Arbitrage in Market Models with a Stochastic Number of Assets

Winslow Strong

Department of Statistics and Applied Probability, University of California Santa Barbara / Visitor to Laboratoire de Probabilités et Modèles Aléatoires, Paris 6-7.

> Modeling and Managing Financial Risks Paris, France, January 10-13, 2011

> > < □ > < @ > < 注 > < 注 > ... 注

1 Market Models with a Stochastic Number of Assets

- Motivation
- Piecewise Semimartingales

2 Arbitrage

- Fundamental Theorems of Asset Pricing
- Functionally Generated Relative Arbitrage

1 Market Models with a Stochastic Number of Assets Motivation

• Piecewise Semimartingales

- Fundamental Theorems of Asset Pricing
- Functionally Generated Relative Arbitrage

- Usually, stock prices are modeled as \mathbb{R}^n -valued stochastic processes.
- Why allow the number of assets to be stochastic?
- Realism. Companies enter, leave, merge and split in real equity markets.
- The Market Portfolio is of central importance in modern portfolio theory of economics, and stochastic portfolio theory of continuous time finance.
- Question: Does a stochastic number of assets qualitatively change characterizations of arbitrage compared to constant-number-of-asset markets?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

1 Market Models with a Stochastic Number of Assets Motivation

Piecewise Semimartingales

- Fundamental Theorems of Asset Pricing
- Functionally Generated Relative Arbitrage

- The stock process X is progressive, has paths with left and right limits, and takes values in U := ∪_{n=1}[∞] ℝⁿ.
- The dimensional process $N := \dim X$ has paths that are left-continuous and piecewise constant in time.

$$egin{aligned} & au_0 := 0, \ & au_k := \inf\{t > au_{k-1} \mid X_t^+
eq X_t\}, \quad k \in \mathbb{N}. \end{aligned}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Then N is constant in time on each $(\tau_{k-1}, \tau_k]$.
- A new piece begins at each right-discontinuity.
- Assume $au_k
 earrow \infty$, a.s.

Dissection

- Introduce the additive identity element \odot , so that $x + \odot = \odot + x = x$, $\forall x \in \mathbb{U} \cup \{\odot\}$.
- For stochastic process Y and A ⊆ ℝ₊ × Ω, define the operation ★:

$$(Y \star \mathbf{1}_A)_t(\omega) = (\mathbf{1}_A \star Y)_t(\omega) := \begin{cases} Y_t(\omega) & \text{for } (t, \omega) \in A \\ \odot & \text{otherwise} \end{cases}.$$

• Dissection: Chop up X into \mathbb{R}^n -valued processes on each $(\tau_{k-1}, \tau_k]$. For each $(k, n) \in \mathbb{N}^2$, define

$$\begin{aligned} & 0^{(n)} := (0, \dots, 0) \in \mathbb{R}^n, \\ & A_{k,n} := (\tau_{k-1}, \infty) \cap [0, \infty) \times \{ \tau_{k-1} < \infty, N^+_{\tau_{k-1}} = n \} \subseteq \mathbb{R}_+ \times \Omega, \\ & X^{k,n} := (X^{\tau_k} - X^+_{\tau_{k-1}}) \star \mathbf{1}_{A_{k,n}} + 0^{(n)} \star \mathbf{1}_{A^c_{k,n}}. \end{aligned}$$

◆□> <@> < E> < E> < E</p>

• Then $X^{k,n}$ is an \mathbb{R}^n -valued process, $\forall (k,n) \in \mathbb{N}^2$.

Extension of Stochastic Integration

Definition

X is a U-valued piecewise semimartingale if $X^{k,n}$ is an \mathbb{R}^n -valued semimartingale for each $(k, n) \in \mathbb{N}^2$.

• Assume H is predictable and satisfies dim H = N. Dissect:

$$B_{k,n} := (\tau_{k-1}, \tau_k] \cap [0, \infty) \times \{\tau_{k-1} < \infty, N^+_{\tau_{k-1}} = n\},\$$

$$H^{k,n} := H \star \mathbf{1}_{B_{k,n}} + 0^{(n)} \star \mathbf{1}_{B^c_{k,n}}.$$

• If each $H^{k,n}$ is $X^{k,n}$ -integrable, in the sense of \mathbb{R}^n -valued semimartingale integration, then we say $H \in \mathscr{L}(X)$, and

$$H \cdot X := \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} H^{k,n} \cdot X^{k,n}.$$

- Stochastic integral $H \cdot X$ extends \mathbb{R}^n -stochastic integration.
- Retains that $\cdot X$ is a continuous linear operator on the appropriate generalization of simple, predictable processes.

U-valued Piecewise Martingales

- A characterization of martingality of X by conditional expectation is not useful or appropriate.
- Instead, characterize via martingality of $H \cdot X$.

Definition

X is a U-valued piecewise martingale if $H \cdot X$ is an \mathbb{R} -valued martingale $\forall H$: simple, predictable, dim $H = \dim X$, |H| bounded. X is a U-valued piecewise local martingale if X is locally a U-valued piecewise martingale. X is U-valued piecewise σ -martingale if $H \cdot X$ is a σ -martingale for all $H \in \mathscr{L}(X)$.

• All of these are necessary and sufficient when X is an \mathbb{R}^n -valued semimartingale, so are proper extensions.

1 Market Models with a Stochastic Number of Assets

- Motivation
- Piecewise Semimartingales

2 Arbitrage

• Fundamental Theorems of Asset Pricing

• Functionally Generated Relative Arbitrage

(日) (四) (里) (里)

- 2

• Self financing:

$$V_t = V_0 + (H \cdot X)_t, \quad t \ge 0.$$

- The market changes configuration at each τ_k , but $H \cdot X$ is always right-continuous by its definition.
- The implicit assumption is that portfolio values are unaffected by the changes in market configuration at τ⁺_k.
- The model *can* handle events such as a stock jumping to bankruptcy. The jump to 0 occurs via a left-discontinuity, affecting $H \cdot X$, and then the company may be removed from the market via a right-discontinuity: $N_{\tau^+} = N_{\tau_k} 1$.
- Trading process $H \in \mathscr{L}(X)$ is *admissible* if there exists $c \in \mathbb{R}$:

$$(H \cdot X)_t \geq -c, \quad \forall t \geq 0.$$

Theorem (Mémin extension)

 $\{H \cdot X \mid H \in \mathscr{L}(X)\}$ is closed in the semimartingale topology.

Proof.

Localize. Each
$$\{H^{k,n} \cdot X^{k,n} \mid H^{k,n} \in \mathscr{L}(X^{k,n})\}$$
 is closed by Mémin.

Theorem (FTAP extension)

NFLVR \iff existence of an equivalent measure under which $H \cdot X$ is a supermartingale $\forall H$ admissible.

Proof.

Immediate from the Mémin extension via [Kabanov(1997)].

I have not proved a σ -martingale characterization for X yet.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Corollary

If X is an \mathbb{R}^n -valued semimartingale, and |X| is bounded, then NFLVR \iff existence of an equivalent martingale measure for X.

But since X may have right-discontinuities not passed on to $H \cdot X$,

Fact

 $[|X| \text{ bounded } \cap \text{ NFLVR}] \Rightarrow \text{existence of an equivalent martingale}$ measure for X.

Corollary

If |X| is locally bounded, then NFLVR \iff existence of an equivalent local martingale measure for X.

Definition

An arbitrage of the first kind for X on horizon α , a stopping time, is an \mathscr{F}_{α} -measurable random variable ψ such that $P[\psi \ge 0] = 1$, $P[\psi > 0] > 0$ and, for each v > 0, there exists H such that $v + H \cdot X \ge 0$, and $v + (H \cdot X)_{\alpha} \ge \psi$. If there does not exist any arbitrage of the first kind, then we say NA₁ holds.

NA₁ is weaker than NFLVR. [Kardaras(2009)] proves the FTAP for NA₁, relating it to ELMD.

Definition

An *equivalent local martingale deflator* (ELMD) for X is a strictly positive \mathbb{R} -valued local martingale Z, such that for each H admissible, $Z(H \cdot X)$ is a local martingale.

Theorem [Kardaras(2009)]

Let α be a stopping time and X an \mathbb{R}^n -valued semimartingale. NA₁ holds for X on horizon α if and only if there exists an ELMD for X on horizon α .

The next theorem is my extension.

Theorem

Let α be a stopping time and X an \mathbb{U} -valued piecewise semimartingale. NA₁ holds for X on horizon α if and only if it holds for each $X^{k,n}$, $(k,n) \in \mathbb{N}^2$, on horizon α if and only if there exists an ELMD for X on horizon α .

- This FTAP is much easier to check in practice than the Delbaen-Schachermayer FTAP.
- For many applications (portfolio optimization, hedging) it provides sufficient market regularity and greater flexibility.

1 Market Models with a Stochastic Number of Assets

- Motivation
- Piecewise Semimartingales

2 Arbitrage

- Fundamental Theorems of Asset Pricing
- Functionally Generated Relative Arbitrage

◆□▶ ◆□▶ ◆□▶ ◆□▶

- 2

Background on Stochastic Portfolio Theory (SPT) in \mathbb{R}^n

- Begun with [Fernholz and Shay(1982)] and continued by R. Fernholz in the late 1990s, leading to the monograph [Fernholz(2002)].
- Recent work by: Karatzas, Kardaras, D. Fernholz, Pal, Ichiba, many others.
- Motivated by: The robust empirical outperformance of constant weight portfolios compared to their passive counterparts.
- Goals: Understand what type of models reproduce this, and if there are fundamental properties of real markets that explain it. *Let the data guide the theory!*
- Itô process model for the *n* stocks:

$$dX_t^i = X_t^i \left[b_t^i dt + \sum_{\nu=1}^d \sigma_t^{i\nu} dW_t^\nu
ight], \quad 1 \le i \le n.$$

• Assume also *uniform ellipticity* of the covariance:

$$\exists \varepsilon > 0: \qquad \xi \sigma_t \sigma_t^\top \xi \geq \varepsilon |\xi|^2, \quad \forall \xi \in \mathbb{R}^n, \, \forall t \geq 0.$$

Diversity and Arbitrage

- Empirical observation: modern financial markets do not permit any company to approach the size of the entire market.
- Mathematical formulation: WLOG let Xⁱ be the total capitalization (#shares ×price per share) of stock *i*.
- The *market portfolio* μ plays an important role:

$$\mu^i := X^i / \sum_{j=1}^n X^j, \quad \mu_t(\omega) \in \Delta := \{ u \mid u^i \ge 0, \forall i, \sum u^i = 1 \}, \quad \forall t, \omega.$$

Diversity: There exists some $\delta \in (0,1)$ such that

$$\mu_t^{(1)} := \max_{1 \le i \le n} \mu_t^i \le 1 - \delta, \quad \forall t \ge 0.$$

• Consequences: [uniform ellipticity \cap diversity] \Rightarrow there exist arbitrages relative to the market portfolio that require no knowledge of σ or b to construct. These portfolios are *functionally generated* from the market portfolio.

▲圖▶ ▲ 필▶ ▲ 필▶ - 별

Functionally Generated Portfolios

Let V^π be the wealth process of a portfolio π, where πⁱ is the fraction of V^π invested in Xⁱ.

$$rac{dV_t^\pi}{V_t^\pi} = \sum_{i=1}^n \pi_t^i rac{dX_t^i}{X_t^i}$$

- A portfolio generating function is a function $G: U \subseteq \Delta \rightarrow (0, \infty)$ such that $G \in C^2$, and additional mild regularity.
- Solve for the (unique) π such that

$$d \log V_t^{\pi} = d \log V_t^{\mu} + d \log G(\mu_t) + (?) dt.$$

 This is analogous to deriving the hedging portfolio for contingent claim V^μG(μ).

Master Formula

 This π corresponding to G is called the portfolio generated by G. It obeys the master formula

$$\log\left(\frac{V_T^{\pi}}{V_T^{\mu}}\right) = \log G(\mu_T) - \log G(\mu_0) + \int_0^T \mathfrak{g}_t dt.$$
 (1)

- If G is concave and symmetric, then g ≥ 0, and π is long only.
 Such a π buys a little bit of a stock each time it falls in price relative to the others, and sells a little each time it rises.
- The values for \mathfrak{g} and π :

$$\begin{split} \mathfrak{g}_t &= \frac{-1}{2G(\mu_t)} \sum_{i,j} \left[\frac{\partial^2 G(\mu_t)}{\partial \mu_i \partial \mu_j} \right] \left[\frac{d}{dt} \left\langle \mu_t^i, \mu_t^j \right\rangle_t \right], \\ \pi_t^i &= \mu_t^i \left(\frac{\partial}{\partial \mu_i} G(\mu_t) + 1 - \sum_{j=1}^n \mu_t^j \frac{\partial}{\partial \mu_j} G(\mu_t) \right), \quad 1 \le i \le n. \end{split}$$

• Key fact: The drift b of X does not appear in (1)!

Relative Arbitrage

• Some nice choices for G:

$$\begin{split} G_{\rho}(u) &:= \left(\sum (u^{i})^{p}\right)^{1/p}, \quad p \in (0,1), \\ G_{\mathsf{e}}(u) &:= -\sum u^{i} \log u^{i}, \\ G_{\psi}(u) &:= (u^{1})^{\psi^{1}} \times \ldots \times (u^{n})^{\psi^{n}} \Rightarrow \pi = \psi, \text{ for } \psi \in \Delta, \\ G^{c}(u) &:= c + G(u), \quad c \in (0,\infty). \end{split}$$

- When diversity and uniform ellipticity hold, then G_{ρ} , G_{e}^{c} , G_{ψ}^{c} all satisfy: $\log G(\mu) \geq -\kappa$, $\kappa \in (0, \infty)$, and $\mathfrak{g} \geq \gamma \in (0, \infty)$.
- This implies that $V_T^{\pi} > V_T^{\mu}$ for all $T > T^* := \frac{\kappa + \log G(\mu_0)}{\gamma}$, so π is an arbitrage relative to μ on horizon T.

(日) (四) (문) (문) (문)

Stochastic Portfolio Theory in \mathbb{U}

- To study functionally generated arbitrage when the number of assets is stochastic, it is appropriate to adopt a U-valued piecewise Itô process model.
- Let X be a U-valued piecewise Itô process

$$dX_t = X_t[b_t dt + \sigma_t dW_t],$$
 on each $(\tau_{k-1}, \tau_k].$

• The *market portfolio* is

$$\mu_t^i = \mu_t^i(X) := rac{X_t^i}{\sum_{j=1}^{N_t} X_t^j}, \quad 1 \le i \le N_t, \ t \ge 0.$$

(日) (四) (문) (문) (문)

Functionally Generated Arbitrage

• When X is \mathbb{R}^n -valued, recall the master formula:

$$\log\left(\frac{V_T^{\pi}}{V_T^{\mu}}\right) = \log G(\mu_T) - \log G(\mu_0) + \int_0^T \mathfrak{g}(t) dt.$$

- This was derived by an application of Itô's formula, and choosing π to eliminate the stochastic integral.
- If X is U-valued Itô, then Itô's formula holds on each (τ_{k-1}, τ_k], so the master formula generalizes to

$$\log\left(\frac{V_T^{\pi}}{V_T^{\mu}}\right) = \sum_{k=1}^{K_T} \left(\log G(\mu_{\tau_k}) - \log G(\mu_{\tau_{k-1}^+})\right) + \log G(\mu_T) - \log G(\mu_{\tau_{K_T}^+}) + \int_0^T \mathfrak{g}(t) dt,$$

Example: Diverse Market that Grows at Times $\perp W$

- Suppose that X is strong Markov at the τ_k , which themselves are independent of W.
- Assume: $P(K_T > k) > 0, \forall k \in \mathbb{N}.$
- Let X be diverse: for some $n_0 \geq 2$, $\delta \in (0, rac{n_0-1}{n_0})$ let

$$U^n := \{ x \in (0,\infty)^n \mid \mu^{(1)}(x) < 1 - \delta \}.$$

- Suppose that μ communicates on each μ(Uⁿ), meaning roughly that it has strictly positive probability of reaching any neighborhood in μ(Uⁿ) from any point in arbitrarily small time, ∀n ∈ N. See [Strong(2010)] for a precise statement.
- Let the covariance satisfy:

$$egin{aligned} &a_{\min}\left|\xi
ight|^2\leq\xi'a_t\xi\leq a_{\max}\left|\xi
ight|^2,\quadorall\xi\in\mathbb{R}^n,\,orall n\in\mathbb{N},\,orall t\geq0. \end{aligned}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Let the market grow from $N_0^+ = n_0 \in \mathbb{N}$ companies by new companies entering the market, one at each τ_k , $k \in \mathbb{N}$, so that

$$\mu(X_{\tau_k^+}) = ((1 - \mu^{\text{new}})(\mu_{\tau_k}), \mu^{\text{new}}),$$

where the relative size μ^{new} of the new company has support that in a subset of $[\varepsilon_l, \varepsilon_u]$ for any $0 < \varepsilon_l < \varepsilon_u < 1 - \delta$.

- Then the entropy-weighted G^c_e and diversity-p G_p generating functions satisfy G(μ(X_{τ⁺_k})) > inf_{x∈Uⁿ} G ↾_{Uⁿ} (μ(x)) + ε, a.s. on {N_{τ⁺_k} = n}, for all (k, n) ∈ ℝ².
- Furthermore $P(\log G(\mu_{\tau_k}) \log G(\mu_{\tau_{k-1}^+}) < -\frac{\varepsilon}{2} \mid \mathscr{F}_{\tau_{k-1}}) > 0$ a.s.
- This means that there is always a chance of losing at least ^ε/₂ in log G(μ) on (τ_{k-1}, τ_k]. Therefore

$$P\left(\sum_{k=1}^{\kappa_{T}+1}\log\left(\frac{G(\mu_{\tau_{k}\wedge T})}{G(\mu_{\tau_{k-1}^{+}\wedge T})}\right) < -\kappa\right) > 0, \quad \forall \kappa \in \mathbb{R}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• g is bounded from above uniformly in time. Therefore the master formula

$$\log\left(\frac{V_T^{\pi}}{V_T^{\mu}}\right) = \sum_{k=1}^{K_T} \left(\log G(\mu_{\tau_k}) - \log G(\mu_{\tau_{k-1}^+})\right) \\ + \log G(\mu_T) - \log G(\mu_{\tau_{K_T}^+}) + \int_0^T \mathfrak{g}(t) dt,$$
$$K_T := \sum_{k=1}^\infty \mathbf{1}_{T > \tau_k}.$$

implies that relative losses are unbounded:

$$P\left(rac{V^{\pi}_{T}}{V^{\mu}_{T}} < rac{1}{ heta}
ight) > 0, \quad orall heta \in \mathbb{R}.$$

- This market is diverse and uniformly elliptic, but does not admit straitforward functionally generated arbitrage.
- Due to the diversity, and covariance being bounded from above, the market has no ELMM, so admits FLVR.
- Open question: Does it admit any (non-straightforward) functionally generated arbitrage?

Summary

- Semimartingale stochastic integration may be extended to U-valued piecewise semimartingale stochastic integration.
- The NFLVR equivalence to the existence of an equivalent pricing measure, and its related theorems extend.
- The NA₁ equivalence to existence of an equivalent local martingale deflator extends as well.
- Functionally generated portfolios are susceptible to the changes in configuration of the market.
- If K and N are bounded, they may work but take longer.
- If *K* is unbounded, then the portfolios typically fail to bound worst case relative performance.

Open Questions and Future Work

- Even though functionally generate portfolios typically fail to be arbitrages in U-valued models, under what conditions do they satisfy weaker outperformance criteria (e.g. superior asymptotic growth)?
- Are there (non-straightforward) functionally generated arbitrages for the models in this talk?
- Explore the interaction between market growth, stability and diversity over time.

References I

E. R. Fernholz.

Stochastic Portfolio Theory. Springer, Berlin, first edition, 2002.

R. Fernholz and B. Shay.

Stochastic portfolio theory and stock market equilibrium. *Journal of Finance*, pages 615–624, 1982.

📔 Y. M. Kabanov.

On the FTAP of Kreps-Delbaen-Schachermayer.

In Y. M. Kabanov, editor, *Statistics and control of stochastic processes. The Lipster Festschrift. Papers from the Steklov seminar held in Moscow, Russia, 1995-1996*, pages 191–203. Elsevier, Singapore, 1997.

- 4 同 ト 4 ヨ ト 4 ヨ ト

References II

C. Kardaras.

Market viability via absence of arbitrage of the first kind. arXiv:0904.1798v4 [q-fin.PR], 2009. Preprint.

W. Strong.

Arbitrage in market models with a stochastic number of assets.

2010.

Working Paper. http://www.winslowstrong.com/home/ ArbitrageinMarketModelswithaStochasticNumberofAssets. pdf.

- 4 同 6 4 日 6 4 日 6