Arbitrage in Market Models with a Stochastic Number of Assets

Winslow Strong

Department of Statistics and Applied Probability, University of California Santa Barbara / Visitor to Laboratoire de Probabilités et Modèles Aléatoires, Paris 6-7.

Modeling and Managing Financial Risks
Paris, France, January 10-13, 2011
Outline

1 Market Models with a Stochastic Number of Assets
 - Motivation
 - Piecewise Semimartingales

2 Arbitrage
 - Fundamental Theorems of Asset Pricing
 - Functionally Generated Relative Arbitrage
1. Market Models with a Stochastic Number of Assets
 - Motivation
 - Piecewise Semimartingales

2. Arbitrage
 - Fundamental Theorems of Asset Pricing
 - Functionally Generated Relative Arbitrage
Motivation

- Usually, stock prices are modeled as \mathbb{R}^n-valued stochastic processes.
- Why allow the number of assets to be stochastic?
- **Realism.** Companies enter, leave, merge and split in real equity markets.
- **The Market Portfolio** is of central importance in modern portfolio theory of economics, and stochastic portfolio theory of continuous time finance.
- **Question:** Does a stochastic number of assets qualitatively change characterizations of arbitrage compared to constant-number-of-asset markets?
1. Market Models with a Stochastic Number of Assets
 - Motivation
 - Piecewise Semimartingales

2. Arbitrage
 - Fundamental Theorems of Asset Pricing
 - Functionally Generated Relative Arbitrage
The stock process X is progressive, has paths with left and right limits, and takes values in $\mathbb{U} := \bigcup_{n=1}^{\infty} \mathbb{R}^n$.

The dimensional process $N := \dim X$ has paths that are left-continuous and piecewise constant in time.

\[
\tau_0 := 0,
\]

\[
\tau_k := \inf\{t > \tau_{k-1} \mid X_t^+ \neq X_t\}, \quad k \in \mathbb{N}
\]

Then N is constant in time on each $(\tau_{k-1}, \tau_k]$.

A new piece begins at each right-discontinuity.

Assume $\tau_k \uparrow \infty$, a.s.
Dissection

- Introduce the additive identity element ⊙, so that \(x + ⊙ = ⊙ + x = x, \forall x \in \mathbb{U} \cup \{⊙\} \).

- For stochastic process \(Y \) and \(A \subseteq \mathbb{R}_+ \times \Omega \), define the operation \(\star \):

\[
(Y \star 1_A)_t(\omega) = (1_A \star Y)_t(\omega) := \begin{cases}
Y_t(\omega) & \text{for } (t, \omega) \in A \\
⊙ & \text{otherwise}
\end{cases}
\]

- **Dissection**: Chop up \(X \) into \(\mathbb{R}^n \)-valued processes on each \((\tau_{k-1}, \tau_k] \). For each \((k, n) \in \mathbb{N}^2 \), define

\[
0^{(n)} := (0, \ldots, 0) \in \mathbb{R}^n, \\
A_{k, n} := (\tau_{k-1}, \infty) \cap [0, \infty) \times \{\tau_{k-1} < \infty, N_{\tau_{k-1}} = n\} \subseteq \mathbb{R}_+ \times \Omega, \\
X_{k, n} := (X_{\tau_k} - X_{\tau_{k-1}}^+) \star 1_{A_{k, n}} + 0^{(n)} \star 1_{A_{k, n}^c}.
\]

- Then \(X_{k, n} \) is an \(\mathbb{R}^n \)-valued process, \(\forall (k, n) \in \mathbb{N}^2 \).
Extension of Stochastic Integration

Definition

X is a **U-valued piecewise semimartingale** if *X*_{k,n} is an \(\mathbb{R}^n \)-valued semimartingale for each \((k, n) \in \mathbb{N}^2\).

- Assume \(H \) is predictable and satisfies \(\dim H = N \). Dissect:

 \[
 B_{k,n} := (\tau_{k-1}, \tau_k] \cap [0, \infty) \times \{ \tau_{k-1} < \infty, N^+_{\tau_{k-1}} = n \},
 \]

 \[
 H^{k,n} := H \ast 1_{B_{k,n}} + 0^{(n)} \ast 1_{B_{k,n}^c}.
 \]

- If each \(H^{k,n} \) is \(X^{k,n} \)-integrable, in the sense of \(\mathbb{R}^n \)-valued semimartingale integration, then we say \(H \in \mathcal{L}(X) \), and

 \[
 H \cdot X := \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} H^{k,n} \cdot X^{k,n}.
 \]

- Stochastic integral \(H \cdot X \) extends \(\mathbb{R}^n \)-stochastic integration.
- Retains that \(\cdot X \) is a continuous linear operator on the appropriate generalization of simple, predictable processes.
A characterization of martingality of X by conditional expectation is not useful or appropriate.

Instead, characterize via martingality of $H \cdot X$.

Definition

X is a \textbf{U-valued piecewise martingale} if $H \cdot X$ is an \mathbb{R}-valued martingale $\forall H: \text{simple, predictable, dim } H = \text{dim } X$, $|H|$ bounded.

X is a \textbf{U-valued piecewise local martingale} if X is locally a \textbf{U-valued piecewise martingale}. X is \textbf{U-valued piecewise σ-martingale} if $H \cdot X$ is a σ-martingale for all $H \in \mathcal{L}(X)$.

All of these are necessary and sufficient when X is an \mathbb{R}^n-valued semimartingale, so are proper extensions.
1 Market Models with a Stochastic Number of Assets
 - Motivation
 - Piecewise Semimartingales

2 Arbitrage
 - Fundamental Theorems of Asset Pricing
 - Functionally Generated Relative Arbitrage
Self financing:

\[V_t = V_0 + (H \cdot X)_t, \quad t \geq 0. \]

- The market changes configuration at each \(\tau_k \), but \(H \cdot X \) is always right-continuous by its definition.
- The implicit assumption is that portfolio values are unaffected by the changes in market configuration at \(\tau_k^+ \).
- The model *can* handle events such as a stock jumping to bankruptcy. The jump to 0 occurs via a left-discontinuity, affecting \(H \cdot X \), and then the company may be removed from the market via a right-discontinuity: \(N_{\tau_k^+} = N_{\tau_k} - 1 \).
- Trading process \(H \in \mathcal{L}(X) \) is *admissible* if there exists \(c \in \mathbb{R} \):
 \[(H \cdot X)_t \geq -c, \quad \forall t \geq 0. \]
Extension of NFLVR Equivalence

Theorem (Mémin extension)

\[\{ H \cdot X \mid H \in \mathcal{L}(X) \} \] is closed in the semimartingale topology.

Proof.

Localize. Each \(\{ H^k \cdot X^k, n \mid H^k, n \in \mathcal{L}(X^k, n) \} \) is closed by Mémin.

Theorem (FTAP extension)

NFLVR \(\iff \) existence of an equivalent measure under which \(H \cdot X \) is a supermartingale \(\forall H \) admissible.

Proof.

Immediate from the Mémin extension via [Kabanov(1997)].

I have not proved a \(\sigma \)-martingale characterization for \(X \) yet.
Corollary

If X is an \mathbb{R}^n-valued semimartingale, and $|X|$ is bounded, then $\text{NFLVR} \iff \text{existence of an equivalent martingale measure for } X$.

But since X may have right-discontinuities not passed on to $H \cdot X$,

Fact

$[|X|$ bounded \cap NFLVR] \nRightarrow existence of an equivalent martingale measure for X.

Corollary

If $|X|$ is locally bounded, then $\text{NFLVR} \iff \text{existence of an equivalent local martingale measure for } X$.
Definition

An *arbitrage of the first kind* for X on horizon α, a stopping time, is an \mathcal{F}_α-measurable random variable ψ such that $P[\psi \geq 0] = 1$, $P[\psi > 0] > 0$ and, for each $\nu > 0$, there exists H such that $\nu + H \cdot X \geq 0$, and $\nu + (H \cdot X)_\alpha \geq \psi$. If there does not exist any arbitrage of the first kind, then we say NA_1 holds.

NA_1 is weaker than NFLVR. [Kardaras(2009)] proves the FTAP for NA_1, relating it to ELMD.

Definition

An *equivalent local martingale deflator* (ELMD) for X is a strictly positive \mathbb{R}-valued local martingale Z, such that for each H admissible, $Z(H \cdot X)$ is a local martingale.
Theorem [Kardaras(2009)]

Let α be a stopping time and X an \mathbb{R}^n-valued semimartingale. NA_1 holds for X on horizon α if and only if there exists an ELMD for X on horizon α.

The next theorem is my extension.

Theorem

Let α be a stopping time and X an \mathbb{U}-valued piecewise semimartingale. NA_1 holds for X on horizon α if and only if it holds for each $X^{k,n}$, $(k,n) \in \mathbb{N}^2$, on horizon α if and only if there exists an ELMD for X on horizon α.

- This FTAP is much easier to check in practice than the Delbaen-Schachermayer FTAP.
- For many applications (portfolio optimization, hedging) it provides sufficient market regularity and greater flexibility.
1 Market Models with a Stochastic Number of Assets
 • Motivation
 • Piecewise Semimartingales

2 Arbitrage
 • Fundamental Theorems of Asset Pricing
 • Functionally Generated Relative Arbitrage
Background on Stochastic Portfolio Theory (SPT) in \mathbb{R}^n

- Begun with [Fernholz and Shay(1982)] and continued by R. Fernholz in the late 1990s, leading to the monograph [Fernholz(2002)].
- Recent work by: Karatzas, Kardaras, D. Fernholz, Pal, Ichiba, many others.
- Motivated by: The robust empirical outperformance of constant weight portfolios compared to their passive counterparts.
- Goals: Understand what type of models reproduce this, and if there are fundamental properties of real markets that explain it. *Let the data guide the theory!*

Itô process model for the n stocks:

$$dX^i_t = X^i_t \left[b^i_t dt + \sum_{\nu=1}^{d} \sigma^{i\nu}_t dW^\nu_t \right], \quad 1 \leq i \leq n.$$

Assume also *uniform ellipticity* of the covariance:

$$\exists \varepsilon > 0 : \quad \xi \sigma_t \sigma^\top_t \xi \geq \varepsilon |\xi|^2, \quad \forall \xi \in \mathbb{R}^n, \forall t \geq 0.$$
Diversity and Arbitrage

- **Empirical observation:** modern financial markets do not permit any company to approach the size of the entire market.

- **Mathematical formulation:** WLOG let X^i be the total capitalization (\#shares \times price per share) of stock i.

- The *market portfolio* μ plays an important role:

$$
\mu^i := X^i / \sum_{j=1}^{n} X^j, \quad \mu_t(\omega) \in \Delta := \{ u \mid u^i \geq 0, \forall i, \sum u^i = 1 \}, \quad \forall t, \omega.
$$

Diversity: There exists some $\delta \in (0,1)$ such that

$$
\mu_t^{(1)} := \max_{1 \leq i \leq n} \mu^i_t \leq 1 - \delta, \quad \forall t \geq 0.
$$

- **Consequences:** [uniform ellipticity \cap diversity] \Rightarrow there exist arbitrage relative to the market portfolio that require no knowledge of σ or b to construct. These portfolios are *functionally generated* from the market portfolio.
Let V^{π} be the wealth process of a portfolio π, where π^i is the fraction of V^{π} invested in X^i.

$$\frac{dV^\pi_t}{V^\pi_t} = \sum_{i=1}^n \pi^i_t \frac{dX^i_t}{X^i_t}$$

A portfolio generating function is a function $G : U \subseteq \Delta \rightarrow (0, \infty)$ such that $G \in C^2$, and additional mild regularity.

Solve for the (unique) π such that

$$d \log V^\pi_t = d \log V^\mu_t + d \log G(\mu_t) + (?) dt.$$

This is analogous to deriving the hedging portfolio for contingent claim $V^\mu G(\mu)$.
This π corresponding to G is called the portfolio generated by G. It obeys the *master formula*

$$\log \left(\frac{V_\pi^T}{V_\mu^T} \right) = \log G(\mu_T) - \log G(\mu_0) + \int_0^T g_t \, dt. \quad (1)$$

If G is concave and symmetric, then $g \geq 0$, and π is long only. Such a π buys a little bit of a stock each time it falls in price relative to the others, and sells a little each time it rises.

The values for g and π:

$$g_t = \frac{-1}{2G(\mu_t)} \sum_{i,j} \left[\frac{\partial^2 G(\mu_t)}{\partial \mu_i \partial \mu_j} \right] \left[\frac{d}{dt} \langle \mu_t^i, \mu_t^j \rangle_t \right],$$

$$\pi_t^i = \mu_t^i \left(\frac{\partial}{\partial \mu_i} G(\mu_t) + 1 - \sum_{j=1}^n \mu_t^j \frac{\partial}{\partial \mu_j} G(\mu_t) \right), \quad 1 \leq i \leq n.$$

Key fact: The drift b of X does not appear in (1)!
Some nice choices for G:

$$G_p(u) := \left(\sum (u^i)^p\right)^{1/p}, \quad p \in (0,1),$$
$$G_e(u) := -\sum u^i \log u^i,$$
$$G_\psi(u) := (u^1)^{\psi^1} \times \ldots \times (u^n)^{\psi^n} \Rightarrow \pi = \psi, \text{ for } \psi \in \Delta,$$
$$G^c(u) := c + G(u), \quad c \in (0,\infty).$$

When diversity and uniform ellipticity hold, then G_p, G^c, G_ψ all satisfy: $\log G(\mu) \geq -\kappa$, $\kappa \in (0,\infty)$, and $g \geq \gamma \in (0,\infty)$.

This implies that $V^\pi_T > V^\mu_T$ for all $T > T^* := \frac{\kappa + \log G(\mu_0)}{\gamma}$, so π is an arbitrage relative to μ on horizon T.
To study functionally generated arbitrage when the number of assets is stochastic, it is appropriate to adopt a \mathbb{U}-valued piecewise Itô process model.

Let X be a \mathbb{U}-valued piecewise Itô process

$$dX_t = X_t[b_t dt + \sigma_t dW_t], \quad \text{on each } (\tau_{k-1}, \tau_k].$$

The \textit{market portfolio} is

$$\mu_t^i = \mu_t^i(X) := \frac{X_t^i}{\sum_{j=1}^{N_t} X_t^j}, \quad 1 \leq i \leq N_t, \ t \geq 0.$$
When X is \mathbb{R}^n-valued, recall the master formula:

$$\log \left(\frac{V_{\pi T}}{V_{\mu T}} \right) = \log G(\mu_T) - \log G(\mu_0) + \int_0^T g(t) dt.$$

This was derived by an application of Itô’s formula, and choosing π to eliminate the stochastic integral.

If X is \mathbb{U}-valued Itô, then Itô’s formula holds on each $(\tau_{k-1}, \tau_k]$, so the master formula generalizes to

$$\log \left(\frac{V_{\pi T}}{V_{\mu T}} \right) = \sum_{k=1}^{K_T} \left(\log G(\mu_{\tau_k}) - \log G(\mu_{\tau_k^+}) \right)$$

$$+ \log G(\mu_T) - \log G(\mu_{\tau_{K_T}^+}) + \int_0^T g(t) dt,$$

$$K_T := \sum_{k=1}^{\infty} 1_{T > \tau_k}.$$
Suppose that X is strong Markov at the τ_k, which themselves are independent of W.

Assume: $P(K_T > k) > 0$, $\forall k \in \mathbb{N}$.

Let X be diverse: for some $n_0 \geq 2$, $\delta \in (0, \frac{n_0-1}{n_0})$ let

$$U^n := \{ x \in (0, \infty)^n \mid \mu^{(1)}(x) < 1 - \delta \}.$$

Suppose that μ communicates on each $\mu(U^n)$, meaning roughly that it has strictly positive probability of reaching any neighborhood in $\mu(U^n)$ from any point in arbitrarily small time, $\forall n \in \mathbb{N}$. See [Strong(2010)] for a precise statement.

Let the covariance satisfy:

$$a_{\min} |\xi|^2 \leq \xi^\prime a_t \xi \leq a_{\max} |\xi|^2, \quad \forall \xi \in \mathbb{R}^n, \forall n \in \mathbb{N}, \forall t \geq 0.$$
Let the market grow from \(N_0^+ = n_0 \in \mathbb{N} \) companies by new companies entering the market, one at each \(\tau_k, k \in \mathbb{N} \), so that

\[
\mu(X_{\tau_k^+}) = ((1 - \mu^{\text{new}})(\mu_{\tau_k}), \mu^{\text{new}}),
\]

where the relative size \(\mu^{\text{new}} \) of the new company has support that in a subset of \([\varepsilon_l, \varepsilon_u]\) for any \(0 < \varepsilon_l < \varepsilon_u < 1 - \delta \).

Then the entropy-weighted \(G_\xi \) and diversity-\(p \) \(G_p \) generating functions satisfy \(G(\mu(X_{\tau_k^+})) > \inf_{x \in U^n} G \upharpoonright U^n (\mu(x)) + \varepsilon \), a.s. on \(\{N_{\tau_k^+} = n\} \), for all \((k, n) \in \mathbb{N}^2\).

Furthermore \(P(\log G(\mu_{\tau_k}) - \log G(\mu_{\tau_{k-1}^+}) < -\frac{\varepsilon}{2} \mid \mathcal{F}_{\tau_{k-1}}) > 0 \) a.s.

This means that there is always a chance of losing at least \(\frac{\varepsilon}{2} \) in \(\log G(\mu) \) on \((\tau_{k-1}, \tau_k]\). Therefore

\[
P \left(\sum_{k=1}^{K_T+1} \log \left(\frac{G(\mu_{\tau_k} \wedge T)}{G(\mu_{\tau_{k-1}^+} \wedge T)} \right) < -\kappa \right) > 0, \quad \forall \kappa \in \mathbb{R}.
\]
• g is bounded from above uniformly in time. Therefore the master formula

$$\log \left(\frac{V_\pi^T}{V_\mu^T} \right) = \sum_{k=1}^{K_T} \left(\log G(\mu_{\tau_k}) - \log G(\mu_{\tau_{k-1}^+}) \right)$$

$$+ \log G(\mu_T) - \log G(\mu_{\tau_{K_T}^+}) + \int_0^T g(t) dt,$$

$$K_T := \sum_{k=1}^\infty \mathbf{1}_{T > \tau_k}.$$

implies that relative losses are unbounded:

$$P \left(\frac{V_\pi^T}{V_\mu^T} < \frac{1}{\theta} \right) > 0, \quad \forall \theta \in \mathbb{R}.$$

• This market is diverse and uniformly elliptic, but does not admit straightforward functionally generated arbitrage.

• Due to the diversity, and covariance being bounded from above, the market has no ELMM, so admits FLVR.

• **Open question:** Does it admit any (non-straightforward) functionally generated arbitrage?
Summary

- Semimartingale stochastic integration may be extended to \mathbb{U}-valued piecewise semimartingale stochastic integration.
- The NFLVR equivalence to the existence of an equivalent pricing measure, and its related theorems extend.
- The NA$_1$ equivalence to existence of an equivalent local martingale deflator extends as well.
- Functionally generated portfolios are susceptible to the changes in configuration of the market.
- If K and N are bounded, they may work but take longer.
- If K is unbounded, then the portfolios typically fail to bound worst case relative performance.
Open Questions and Future Work

- Even though functionally generate portfolios typically fail to be arbitrages in \(\mathbb{U} \)-valued models, under what conditions do they satisfy weaker outperformance criteria (e.g. superior asymptotic growth)?
- Are there (non-straightforward) functionally generated arbitrages for the models in this talk?
- Explore the interaction between market growth, stability and diversity over time.
References I

E. R. Fernholz.
Stochastic Portfolio Theory.

R. Fernholz and B. Shay.
Stochastic portfolio theory and stock market equilibrium.

Y. M. Kabanov.
On the FTAP of Kreps-Delbaen-Schachermayer.
C. Kardaras.
Market viability via absence of arbitrage of the first kind.
Preprint.

W. Strong.
Arbitrage in market models with a stochastic number of assets.
2010.