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@ Market Models with a Stochastic Number of Assets
@ Motivation



@ Usually, stock prices are modeled as R"-valued stochastic
processes.

@ Why allow the number of assets to be stochastic?

@ Realism. Companies enter, leave, merge and split in real
equity markets.

@ The Market Portfolio is of central importance in modern
portfolio theory of economics, and stochastic portfolio theory
of continuous time finance.

@ Question: Does a stochastic number of assets qualitatively

change characterizations of arbitrage compared to
constant-number-of-asset markets?



@ Market Models with a Stochastic Number of Assets

@ Piecewise Semimartingales



Regularity Assumptions

The stock process X is progressive, has paths with left and
right limits, and takes values in U:=U;,_;R".

The dimensional process N :=dim X has paths that are
left-continuous and piecewise constant in time.

T0:=0,
Tk ::inf{t>fk,1 ]Xf;éXt}, keN

Then N is constant in time on each (Tx_1, Tx].

A new piece begins at each right-discontinuity.

Assume Ty " oo, a.s.



Dissection

@ Introduce the additive identity element ©®, so that
x+O0=0+x=x, Vxe UU{o}.

@ For stochastic process Y and A C Ry x €, define the
operation x:

Yi(w) for (t,m) € A
® otherwise '

(Yx1a)e(w) = (1axY)e(@): = {

@ Dissection: Chop up X into R"-valued processes on each
(tx_1,7x]. For each (k,n) € N2, define
oM :=(0,...,0) e R",
Akn = (Tk—1,90) N [0,00) X {T)_1 < o0 NI = n} CR; xQ,

> T
XAT = (XX g, 0w

@ Then X%/ is an R"-valued process, ¥(k,n) € N2,



Extension of Stochastic Integration

Definition

X is a U-valued piecewise semimartingale if X*" is an R"-valued
semimartingale for each (k,n) € N2.

@ Assume H is predictable and satisfies dimH = N.
Bk,n = (’L'kfl,’b'k] N [0,00) X {Tk,;[ <o NI = n},

7 Tk—1
Hkn . = H*]'Bk,n —I-O(n)*].BE".

o If each H*" is X*"_integrable, in the sense of R"-valued
semimartingale integration, then we say H € .Z(X), and

H-X:= i i H<m. xkon,
k=1n=1

@ Stochastic integral H- X extends R”"-stochastic integration.

@ Retains that -X is a continuous linear operator on the
appropriate generalization of simple, predictable processes.



U-valued Piecewise Martingales

@ A characterization of martingality of X by conditional
expectation is not useful or appropriate.

@ Instead, characterize via martingality of H- X.

Definition

X is a U-valued piecewise martingale if H- X is an R-valued
martingale VH : simple, predictable, dim H =dim X, |H| bounded.
X is a U-valued piecewise local martingale if X is locally a
U-valued piecewise martingale. X is U-valued piecewise
o-martingale if H-X is a o-martingale for all H € Z(X).

@ All of these are necessary and sufficient when X is an
R"-valued semimartingale, so are proper extensions.
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The Market Model

e Self financing:
Vi=Vo+(H-X), t>0.

@ The market changes configuration at each 7y, but H- X is
always right-continuous by its definition.

@ The implicit assumption is that portfolio values are
by the changes in market configuration at T:_.

@ The model can handle events such as a stock jumping to
bankruptcy. The jump to 0 occurs via a left-discontinuity,
affecting H- X, and then the company may be removed from
the market via a right-discontinuity: NT: =N —1.

e Trading process H € .Z(X) is admissible if there exists c € R:

(H-X);>—c, Yt>0.



Extension of NFLVR Equivalence

Theorem (Mémin extension)

{H-X|He Z(X)} is closed in the semimartingale topology.

Proof.

Localize. Each {Hkm. Xkn | Hkm e 2 (X%} is closed by
Mémin. Ol

4

Theorem (FTAP extension)

NFLVR <= existence of an equivalent measure under which H- X
is a supermartingale YH admissible.

Immediate from the Mémin extension via [Kabanov(1997)]. O

| have not proved a o-martingale characterization for X yet.



Corollaries

If X is an R"-valued semimartingale, and |X| is bounded, then
NFLVR < existence of an equivalent martingale measure for X.

But since X may have right-discontinuities not passed on to H- X,

Fact
[|X| bounded N NFLVR] - existence of an equivalent martingale
measure for X.

Corollary

If | X| is locally bounded, then NFLVR <= existence of an
equivalent local martingale measure for X.

| \




NA; and Equivalent Local Martingale Deflator

Definition

An arbitrage of the first kind for X on horizon @, a stopping time,
is an .Z4-measurable random variable ¥ such that P[y > 0] =1,
Ply > 0] > 0 and, for each v > 0, there exists H such that
v+H-X>0,and v+ (H-X)q > . If there does not exist any
arbitrage of the first kind, then we say NA; holds.

NA; is weaker than NFLVR. [Kardaras(2009)] proves the FTAP for
NA;1, relating it to ELMD.

Definition

An equivalent local martingale deflator (ELMD) for X is a strictly
positive R-valued local martingale Z, such that for each H
admissible, Z(H - X) is a local martingale.




Extension of the NA;-FTAP

Theorem [Kardaras(2009)]

Let o be a stopping time and X an R"-valued semimartingale.
NA; holds for X on horizon « if and only if there exists an ELMD
for X on horizon «.

The next theorem is my extension.

Let o be a stopping time and X an U-valued piecewise
semimartingale. NA; holds for X on horizon o if and only if it
holds for each X*", (k,n) € N2, on horizon ¢ if and only if there
exists an ELMD for X on horizon a.

@ This FTAP is much easier to check in practice than the
Delbaen-Schachermayer FTAP.

e For many applications (portfolio optimization, hedging) it
provides sufficient market regularity and greater flexibility.
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Background on Stochastic Portfolio Theory (SPT) in R”

@ Begun with [Fernholz and Shay(1982)] and continued by R.
Fernholz in the late 1990s, leading to the monograph
[Fernholz(2002)].

@ Recent work by: Karatzas, Kardaras, D. Fernholz, Pal, Ichiba,
many others.

@ Motivated by: The robust empirical outperformance of
constant weight portfolios compared to their passive
counterparts.

@ Goals: Understand what type of models reproduce this, and if
there are fundamental properties of real markets that explain
it.

@ [to process model for the n stocks:

d
dX; =X/ |bidt+ ) o;'VthV] , 1<i<n.

v=1

@ Assume also uniform ellipticity of the covariance:

Je>0: Eoro, E > €lE|?, VEER", Vt>0.



Diversity and Arbitrage

@ Empirical observation: modern financial markets do not
permit any company to approach the size of the entire market.

@ Mathematical formulation: WLOG let X' be the total
capitalization (#shares xprice per share) of stock /.

@ The market portfolio u plays an important role:
n
p=X/Y X, p(o)eA={ulu >0V Y v =1}, Vto.
j=1

Diversity: There exists some 8 € (0,1) such that

ut(l) = max ul <1-8, Vt>0.

1<i<n

e Consequences: [uniform ellipticity N diversity] = there exist
arbitrages relative to the market portfolio that require no
knowledge of & or b to construct. These portfolios are
functionally generated from the market portfolio.



Functionally Generated Portfolios

@ Let V7 be the wealth process of a portfolio 7, where 7' is the
fraction of V7" invested in X'.

dvd & dXi
= T :
vi "R

@ A portfolio generating function is a function
G:UC A —(0,) such that G € C?, and additional mild
regularity.

@ Solve for the (unique) 7 such that

dlog VI = dlog V{' + dlog G(u) + (?)dt.

@ This is analogous to deriving the hedging portfolio for
contingent claim V#G(u).



Master Formula

@ This m corresponding to G is called the portfolio generated by
G. It obeys the master formula

Vﬂ'
log<v ) log G(uT) —log G(Lo +/ gedt. (1)
T

o If G is concave and symmetric, then g > 0, and 7 is long only.
Such a & buys a little bit of a stock each time it falls in price
relative to the others, and sells a little each time it rises.

@ The values for g and 7:

_ 92 :
2(;(2&) Z[ ajgij)} [d <“f’“f> }

1

gt =
dJ J ,
ut(au G([.Lt +1 Zuta (.ut)>7 I<i<n

e Key fact: The drift b of X does not appear in (1)!



Relative Arbitrage

@ Some nice choices for G:

Golu) = (L))" pe(0.0)
Ge(u) := Zulogu
):
):

Gy(u

G (u

@ When diversity and uniform ellipticity hold, then G,, G¢, GI,C,
all satisfy: log G(1) > —k, k € (0,00), and g > y € (0,00).

@ This implies that VF > V# forall T>T*:= '(’LI%G(MO), so T
is an arbitrage relative to W on horizon T.

(W) x .. x (WY ==y, for y €A,
c+G(u), ce(0,00).



Stochastic Portfolio Theory in U

@ To study functionally generated arbitrage when the number of
assets is stochastic, it is appropriate to adopt a U-valued
piecewise |t6 process model.

@ Let X be a U-valued piecewise I1t6 process
dXt = Xt[btdt+ thWt], on each (Tk,]_, 'Ck].
@ The market portfolio is

Xi
ZNt XJ

H .ut( )=



Functionally Generated Arbitrage

@ When X is R"-valued, recall the master formula:

log (ﬁ) =log G(ur) —log G(uo)+/0T9(t)dt-
T

@ This was derived by an application of It6's formula, and
choosing 7 to eliminate the stochastic integral.

o If X is U-valued Itd, then 1td’s formula holds on each
(Tk_1,T«], so the master formula generalizes to

Vﬂ:
log | =L | =
°g<V¢>

KT = Z 1T>Tk‘
k=1

—I—/OTg(t)dt,



Example: Diverse Market that Grows at Times L W

@ Suppose that X is strong Markov at the 7, which themselves
are independent of W.

@ Assume: P(Kt > k) >0, VkeN.

o Let X be diverse: for some ng >2, § € (0, 2=-1) Jet

no

U™ :={x € (0,00)" | uM(x) < 1—8}.

@ Suppose that u communicates on each u(U"), meaning
roughly that it has strictly positive probability of reaching any
neighborhood in u(U") from any point in arbitrarily small
time, Vn € N. See [Strong(2010)] for a precise statement.

@ Let the covariance satisfy:

amin |E]? < E'aé < amax|E|*, VE ER", VneN, Ve >0.



Let the market grow from N = ng € N companies by new
companies entering the market, one at each 74, k € N, so that

.u(Xr;r) :((1 - Mnew)(ﬂrk)yﬂnew)a

where the relative size u"®W of the new company has support

that in a subset of [g/,&,] forany 0 < g <g, <1-39.

Then the entropy-weighted G§ and diversity-p G, generating
functions satisfy G(/UL(XT?)) > infyeun G [un (U(X))+ €, ass.
on {N = n}, for all (k,n) € N2,

Furthermore P(log G(uz,)— log G(ufktl) <=5 ,)>0
a.s.

This means that there is always a chance of losing at least £
in log G(u) on (Tx_1,7k]. Therefore

P( <—1<>>0, vk € R.



@ g is bounded from above uniformly in time.
Therefore the master formula

Vﬂ:
| T\ =
°g<v¢>

KT = Z 1T>Tk-
k=1

—|—/OTg(t)dt,

implies that relative losses are unbounded:

VTL'
P —E<l >0, VOeR.
VE =g

@ This market is diverse and uniformly elliptic, but does not
admit straitforward functionally generated arbitrage.

@ Due to the diversity, and covariance being bounded from
above, the market has no ELMM, so admits FLVR.

@ Open question: Does it admit any (non-straightforward)
functionally generated arbitrage?



@ Semimartingale stochastic integration may be extended to
U-valued piecewise semimartingale stochastic integration.

@ The NFLVR equivalence to the existence of an equivalent
pricing measure, and its related theorems extend.

@ The NA; equivalence to existence of an equivalent local
martingale deflator extends as well.

@ Functionally generated portfolios are susceptible to the
changes in configuration of the market.

o If K and N are bounded, they may work but take longer.

o If K is unbounded, then the portfolios typically fail to bound
worst case relative performance.



Open Questions and Future Work

@ Even though functionally generate portfolios typically fail to
be arbitrages in U-valued models, under what conditions do
they satisfy weaker outperformance criteria (e.g. superior
asymptotic growth)?

@ Are there (non-straightforward) functionally generated
arbitrages for the models in this talk?

@ Explore the interaction between market growth, stability and
diversity over time.
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