 2003 to February 27th, 2009, given the index return rt is below a threshold.

Unconditional rt < −6.5% rt < −5% rt < −4% rt < −3% |rt | < 0.5%
-0.74 -0.88 -0.55 -0.45 -0.24 -0.45
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Figure: Conditional correlation implied by data on S&P 500 and the VIX compared to
simulated correlated Gaussian returns with same unconditional correlation of -0.74.

Thomas Kokholm (ASBSS, AU) January 13th, 2011 7 / 31



Variance Swaps and Forward Variances

Variance swaps (VS) offer investors an efficient way to take positions in
pure volatility/variance.

At maturity T a VS pays the difference between the annualized
realized variance of the log-returns RVt,T less the VS rate V T

t

RVt,T − V T
t =

M

k

k

∑
i=1

(

log
Sti
Sti−1

)2

− V T
t .

where M is the total number of measurement points in one year (i.e.
trading days per year (252) if k is the number of trading days
between t and T ).
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Variance Swaps and Forward Variances

Variance swaps (VS) offer investors an efficient way to take positions in
pure volatility/variance.

At maturity T a VS pays the difference between the annualized
realized variance of the log-returns RVt,T less the VS rate V T

t

RVt,T − V T
t =

M

k

k

∑
i=1

(

log
Sti
Sti−1

)2

− V T
t .

where M is the total number of measurement points in one year (i.e.
trading days per year (252) if k is the number of trading days
between t and T ).

As sup (ti+1 − ti ) → 0 the realized variance converges towards the
quadratic variation of the log-price

M

n

n

∑
i=1

(

log
Sti

Sti−1

)2
Q

−→
1

T − t
([log S ]T − [log S ]t) . (1)
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V T
t is determined such that the VS has zero price at initiation, so taking

risk neutral expectation on RHS in (1)

V T
t =

1

T − t
E ([log S ]T − [log S ]t | Ft) . (2)

The forward variance between time T1 and T2 is defined as

V T1,T2
t =

1

T2 −T1
E
(

[log S ]T2
− [log S ]T1

| Ft

)

(3)

=
(T2 − t)V T2

t − (T1 − t)V T1
t

T2 −T1
, (4)

where t < T1 < T2. Notice, V
T1,T2
t market data since V

T1
t and V

T2
t are.

Take a tenor structure with Ti+1 − Ti = τ and define

V i
t ≡ V

Ti ,Ti+1
t .

Forward variances are martingales under the risk neutral measure.

We model the observables V i
t .
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Model: Variance Swap Dynamics

We model the forward variance swap rate as an exponential martingale
with a diffusion and jump component:

V i
t = V i

0e
X i
t

= V i
0 exp

{

∫ t

0
µi
sds +

∫ t

0
ωe−k1(Ti−s)dZs +

∫ t

0

∫

R
e−k2(Ti−s)xJ (dxds)

}

,

(5)

where J (dxdt) is a random measure with non-random compensator
ν (dxdt) = ν (dx) dt, Z a Wiener process, independent of the jump term.
To ensure that the above is a martingale, the drift equals

µi
t = −

1

2
ω2e−2k1(Ti−t) −

∫

R
ν (dx)

(

exp
{

e−k2(Ti−t)x
}

− 1
)

.

For t > Ti we let V i
t = V i

Ti
.

For proper choice of ν, we know the characteristic function of X i
Ti

so
options on VSs can be priced by fast Fourier transform methods (Carr
and Madan 1999) → Computationally very efficient.
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Model: Index Dynamics

Once the dynamics of forward variance swaps V i
t for a discrete set of

maturities Ti , i = 1..n has been specified, we look for a specification of the
(risk neutral) dynamics of the underlying asset (St)t≥0 such that

1 it is consistent with variance swap dynamics:

∀i = 1..n,
1

Ti+1 − Ti

E [ [log S ]Ti+1
− [log S ]Ti

|Ft ] = V i
t (6)

2 the model values of calls/puts on S match the observed prices across
strikes and maturities.

Typically we need at least two distinct parameters/degrees of freedom in
the dynamics of the underlying asset in order to accommodate points 1)
and 2).
Bergomi (2005,2008) proposes to achieve this by introducing a random
”local volatility” function which is reset at each tenor date Ti to match
the observed value of V i

Ti
. This leads to a loss of tractability: even vanilla

call options need to be priced by Monte Carlo simulation when their
maturity T > T1.
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Our choice for the stock dynamics is then for t = Tm,m = 1, ..., n

STm
= S0 exp

{

∫ Tm

0
(rs − qs) ds +

m−1

∑
i=0

µi (Ti+1 −Ti ) + σi
(

WTi+1
−WTi

)

+
m−1

∑
i=0

∫ Ti+1

Ti

∫

R
ui
(

x ,V i
Ti

)

J (dxds)

}

,

where µi = − 1
2σ2

i −
∫

R
ν (dx)

(

e
ui

(

x ,V i
Ti

)

− 1

)

, the σi s are stochastic

and fixed/revealed at time Ti to match the known V i
Ti
. The drift terms

µi are also stochastic and FTi
-measurable. J in the stock index dynamics

is the same as that in the VS dynamics, so the two jump simultaneously
but in opposite directions. ui is a deterministic function of x and V i

Ti

chosen to match the observed implied volatility smiles. W is independent
of J but dWtdZt = ρdt.

Presence of a jump component as well as a diffusion component in
the underlying asset allows us to satisfy the points 1) and 2).
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Fitting the Variance Swaps

Remember

V i
t =

1

Ti+1 −Ti

E

(

[log S ]Ti+1
− [log S ]Ti

| Ft

)

.

In our model we have

V i
t = E

[

σ2
i | Ft

]

+ E

[

∫

R
ui
(

x ,V i
Ti

)2
ν (dx) | Ft

]

,

but since V i
t is a martingale we just have to ensure at time Ti that

V i
Ti

= σ2
i +

∫

R
ui
(

x ,V i
Ti

)2
ν (dx) . (7)

The observed forward variances at times Ti s can be matched by
appropriate choices of the σi s, which leaves the parameters in ui free to
calibrate to option prices.
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Pricing of Vanilla Options

For the model to be consistent with market prices of call/put options
we need to be able to compute efficiently

C (0,S0,Tm,K ) = e−
∫ Tm
0

rsdsE [(STm
− K )+|F0]. (8)
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Pricing of Vanilla Options

For the model to be consistent with market prices of call/put options
we need to be able to compute efficiently

C (0,S0,Tm,K ) = e−
∫ Tm
0

rsdsE [(STm
− K )+|F0]. (8)

Denote by F
(Z ,J)
t the filtration generated by the Wiener process Z

and the Poisson random measure J. By first conditioning on the
factors driving the variance swap curve and using the iterated
expectation property

C (0,S0,Tm,K ) = e−
∫ Tm
0

rsdsE [E [(STm
− K )+|F

(Z ,J)
Tm

] |F0] (9)

we obtain a mixing formula à la Hull-White for valuing call options:
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Proposition

The value C (0,S0,K ,Tm) of a European call option with maturity Tm

and strike K is given by

C (0,S0,K ,Tm) = EZ ,J [CBS (S0e
um ,K ,Tm; σ∗)], (10)

where CBS(S ,K ,T ; σ) denotes the Black-Scholes formula and

σ2
∗ =

1

Tm

m−1

∑
i=0

σ2
i

(

1− ρ2
)

(Ti+1 −Ti ) , (11)

um =

{

m−1

∑
i=0

−

(

1

2
σ2
i ρ2 +

∫

R

(

e
ui

(

x ,V i
Ti

)

− 1

)

ν (dx)

)

(Ti+1 −Ti )

ρ
(

ZTi+1
− ZTi

)

σi +
∫ Ti+1

Ti

∫

R
ui (x ,V

i
Ti
)J(dx ds)

}
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Note that the outer expectation can be computed by Monte Carlo
simulation of the Z and J: with N simulated sample paths for Z and
J we obtain the following approximation

C (0,S0,K ,Tm) '
1

N

N

∑
k=1

CBS
(

S0e
u
(k)
m ,K ,Tm; σ∗ (k)

)

. (12)
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Note that the outer expectation can be computed by Monte Carlo
simulation of the Z and J: with N simulated sample paths for Z and
J we obtain the following approximation

C (0,S0,K ,Tm) '
1

N

N

∑
k=1

CBS
(

S0e
u
(k)
m ,K ,Tm; σ∗ (k)

)

. (12)

Since the averaging is done over the variance swap factors Z and J,
this is a deterministic function of the parameters in the uis. This will
prove very useful when calibrating the model using option data, since
we do not have to run the N Monte Carlo simulations for each
calibration trial.
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Note that the outer expectation can be computed by Monte Carlo
simulation of the Z and J: with N simulated sample paths for Z and
J we obtain the following approximation

C (0,S0,K ,Tm) '
1

N

N

∑
k=1

CBS
(

S0e
u
(k)
m ,K ,Tm; σ∗ (k)

)

. (12)

Since the averaging is done over the variance swap factors Z and J,
this is a deterministic function of the parameters in the uis. This will
prove very useful when calibrating the model using option data, since
we do not have to run the N Monte Carlo simulations for each
calibration trial.

Equation (12) is important since it shows that we are able, in a cost
efficient way, to calibrate the model to the entire implied volatility
smile for various maturities. In the Bergomi models it is only possible
to calibrate to at-the-money slope of the implied volatility (ATM
skew).
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Fitting the Term Structure of Variance Swaps
Example: Gaussian Jumps

We specify the Lévy measure as ν (dx) = λf (x) dx , where f is the
density for the normal distribution with mean m and variance δ2 and
λ the intensity of the jumps.

We let the uis be given by

ui
(

x ,V i
Ti

)

=

(

V i
Ti

V i
0

) 1
2

bix . (13)

This gives us the σi s at time Ti

σ2
i = V i

Ti
− λ

V i
Ti

V i
0

(

b2i m
2 + b2i δ2

)

.

In order to achieve non-negative values for σ2
i we require that

λ
(

b2i m
2 + b2i δ2

)

≤ V i
0. (14)
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Example: Double-Exponential Jumps

The jump size density is chosen as

f (x) =
(

pα+e
−α+x1x≥0 + (1− p) α−e

−α−|x |1x<0

)

(15)

where p denote the probability of a positive jump and 1/α+ and
1/α− the mean positive and negative jump sizes.
We take as before

ui
(

x ,V i
Ti

)

=

(

V i
Ti

V i
0

) 1
2

bix , (16)

which yields

σ2
i = V i

Ti
− λ

V i
Ti

V i
0

(

2pb2i
α2
+

+
2 (1− p) b2i

α2
−

)

.

To ensure positive σi s we constrain the calibration by

λ

(

2pb2i
α2
+

+
2 (1− p) b2i

α2
−

)

≤ V i
0. (17)
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Data

In total, we have data from August 20th, 2008 on a range of:

VIX put and call options for five maturities.

call and put options on S&P 500 for six maturities.

dividend yield and futures prices on S&P 500, from which we also
derive a discount curve.

forward 1 month VS rates for various maturities extracted from
Bloomberg.
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Calibration

The calibration of the model consists of three steps:

1 First, determine the parameters controlling the VS dynamics by
calibration to VIX options using fast Fourier transform methods (here
a convexity approximation is performed in order to go from forward
VS dynamics to VIX futures dynamics).
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The calibration of the model consists of three steps:

1 First, determine the parameters controlling the VS dynamics by
calibration to VIX options using fast Fourier transform methods (here
a convexity approximation is performed in order to go from forward
VS dynamics to VIX futures dynamics).

2 Then, use the parameters from first step simulate N paths of the VSs
and store the increments of Z , the jump times and jump sizes along
with the V i

Ti
s.
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Calibration

The calibration of the model consists of three steps:

1 First, determine the parameters controlling the VS dynamics by
calibration to VIX options using fast Fourier transform methods (here
a convexity approximation is performed in order to go from forward
VS dynamics to VIX futures dynamics).

2 Then, use the parameters from first step simulate N paths of the VSs
and store the increments of Z , the jump times and jump sizes along
with the V i

Ti
s.

3 Now calibrate to options on the stock index recursively by use of (12)

C (S0,K ,T ; u) =
1

N

N

∑
k=1

CBS
(

S0e
u
(k)
m ,K ,T ; σ∗ (k)

)

.
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In the calibration steps we minimize the objective function on
out-of-the-money options

SE = ∑
options

1

QAsk −QBid

(QMarket,Mid −QModel )
2 (18)

and we report the corresponding resulting calibration error given by

Error =
1

# {options} ∑
options

max
{

(QModel −QAsk)
+ , (QBid −QModel )

+
}

QMarket,Mid

.

(19)
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Figure: VIX implied volatility smiles on August 20th 2008 for the model with
normally distributed jumps plotted against moneyness m = K/VIXt on the x

axis. Compare with downward sloping in the Heston model.
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Figure: S&P 500 implied volatility smiles on August 20th 2008 for the model with
normally distributed jumps plotted against moneyness m = K/St on the x axis.
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Table: Calibrated parameters for the two models from the VIX volatility smiles on
August 20th, 2008 together with the resulting calibration error. The top panel
corresponds to the normally distributed jumps and the bottom to the double
exponentially distributed jumps.

Normal jumps

λ ω k1 k2 m δ Error (%)
3.5201 2.0389 21.9623 2.0743 0.5394 0.2468 0.64

Double exponential jumps

λ ω k1 k2 p α+ α− Error (%)
13.5938 1.9765 22.3033 2.2020 0.8663 4.2457 19.9055 0.85
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Table: Model parameters calibrated from the S&P 500 volatility smiles on August
20th, 2008 together with the resulting calibration error. The correlation between
the two Brownian components set to -0.45. The second and third row in each
panel correspond to the mean and variance of the jumps before scaling with
(

V i
Ti

/V i
0

) 1
2
.

i 0 1 2 3 4 5

Gaussian jumps

bi -0.140 -0.161 -0.162 -0.187 -0.198 -0.199
bim -0.075 -0.087 -0.088 -0.101 -0.107 -0.107
|bi δ| 0.034 0.040 0.040 0.046 0.049 0.049
Error (%) 3.9 0.6 0.6 1.5 1.2 1.3

Double exponential jumps

bi -0.141 -0.159 -0.158 -0.187 -0.195 -0.192
(

bi p
α+

− bi (1−p)
α−

)

-0.028 -0.031 -0.031 -0.037 -0.039 -0.038
(

b2i p

α2+
+

b2i (1−p)

α2−

) 1
2

0.031 0.035 0.035 0.041 0.043 0.042

Error (%) 2.7 0.7 1.1 1.8 1.3 1.8
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Stability: Calibration to Another Date

Table: Parameters calibrated to options on July 16th, 2008. Top panel is to VIX
options and bottom S&P 500 options.

Gaussian jumps

λ ω k1 k2 m δ Error (%)
3.52∗ 2.04∗ 19.9 1.22 0.45 0.21 0.43
Double exponential jumps

λ ω k1 k2 p α+ α− Error (%)
13.6∗ 1.98∗ 19.8 1.36 0.86∗ 4.90 15.8 0.38
∗ Fixed parameter from the calibration on August 20th 2008.

i 0 1 2 3 4 5

Gaussian jumps

bi -0.201 -0.233 -0.237 -0.237 -0.259 -0.234
Error (%) 2.9 1.5 0.4 1.4 0.6 1.2
Double exponential jumps

bi -0.203 -0.232 -0.234 -0.235 -0.250 -0.226
Error (%) 2.2 1.7 0.8 1.9 0.7 2.0
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Contribution of Jumps to the Forward Variance Swap Rate

The error from neglecting jumps is given by

εi = −2E







∫

R






e
ui

(

x,V i
Ti

)

− 1− ui

(

x ,V i
Ti

)

−
ui

(

x ,V i
Ti

)2

2






ν (dx) | F0






.

Table: The error contribution of jumps to the forward variance swap rates,
relative to the forward variance swap rate.

Start (months) 0 1 2 3 4 7
End 1 2 3 4 7 10

Gaussian jumps
ε i
V i
0
(%) 1.9 2.3 2.9 3.4 4.3 4.5

Double exponential jumps
ε i
V i
0
(%) 1.9 2.4 2.8 3.6 4.3 4.5
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Exotic Derivatives Examples

The forward straddle has time T2 payoff

|ST2
− ST1

|,

where we in the pricing example choose the time points equal to T1 = 5
months and T2 = 10 months.
The reverse cliquet has a final time Tn payoff of

max

{

0,C +
n

∑
i=1

min

{

STi
− STi−1

STi−1

, 0

}

}

,

where the returns are observed monthly, Tn = 10 months and C = 30%.

Table: Confidence intervals of prices computed with 2 million simulations.

Gaussian jumps Double exponential jumps

Forward Straddle [139.51, 139.83] [139.70, 140.01]
Reverse Cliquet [0.1065, 0.1068] [0.1033, 0.1036]
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Conclusion

A model for the joint dynamics of a set of forward variance swap rates
and the underlying index.

Using Lévy processes as building blocks leads to tractable pricing for
VIX futures and options (Fourier) and vanilla call/put options
(Hull-White type formula).

This tractability makes calibration to such instruments feasible and
distinguishes our model from (Bergomi 2005,2008, Gatheral 2008)
which require full Monte Carlo pricing of vanilla options.

Our model reproduces salient empirical features of variance swap
dynamics- strong negative correlation of large index moves with VIX
moves, positive skew observed in implied volatilities of VIX options-
by introducing a common jump component in the variance swaps and
the underlying asset.

Enables to price and hedge payoffs sensitive to forward volatility,
consistently with market prices of calls, puts or variance swaps
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Thanks to the organisers and thank you for your attention!
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