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The classical one-dimensional case

We extend the following theorems on risk measures, which are
well-known for the one-dimensional case, to the d-dimensional
case.

We work on a standard probability space (Ω,ℱ ,ℙ).
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Reminder

A function % : L∞(Ω,ℱ ,ℙ)→ ℝ is called law invariant if X ∼ Y ,
i. e. law(X ) = law(Y ), implies that %(X ) = %(Y ).

For F ∈ L1+(Ω,ℱ ,ℙ) normalized by E[F ] = 1, we define the law
invariant risk measure %F : L∞(Ω,ℱ ,ℙ)→ ℝ by

%F (X ) = sup
X̃∼X

E[−X̃F ] = sup
F̃∼F

E[−XF̃ ].

The measures %F have the following co-monotonicity property.
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Definition

A risk measure % : L∞(Ω,ℱ ,ℙ)→ ℝ is called co-monotone if, for
co-monotone random variables X ,Y , we have

%(X + Y ) = %(X ) + %(Y ).

Recall that X is co-monotone to Y iff
[X (!)− X (!′)] ⋅ [Y (!)− Y (!′)] ≥ 0, for ℙ⊗ ℙ almost all
(!, !′) ∈ Ω× Ω. We write X ∼c Y .
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Theorem A (Kusuoka, 2001)

For a law invariant convex risk measure % : L∞(Ω,ℱ ,ℙ)→ ℝ
t.f.a.e.
(i) % is co-monotone.
(ii) There is F ∈ L1(Ω,ℱ ,ℙ) and 0 ≤ � ≤ 1 s.t.

%(X ) = �%F (X ) + (1− �)ess sup(−X )
=: �%F (X ) + (1− �)%∞(X ).

(iii) % is strongly cohorent, i.e.

%(X ) + %(Y ) = sup
X̃∼X ,Ỹ∼Y

%(X̃ + Ỹ ).
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The equivalence (i) ⇔ (ii) is due to Kusuoka.
Property (iii) is easily seen to be equivalent to (i) in the
one-dimensional setting.
While it is – a priori – not clear how to extend the notion (i) of
co-monotonicity to the vector-valued setting, the notion (iii) of
strong coherence extends to the vector-valued case on an obvious
way. This is the reason why Ekeland-Galichon-Henry (2009)
introduced this notion (in the vector valued setting).

Here is the second theorem which we state for the one-dimensional
case, and later extend to the d-dimensional one.
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Theorem B (Kusuoka,2001)

Let % : L∞(Ω,ℱ ,ℙ)→ ℝ be a law invariant convex risk measure.
Then there is a function v : [0, 1]× P → [0,∞] such that

%(X ) = max
(�,F )∈[0,1]×P

{�%F (X ) + (1− �)%∞(X )− v(�,F )} .
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The d-dimensional case

Definition

A convex risk measure on ℝd is a function
% : L∞(Ω,ℱ ,ℙ;ℝd)→ ℝ s.t.
(i) (normalization) %(0) = 0,,
(ii) (monotonicity) X ≥ Y ⇒ %(X ) ≤ %(Y ),
(iii) (cash invariance) %(X + m1) = %(X )−m, for m ∈ ℝ,
(iv) (convexity)
%(�X + (1− �)Y ) ≤ �%(X ) + (1− �)%(Y ), for 0 < � < 1.

We call % coherent if, in addition,
(v) (positive homogeneity) %(�X ) = �%(X ), for � ≥ 0.
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On the standard probability space (Ω,ℱ ,ℙ) we now denote by P
the subset of L1+(Ω,ℱ ,ℙ;ℝd) of normalized functions F taking
their values in ℝd

+,

P =

{
F = (Fi )

d
i=1 ∈ L1(Ω,ℱ ,ℙ;ℝd) : Fi ≥ 0,E

[
d∑

i=1

Fi

]
= 1

}
.
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Definition (Rüschendorf)

For given F ∈ P we define %F , the maximal correlation risk
measure in the direction F , by

%F (X ) = sup
X̃∼X

E
[
−(X̃ ,F )

]
= sup

F̃∼F
E
[
−(X , F̃ )

]
.

Note that %F only depends on the law of F .
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Proposition (Rüschendorf)

A coherent (resp. convex) risk measure % : L∞d → ℝ is law
invariant if and only if it can be represented as

%(X ) = sup
F∈C

%F (X )

resp. %(X ) = sup
F∈C
{%F (x)− v(F )}

where C is a subset of P and v : C → ℝ+ a non-negative function
defined on C .
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Apart from the risk measures %F , where F ∈ P, a second type of
risk measures will play a special role. It generalizes the maximal
loss measure from the one- to the d-dimensional case.

W. Schachermayer joint work in progress with I. Ekeland Law invariant convex risk measures on ℝd



Definition

For � ∈ Sd , where

Sd :=

{
� ∈ ℝd : �i ≥ 0,

d∑
i=1

�i = 1

}
,

we define the maximal loss measure in the direction � by

%∞� (X ) = ess sup

{
−

d∑
i=1

�iXi

}
.

More generally, for a probability measure � on Sd we may define

%∞� (X ) =

∫
Sd

%∞� (X )d�(�).
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Theorem (Ekeland, Galichon, Henry, 2009)

Assume that % is a convex, law invariant risk measure on ℝd which
extends continuously from L∞(Ω,ℱ ,ℙ;ℝd) to Lp(Ω,ℱ ,ℙ;ℝd), for
some p <∞. Then there is a function v : P → [0,∞] such that

%(X ) = max
F∈P
{%F (X )− v(F )}

Theorem (Ekeland, S., 2010)

Assume that % : L∞(Ω,ℱ ,ℙ;ℝd)→ ℝ is a convex, law invariant
risk measure on ℝd . Then there is a function
v : [0, 1]× P ×ℳ1

+(Sd)→ [0,∞] such that

%(X ) =

max
(�,F ,�)∈[0,1]×P×ℳ1

+(S
d )

{
�%F (X ) + (1− �)%∞� (X )− v(�,F , �)

}
The law invariant risk measure % is coherent if and only if v can be
chosen to take only values in {0,∞}.

W. Schachermayer joint work in progress with I. Ekeland Law invariant convex risk measures on ℝd



Definition (Ekeland, Galichon, Henry, 2009)

A convex, law invariant risk measure % : L∞(Ω,ℱ ,ℙ;ℝd)→ ℝ is
strongly coherent if

%(X ) + %(Y ) = sup
{
%(X̃ + Ỹ ) : X̃ ∼ X , Ỹ ∼ Y

}
.
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Theorem (Ekeland, Galichon, Henry, 2009)

Let % be a convex, law invariant risk measure which extends
continuously from L∞(Ω,ℱ ,ℙ;ℝd) to Lp(Ω,ℱ ,ℙ;ℝd), for some
p <∞. Then % is strongly coherent if and only if there is some
F ∈ P such that

%(X ) = �%F (X ).

Theorem (Ekeland, S., 2010)

A convex, law invariant risk measure % : L∞(Ω,ℱ ,ℙ;ℝd)→ ℝ is
strongly coherent if and only if there is some F ∈ P, � ∈ℳ+(Sd)
and � ∈ [0, 1] such that

%(X ) = �%F (X ) + (1− �)%∞� (X ).
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