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Motivation

Usually, stock prices are modeled as Rn-valued stochastic
processes.

Why allow the number of assets to be stochastic?

Realism. Companies enter, leave, merge and split in real
equity markets.

The Market Portfolio is of central importance in modern
portfolio theory of economics, and stochastic portfolio theory
of continuous time finance.

Question: Does a stochastic number of assets qualitatively
change characterizations of arbitrage compared to
constant-number-of-asset markets?
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Regularity Assumptions

The stock process X is progressive, has paths with left and
right limits, and takes values in U := ∪∞

n=1Rn.

The dimensional process N := dimX has paths that are
left-continuous and piecewise constant in time.

τ0 := 0,

τk := inf{t > τk−1 | X +
t 6= Xt}, k ∈ N

Then N is constant in time on each (τk−1,τk ].

A new piece begins at each right-discontinuity.

Assume τk ↗ ∞, a.s.



Dissection

Introduce the additive identity element �, so that
x +�=�+ x = x , ∀x ∈ U∪{�}.
For stochastic process Y and A⊆ R+×Ω, define the
operation ?:

(Y ?1A)t(ω) = (1A ?Y )t(ω) : =

{
Yt(ω) for (t,ω) ∈ A

� otherwise
.

Dissection: Chop up X into Rn-valued processes on each
(τk−1,τk ]. For each (k ,n) ∈ N2, define

0(n) := (0, . . . ,0) ∈ Rn,

Ak,n := (τk−1,∞)∩ [0,∞)×{τk−1 < ∞,N+
τk−1

= n} ⊆ R+×Ω,

X k,n := (X τk −X +
τk−1

)?1Ak,n
+ 0(n) ?1Ac

k,n
.

Then X k,n is an Rn-valued process, ∀(k ,n) ∈ N2.



Extension of Stochastic Integration

Definition

X is a U-valued piecewise semimartingale if X k,n is an Rn-valued
semimartingale for each (k,n) ∈ N2.

Assume H is predictable and satisfies dimH = N. Dissect:

Bk,n := (τk−1,τk ]∩ [0,∞)×{τk−1 < ∞,N+
τk−1

= n},

Hk,n : = H ?1Bk,n
+ 0(n) ?1Bc

k,n
.

If each Hk,n is X k,n-integrable, in the sense of Rn-valued
semimartingale integration, then we say H ∈L (X ), and

H ·X :=
∞

∑
k=1

∞

∑
n=1

Hk,n ·X k,n.

Stochastic integral H ·X extends Rn-stochastic integration.

Retains that ·X is a continuous linear operator on the
appropriate generalization of simple, predictable processes.



U-valued Piecewise Martingales

A characterization of martingality of X by conditional
expectation is not useful or appropriate.

Instead, characterize via martingality of H ·X .

Definition

X is a U-valued piecewise martingale if H ·X is an R-valued
martingale ∀H : simple, predictable, dimH = dimX , |H| bounded.
X is a U-valued piecewise local martingale if X is locally a
U-valued piecewise martingale. X is U-valued piecewise
σ -martingale if H ·X is a σ -martingale for all H ∈L (X ).

All of these are necessary and sufficient when X is an
Rn-valued semimartingale, so are proper extensions.
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The Market Model

Self financing:

Vt = V0 + (H ·X )t , t ≥ 0.

The market changes configuration at each τk , but H ·X is
always right-continuous by its definition.

The implicit assumption is that portfolio values are unaffected
by the changes in market configuration at τ

+
k .

The model can handle events such as a stock jumping to
bankruptcy. The jump to 0 occurs via a left-discontinuity,
affecting H ·X , and then the company may be removed from
the market via a right-discontinuity: N

τ
+
k

= Nτk
−1.

Trading process H ∈L (X ) is admissible if there exists c ∈ R :

(H ·X )t ≥−c , ∀t ≥ 0.



Extension of NFLVR Equivalence

Theorem (Mémin extension)

{H ·X | H ∈L (X )} is closed in the semimartingale topology.

Proof.

Localize. Each {Hk,n ·X k,n | Hk,n ∈L (X k,n)} is closed by
Mémin.

Theorem (FTAP extension)

NFLVR ⇐⇒ existence of an equivalent measure under which H ·X
is a supermartingale ∀H admissible.

Proof.

Immediate from the Mémin extension via [Kabanov(1997)].

I have not proved a σ -martingale characterization for X yet.



Corollaries

Corollary

If X is an Rn-valued semimartingale, and |X | is bounded, then
NFLVR ⇐⇒ existence of an equivalent martingale measure for X .

But since X may have right-discontinuities not passed on to H ·X ,

Fact

[|X | bounded ∩ NFLVR] ;existence of an equivalent martingale
measure for X .

Corollary

If |X | is locally bounded, then NFLVR ⇐⇒ existence of an
equivalent local martingale measure for X .



NA1 and Equivalent Local Martingale Deflator

Definition

An arbitrage of the first kind for X on horizon α, a stopping time,
is an Fα -measurable random variable ψ such that P[ψ ≥ 0] = 1,
P[ψ > 0] > 0 and, for each v > 0, there exists H such that
v + H ·X ≥ 0, and v + (H ·X )α ≥ ψ. If there does not exist any
arbitrage of the first kind, then we say NA1 holds.

NA1 is weaker than NFLVR. [Kardaras(2009)] proves the FTAP for
NA1, relating it to ELMD.

Definition

An equivalent local martingale deflator (ELMD) for X is a strictly
positive R-valued local martingale Z , such that for each H
admissible, Z (H ·X ) is a local martingale.



Extension of the NA1-FTAP

Theorem [Kardaras(2009)]

Let α be a stopping time and X an Rn-valued semimartingale.
NA1 holds for X on horizon α if and only if there exists an ELMD
for X on horizon α.

The next theorem is my extension.

Theorem

Let α be a stopping time and X an U-valued piecewise
semimartingale. NA1 holds for X on horizon α if and only if it
holds for each X k,n, (k ,n) ∈ N2, on horizon α if and only if there
exists an ELMD for X on horizon α.

This FTAP is much easier to check in practice than the
Delbaen-Schachermayer FTAP.

For many applications (portfolio optimization, hedging) it
provides sufficient market regularity and greater flexibility.
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Background on Stochastic Portfolio Theory (SPT) in Rn

Begun with [Fernholz and Shay(1982)] and continued by R.
Fernholz in the late 1990s, leading to the monograph
[Fernholz(2002)].

Recent work by: Karatzas, Kardaras, D. Fernholz, Pal, Ichiba,
many others.

Motivated by: The robust empirical outperformance of
constant weight portfolios compared to their passive
counterparts.

Goals: Understand what type of models reproduce this, and if
there are fundamental properties of real markets that explain
it. Let the data guide the theory!

Itô process model for the n stocks:

dX i
t = X i

t

[
bi
tdt +

d

∑
ν=1

σ
iν
t dW ν

t

]
, 1≤ i ≤ n.

Assume also uniform ellipticity of the covariance:

∃ε > 0 : ξ σtσ
>
t ξ ≥ ε|ξ |2, ∀ξ ∈ Rn, ∀t ≥ 0.



Diversity and Arbitrage

Empirical observation: modern financial markets do not
permit any company to approach the size of the entire market.

Mathematical formulation: WLOG let X i be the total
capitalization (#shares ×price per share) of stock i .

The market portfolio µ plays an important role:

µ
i := X i/

n

∑
j=1

X j , µt(ω) ∈∆ := {u | ui ≥ 0,∀i , ∑ui = 1}, ∀t,ω.

Diversity: There exists some δ ∈ (0,1) such that

µ
(1)
t := max

1≤i≤n
µ
i
t ≤ 1−δ , ∀t ≥ 0.

Consequences: [uniform ellipticity ∩ diversity] ⇒ there exist
arbitrages relative to the market portfolio that require no
knowledge of σ or b to construct. These portfolios are
functionally generated from the market portfolio.



Functionally Generated Portfolios

Let V π be the wealth process of a portfolio π, where π i is the
fraction of V π invested in X i .

dV π
t

V π
t

=
n

∑
i=1

π
i
t

dX i
t

X i
t

A portfolio generating function is a function
G : U ⊆∆→ (0,∞) such that G ∈ C 2, and additional mild
regularity.

Solve for the (unique) π such that

d log V π
t = d log V

µ

t + d log G (µt) + (?)dt.

This is analogous to deriving the hedging portfolio for
contingent claim V µ G (µ).



Master Formula

This π corresponding to G is called the portfolio generated by
G . It obeys the master formula

log

(
V π

T

V
µ

T

)
= log G (µT )− log G (µ0) +

∫ T

0
gtdt. (1)

If G is concave and symmetric, then g≥ 0, and π is long only.
Such a π buys a little bit of a stock each time it falls in price
relative to the others, and sells a little each time it rises.

The values for g and π:

gt =
−1

2G (µt)
∑
i ,j

[
∂ 2G (µt)

∂ µi∂ µj

][ d

dt

〈
µ
i
t ,µ

j
t

〉
t

]
,

π
i
t = µ

i
t

(
∂

∂ µi
G (µt) + 1−

n

∑
j=1

µ
j
t

∂

∂ µj
G (µt)

)
, 1≤ i ≤ n.

Key fact: The drift b of X does not appear in (1)!



Relative Arbitrage

Some nice choices for G :

Gp(u) :=
(
∑(ui )p

)1/p
, p ∈ (0,1),

Ge(u) :=−∑ui log ui ,

Gψ (u) := (u1)ψ1× . . .× (un)ψn ⇒ π = ψ, for ψ ∈∆,

G c(u) := c + G (u), c ∈ (0,∞).

When diversity and uniform ellipticity hold, then Gp, G c
e , G c

ψ

all satisfy: log G (µ)≥−κ, κ ∈ (0,∞), and g≥ γ ∈ (0,∞).

This implies that V π

T > V
µ

T for all T > T ∗ := κ+logG(µ0)
γ

, so π

is an arbitrage relative to µ on horizon T .



Stochastic Portfolio Theory in U

To study functionally generated arbitrage when the number of
assets is stochastic, it is appropriate to adopt a U-valued
piecewise Itô process model.

Let X be a U-valued piecewise Itô process

dXt = Xt [btdt + σtdWt ], on each (τk−1,τk ].

The market portfolio is

µ
i
t = µ

i
t(X ) :=

X i
t

∑
Nt
j=1 X j

t

, 1≤ i ≤ Nt , t ≥ 0.



Functionally Generated Arbitrage

When X is Rn-valued, recall the master formula:

log

(
V π

T

V
µ

T

)
= log G (µT )− log G (µ0) +

∫ T

0
g(t)dt.

This was derived by an application of Itô’s formula, and
choosing π to eliminate the stochastic integral.

If X is U-valued Itô, then Itô’s formula holds on each
(τk−1,τk ], so the master formula generalizes to

log

(
V π

T

V
µ

T

)
=

KT

∑
k=1

(
log G (µτk

)− log G (µ
τ

+
k−1

)
)

+log G (µT )− log G (µ
τ

+
KT

) +
∫ T

0
g(t)dt,

KT :=
∞

∑
k=1

1T>τk
.



Example: Diverse Market that Grows at Times ⊥W

Suppose that X is strong Markov at the τk , which themselves
are independent of W .

Assume: P(KT > k) > 0, ∀k ∈ N.

Let X be diverse: for some n0 ≥ 2, δ ∈ (0, n0−1
n0

) let

Un := {x ∈ (0,∞)n | µ(1)(x) < 1−δ}.

Suppose that µ communicates on each µ(Un), meaning
roughly that it has strictly positive probability of reaching any
neighborhood in µ(Un) from any point in arbitrarily small
time, ∀n ∈ N. See [Strong(2010)] for a precise statement.

Let the covariance satisfy:

amin |ξ |2 ≤ ξ
′atξ ≤ amax |ξ |2 , ∀ξ ∈ Rn, ∀n ∈ N, ∀t ≥ 0.



Let the market grow from N+
0 = n0 ∈ N companies by new

companies entering the market, one at each τk , k ∈ N, so that

µ(X
τ

+
k

) =((1−µ
new)(µτk

),µnew),

where the relative size µnew of the new company has support
that in a subset of [εl ,εu] for any 0 < εl < εu < 1−δ .

Then the entropy-weighted G c
e and diversity-p Gp generating

functions satisfy G (µ(X
τ

+
k

)) > infx∈Un G �Un (µ(x)) + ε, a.s.

on {N
τ

+
k

= n}, for all (k ,n) ∈ N2.

Furthermore P(log G (µτk
)− log G (µ

τ
+
k−1

) <− ε

2 |Fτk−1
) > 0

a.s.

This means that there is always a chance of losing at least ε

2
in log G (µ) on (τk−1,τk ]. Therefore

P

(
KT +1

∑
k=1

log

(
G (µτk∧T )

G (µ
τ

+
k−1∧T

)

)
<−κ

)
> 0, ∀κ ∈ R.



g is bounded from above uniformly in time.
Therefore the master formula

log

(
V π

T

V
µ

T

)
=

KT

∑
k=1

(
log G (µτk

)− log G (µ
τ

+
k−1

)
)

+log G (µT )− log G (µ
τ

+
KT

) +
∫ T

0
g(t)dt,

KT :=
∞

∑
k=1

1T>τk
.

implies that relative losses are unbounded:

P

(
V π

T

V
µ

T

<
1

θ

)
> 0, ∀θ ∈ R.

This market is diverse and uniformly elliptic, but does not
admit straitforward functionally generated arbitrage.

Due to the diversity, and covariance being bounded from
above, the market has no ELMM, so admits FLVR.

Open question: Does it admit any (non-straightforward)
functionally generated arbitrage?



Summary

Semimartingale stochastic integration may be extended to
U-valued piecewise semimartingale stochastic integration.

The NFLVR equivalence to the existence of an equivalent
pricing measure, and its related theorems extend.

The NA1 equivalence to existence of an equivalent local
martingale deflator extends as well.

Functionally generated portfolios are susceptible to the
changes in configuration of the market.

If K and N are bounded, they may work but take longer.

If K is unbounded, then the portfolios typically fail to bound
worst case relative performance.



Open Questions and Future Work

Even though functionally generate portfolios typically fail to
be arbitrages in U-valued models, under what conditions do
they satisfy weaker outperformance criteria (e.g. superior
asymptotic growth)?

Are there (non-straightforward) functionally generated
arbitrages for the models in this talk?

Explore the interaction between market growth, stability and
diversity over time.
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