Law invariant convex risk measures on \mathbb{R}^d

W. Schachermayer joint work in progress with I. Ekeland

University of Vienna Faculty of Mathematics

January 12, 2011

We extend the following theorems on risk measures, which are well-known for the one-dimensional case, to the d-dimensional case.

We work on a standard probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Reminder

A function $\varrho: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ is called *law invariant* if $X \sim Y$, i. e. law(X) = law(Y), implies that $\varrho(X) = \varrho(Y)$.

For $F \in L^1_+(\Omega, \mathcal{F}, \mathbb{P})$ normalized by $\mathbb{E}[F] = 1$, we define the law invariant risk measure $\varrho_F : L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ by

$$\varrho_F(X) = \sup_{\tilde{X} \sim X} \mathbb{E}[-\tilde{X}F] = \sup_{\tilde{F} \sim F} \mathbb{E}[-X\tilde{F}].$$

The measures ρ_F have the following co-monotonicity property.

Definition

A risk measure $\varrho: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ is called co-monotone if, for co-monotone random variables X, Y, we have

$$\varrho(X+Y)=\varrho(X)+\varrho(Y).$$

Recall that X is co-monotone to Y iff $[X(\omega) - X(\omega')] \cdot [Y(\omega) - Y(\omega')] \ge 0$, for $\mathbb{P} \otimes \mathbb{P}$ almost all $(\omega, \omega') \in \Omega \times \Omega$. We write $X \sim_c Y$.

Theorem A (Kusuoka, 2001)

For a law invariant convex risk measure $\varrho : L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ t.f.a.e.

(i) ϱ is co-monotone. (ii) There is $F \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ and $0 \le \alpha \le 1$ s.t. $\varrho(X) = \alpha \varrho_F(X) + (1 - \alpha) ess \sup(-X)$ $=: \alpha \varrho_F(X) + (1 - \alpha) \varrho^{\infty}(X).$

(iii) ϱ is strongly cohorent, i.e.

$$\varrho(X) + \varrho(Y) = \sup_{\tilde{X} \sim X, \tilde{Y} \sim Y} \varrho(\tilde{X} + \tilde{Y}).$$

The equivalence (i) \Leftrightarrow (ii) is due to Kusuoka.

Property (iii) is easily seen to be equivalent to (i) in the one-dimensional setting.

While it is – a priori – not clear how to extend the notion (i) of *co-monotonicity* to the vector-valued setting, the notion (iii) of *strong coherence* extends to the vector-valued case on an obvious way. This is the reason why Ekeland-Galichon-Henry (2009) introduced this notion (in the vector valued setting).

Here is the second theorem which we state for the one-dimensional case, and later extend to the d-dimensional one.

Theorem B (Kusuoka,2001)

Let $\varrho: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}) \to \mathbb{R}$ be a law invariant convex risk measure. Then there is a function $v: [0,1] \times \mathcal{P} \to [0,\infty]$ such that

$$\varrho(X) = \max_{(\alpha,F)\in[0,1]\times\mathcal{P}} \left\{ \alpha \varrho_F(X) + (1-\alpha) \varrho^\infty(X) - v(\alpha,F) \right\}.$$

Definition

A convex risk measure on \mathbb{R}^d is a function $\varrho : L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d) \to \mathbb{R}$ s.t. (i) (normalization) $\varrho(0) = 0,,$ (ii) (monotonicity) $X \ge Y \Rightarrow \varrho(X) \le \varrho(Y),$ (iii) (cash invariance) $\varrho(X + m\mathbb{1}) = \varrho(X) - m,$ for $m \in \mathbb{R},$ (iv) (convexity) $\varrho(\alpha X + (1 - \alpha)Y) \le \alpha \varrho(X) + (1 - \alpha)\varrho(Y),$ for $0 < \alpha < 1.$ We call ϱ coherent if, in addition, (v) (positive homogeneity) $\rho(\lambda X) = \lambda \rho(X),$ for $\lambda \ge 0.$ On the standard probability space $(\Omega, \mathcal{F}, \mathbb{P})$ we now denote by \mathcal{P} the subset of $L^1_+(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$ of normalized functions F taking their values in \mathbb{R}^d_+ ,

$$\mathcal{P} = \left\{ F = (F_i)_{i=1}^d \in L^1(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d) : F_i \ge 0, \mathbb{E}\left[\sum_{i=1}^d F_i\right] = 1 \right\}.$$

Definition (Rüschendorf)

For given $F \in \mathcal{P}$ we define ϱ_F , the maximal correlation risk measure in the direction F, by

$$\varrho_{\mathcal{F}}(X) = \sup_{\tilde{X} \sim X} \mathbb{E}\left[-(\tilde{X}, \mathcal{F})\right] = \sup_{\tilde{F} \sim \mathcal{F}} \mathbb{E}\left[-(X, \tilde{F})\right].$$

Note that ρ_F only depends on the law of F.

Proposition (Rüschendorf)

A coherent (resp. convex) risk measure $\varrho: L^{\infty}_d \to \mathbb{R}$ is *law invariant* if and only if it can be represented as

$$\varrho(X) = \sup_{\substack{F \in C}} \varrho_F(X)$$

resp. $\varrho(X) = \sup_{\substack{F \in C}} \{\varrho_F(x) - v(F)\}$

where C is a subset of \mathcal{P} and $v : C \to \mathbb{R}_+$ a non-negative function defined on C.

Apart from the risk measures ρ_F , where $F \in \mathcal{P}$, a second type of risk measures will play a special role. It generalizes the maximal loss measure from the one- to the *d*-dimensional case.

Definition

For $\xi \in S^d$, where

$$\mathcal{S}^d := \left\{ \xi \in \mathbb{R}^d : \xi_i \geq 0, \sum_{i=1}^d \xi_i = 1
ight\},$$

we define the maximal loss measure in the direction ξ by

$$\underline{\varrho}^{\infty}_{\xi}(X) = ess \sup \left\{ -\sum_{i=1}^{d} \xi_i X_i
ight\}.$$

More generally, for a probability measure μ on S^d we may define

$$arrho_{\mu}^{\infty}(X) = \int\limits_{S^d} arrho_{\xi}^{\infty}(X) d\mu(\xi).$$

Theorem (Ekeland, Galichon, Henry, 2009)

Assume that ϱ is a convex, law invariant risk measure on \mathbb{R}^d which extends continuously from $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$ to $L^p(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$, for some $p < \infty$. Then there is a function $v : \mathcal{P} \to [0, \infty]$ such that

$$\varrho(X) = \max_{F \in \mathcal{P}} \left\{ \varrho_F(X) - v(F) \right\}$$

Theorem (Ekeland, S., 2010)

Assume that $\varrho: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d) \to \mathbb{R}$ is a convex, law invariant risk measure on \mathbb{R}^d . Then there is a function $v: [0,1] \times \mathcal{P} \times \mathcal{M}^1_+(S^d) \to [0,\infty]$ such that

$$\begin{split} \varrho(X) = \\ \max_{(\alpha, F, \mu) \in [0, 1] \times \mathcal{P} \times \mathcal{M}_{+}^{1}(S^{d})} \left\{ \alpha \varrho_{F}(X) + (1 - \alpha) \varrho_{\mu}^{\infty}(X) - v(\alpha, F, \mu) \right\} \end{split}$$

The law invariant risk measure ρ is coherent if and only if v can be chosen to take only values in $\{0, \infty\}$.

200

Definition (Ekeland, Galichon, Henry, 2009)

A convex, law invariant risk measure $\varrho: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d) \to \mathbb{R}$ is strongly coherent if

$$\varrho(X) + \varrho(Y) = \sup \left\{ \varrho(\tilde{X} + \tilde{Y}) : \tilde{X} \sim X, \tilde{Y} \sim Y \right\}.$$

Theorem (Ekeland, Galichon, Henry, 2009)

Let ϱ be a convex, law invariant risk measure which extends continuously from $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$ to $L^p(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d)$, for some $p < \infty$. Then ϱ is strongly coherent if and only if there is some $F \in \mathcal{P}$ such that

 $\varrho(X) = \alpha \varrho_F(X).$

Theorem (Ekeland, S., 2010)

A convex, law invariant risk measure $\varrho: L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{R}^d) \to \mathbb{R}$ is strongly coherent if and only if there is some $F \in \mathcal{P}, \mu \in \mathcal{M}_+(S^d)$ and $\alpha \in [0, 1]$ such that

$$\varrho(X) = \alpha \varrho_F(X) + (1 - \alpha) \varrho_{\mu}^{\infty}(X).$$