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Introduction

Post-crisis interest rate markets

@ a number of anomalies has appeared in the interest rate markets after the credit
crisis at the end of 2007

@ Libor rates cannot be considered default-free any longer, they reflect the credit
risk of the interbank sector

Modeling of credit risk in market models

@ in mathematical finance defaultable interest rate models are often obtained by
adding the defaultable term structure to the existing default-free term structure
models in an appropriate way

@ various defaultable extensions of the Heath—Jarrow—Morton (HJM) modeling
methodology are found in the literature, whereas credit risk in Libor market
models is far less studied (only papers by Lotz and Schlégl (2000), Schénbucher
(2000), Eberlein, Kluge, and Schénbucher (2006))

@ none of the existing defaultable Libor market models incorporates ratings and
credit migration
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Libor market models — introduction

Discrete tenor structure: 0 =To < T1 < ... < Tp = T*, with 0y = Ty1 — Tk

To T T t T T T4 Thow Th=T7
Defaultable zero coupon bonds with credit ratings: Be(-, T1), ..., Be(:, Tn)

Defaultable forward Libor rate at time t < T for the accrual period [Tk, Tk41]

1 Be(t, Tk)
Le(t, Ti) = 5k <Bc?f~, Tk:) - 1)



Libor modeling

@ modeling under forward martingale measures, i.e. risk-neutral measures that
use zero-coupon bonds as numeraires

@ on a given stochastic basis, construct a family of Libor rates L(-, Tx) and a
collection of mutually equivalent probability measures Pr, such that
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@ modeling under forward martingale measures, i.e. risk-neutral measures that
use zero-coupon bonds as numeraires

@ on a given stochastic basis, construct a family of Libor rates L(-, Tx) and a
collection of mutually equivalent probability measures Py, such that

(B(L T/))
B(t, Tk) 0<I<TAT;

are P, -local martingales
k

@ in addition model defaultable Libor rates L¢(-, Tx) such that

<Bc(f> T/)>
B(t, Tk) 0<ISTEAT;

are P, -local martingales
k



Defaultable bonds with ratings

@ Credit ratings identified with elements of a finite set £ = {1,2,..., K}, where 1
is the best possible rating and K is the default event

@ Credit migration is modeled by a conditional Markov chain C with state space K

@ Default time 7: the first time when C reaches the absorbing state K, i.e.

7=inf{t>0:C =K}



Defaultable bonds with ratings

@ Credit ratings identified with elements of a finite set £ = {1,2,..., K}, where 1
is the best possible rating and K is the default event

@ Credit migration is modeled by a conditional Markov chain C with state space K

@ Default time 7: the first time when C reaches the absorbing state K, i.e.

7=inf{t>0:C =K}

@ We consider defaultable bonds Bc(-, Tx) with credit migration process C and
fractional recovery of Treasury value q = (g4, - . ., Qk—1) upon default:

K—1
Be(t, Tk) = Z Bi(t, Ti)1c—iy + e, _ B(t, Tk)1ici=k3»

i=1

We have B;( T, Tx) = 1, for all i.



Canonical construction of C
Let (Q, Fr«,F = (Ft)o<i<7+,Pr+) be a given complete stochastic basis.
@ Let A = (At)o<i<7+ be a matrix-valued F-adapted stochastic process
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A(t) = . .. .
0 o ... 0

which is the stochastic infinitesimal generator of C.
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Canonical construction of C

Let (Q, Fr«,F = (Ft)o<i<7+,Pr+) be a given complete stochastic basis.

@ Let A = (At)o<i<7+ be a matrix-valued F-adapted stochastic process

A1(8) A2(t) ... Mik(t)
)\21(t) Agg(t) )\2;((1‘)
A(t) = . .. .
0 o ... 0
which is the stochastic infinitesimal generator of C.
@ Enlarge probability space
(Q7 Fr= ) PT*) - (Q7 gT* ) QT* )
and use canonical construction to construct C (Bielecki and Rutkowski, 2002)

The process C is a conditional Markov chain relative to I, i.e. for every 0 < t < s and
any function h: £ — R

Eqy. [A(Co)|Ft V 7] = Eqr. [M(Ce)| Fe V o(C1),

where FC = (FF) denotes the filtration generated by C.
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The progressive enlargement of filtration
Gii=FRVF, telo, T,

satisfies the ()-hypothesis:

(H) Every local F-martingale is a local G-martingale.

It is well-known that () is equivalent to
(H1) Eqy.[Y|Fr+] = Eq,. [Y|F,

for any bounded, F¢-measurable random variable Y
(Brémaud and Yor (1978), Elliot, Jeanblanc and Yor (2000))

But this follows easily from property
Eq,.[18Fs] = Eo,. [18|F],  t<s,Be FF,

which is proved as a consequence of the canonical construction.



Risk-free Lévy Libor model

(Eberlein and Ozkan, 2005)

Let (Q, Fr+,F = (Ft)o<i< 7+, Pr~) be a complete stochastic basis.

@ as driving process take a time-inhomogeneous Lévy process X = (X', ..., X9)
whose Lévy measures satisfy certain integrability conditions

@ X is a special semimartingale with canonical decomposition
t t . t .
x,:/ bsds+/ VesdW] +/ / x(u— v’ )(ds, dx),
0 0 0 JRrd
where W™ denotes a Pr--standard Brownian motion and

1 is the random measure of jumps of X with Pr.-compensator 7 .
We assume that b = 0.
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Construction of Libor rates (backward induction):

Starting from k = n — 1, we have for each Ty:
(i) define the forward measure Pr,, via

”H1 1+ 6L(t, ) B(0, T*) B(t, Txs1)

5 Pl 1 —|—(S/L s B(O7 Tk+1) B(t, T*) ’

(ii) the dynamics of the Libor rate L(-, Tx) under this measure

L(t, Tx) = L(0, Tx) exp (/tbL(s, Tx)ds + /ta(s, Tk)dXST”‘>, (1)
0 0

Tk+1 /deTk+1 // Tk+1)ds dx)

with Pr, ,-Brownian motion W'+ and

where

n—1

5iL(s—, T)) - -
Tert(ds, dx) = ] ( e Sl el (=TX) 1) 41 ds, dx).
v ( ) ) s 1+ (S[L(S—, T[)( ) 14 ( )

The drift term b (s, Tx) is chosen such that L(-, Tx) becomes a IP7,.,-martingale.
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How to include credit risk with ratings in the Lévy Libor
model?

(1) Use defaultable bonds with ratings to introduce a concept of defaultable Libor
rates

(2) Adopt the backward construction of Eberlein and Ozkan (2005) to model
default-free Libor rates

(3) Define and model the pre-default term structure of rating-dependent Libor rates

To include credit migration between different rating classes:
(4) Enlarge probability space: (22, F,F,Pr«) — (ﬁ,g,@,@r*)
and construct the migration process C

(5) The (H)-hypothesis = X remains a time-inhomogeneous Lévy process with
respect to Qr- and G with the same characteristics

(6) Define on this space the forward measures Q7, by:

for each tenor date Ty Q7, is obtained from Qr- in the same way as PP, from
Pr (k=1,...,n—1)
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Let C be a canonically constructed conditional Markov chain with respect to Qr~.
Then C is a conditional Markov chain with respect to every forward measure Qr, and

Q7

Py (t:9) =BT (4,9)

i.e. the matrices of transition probabilities under Qr- and Qr, are the same.




Conditional Markov chain C under forward measures

Note that 40
T« _ k
dQr- v

where " is an Fr, -measurable random variable with expectation 1.

Theorem

Let C be a canonically constructed conditional Markov chain with respect to Qr~.
Then C is a conditional Markov chain with respect to every forward measure Qr, and

Q7

Py (t:9) =BT (4,9)

i.e. the matrices of transition probabilities under Qr- and Qr, are the same.

Theorem

| A\

The (H)-hypothesis holds under all Qr, , i.e. every (F,Qr,)-local martingale is a
(G, Qr,)-local martingale.




Rating-dependent Libor rates

@ The forward Libor rate for credit rating class i

1 Bi(tv Tk)

L,(t,Tk):a<mf1>, I:1,2,...

We put Lo(t, Tx) := L(t, Tx) (default-free Libor rates).



Rating-dependent Libor rates

@ The forward Libor rate for credit rating class i

_ 1 (Bt T) - B
Lt T = 5 <7B,-(t,m1) 1), i=1,2,...,K—1

We put Lo(t, Tx) := L(t, Tx) (default-free Libor rates).

@ The corresponding discrete-tenor forward inter-rating spreads

Li(t, Te) — Li—1(t, Tk)

H/(L Tk) = 1+ 6kLi71(tv Tk)
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Observe that the Libor rate for the rating i can be expressed as

14 0kLi(t, Te) = (14 0kLi—1 (8, Te))(1 + 0k Hi(t, Tk))

= (14 6Lt T)) [] (1 + dkHi(t, Tw))
default-free Libor j=1 spread j—1—;

Idea: model H;(-, Tx) as exponential semimartingales and thus ensure automatically
the monotonicity of Libor rates w.r.t. the credit rating:

L(E, Ty) < Ly(t, Tk) < -+ < Le—1(t, Tk)

= worse credit rating, higher interest rate



Pre-default term structure of rating-dependent Libor rates

For each rating i/ and tenor date Tx we model H;(-, Tx) as
t t
Hi(t, Tx) = Hi(0, Tx) exp </ b"i(s, Ty)ds + / vi(s, Tk)dXsT”‘> (2)
Jo J0

with initial condition

_ _ 1 (B0, T)Bi—1(0, Tik+1)
H,(O, Tk) - 5k (Bi—1 (07 Tk)B,'(O, Tk+1) )

X"+ is defined as earlier and b" (s, Ty) is the drift term (we assume b"i(s, Ty) = 0,
for s > Ty = Hi(t, Tx) = Hi( Tk, Tk), for t > Ty).



Pre-default term structure of rating-dependent Libor rates

For each rating i/ and tenor date Tx we model H;(-, Tx) as
t t
Hi(t, Tx) = Hi(0, Tx) exp </ b"i(s, Ty)ds + / vi(s, Tk)dXsT”‘> (2)
Jo J0

with initial condition

_ _ 1 (Bi(0,Tx)Bi—1(0, Tics1)
H,(O, Tk) - 5k (Bi—1 (07 Tk)B,'(O, Tk+1) )

XTk+1 is defined as earlier and b”f(s, Tx) is the drift term (we assume b"’f(s, T«) =0,
fors > Ty = H,'(t, Tk) = H,’(Tk, Tk), for t > Tk)
= the forward Libor rate L;(-, Tx) is obtained from relation

i

1+ 8k Li(t, Ti) = (14 8 L(t, TO) [ [ (1 + Sk Hi(t, Ti)).

j=1



Theorem
Assume that L(-, Tx) and Hi(-, Tx) are given by (1) and (2). Then:
(a) The rating-dependent forward Libor rates satisfy for every T, and t < Ty

L(t, Tk) < Ly(t, Tx) < -+ < Lx—1(8, Tx),

i.e. Libor rates are monotone with respect to credit ratings.
(b) The dynamics of the Libor rate L;(-, Tx) under Pz, ., is given by

of ot
Lt T) = Li(0, Te) exp ( [ 045, Tas+ [ Veants, Tyawd
0 0

o /ot Kd Si(s, x, Tie)(u — v"")(ds, dx)> 7

where




(s, Te) = ti(s—, )™ (e,-,1(s—, T)oi_1(s, Te) + hi(s—, Te)vi(s, Tk))

= t(s—,Te) " [ts—, T)o(s, T) + 3 hy(s—, T)y(s, i)
Jj=1
represents the volatility of the Brownian part and
Si(s,x T) i=In (14 ti(s—, T) (s, x, T) = 1))

controls the jump size. Here we set

okHi(s, Tk)
h(s Tk) 1 + 6k (s’ Tk)7
0(s, Te) = dkLi(s, Tk)

1+ (5;(1_ (S Tk)
and

Bi(s,%, Ti) = Bi-1(, %, T) (1 + hi(s—, Tk)(e“f(“““> 1))
= (1+ s, T — 1))

< T (1 + ms—, T)(e"0& 700 — 1)),

j=1



Hi(t,Th—1)
L(t, Tot) |- sl L (8, Ton) L o)

E Hi(t, Tx)
L(t, Tk) | """"""" > Li_1(t, Tx) - Li(t, Tk)

Hi(t, Tk—1)
L(t, Ti—1) | % Liq(t, Tk—1) H Li(t, Tk—1) |

Hi(t, T

: :T1)
L(t, Ty) fos Li1(t, Th) 1 Li(t, Th)

Default-free Rating / — 1 Rating i

Figure: Gonnection between subsequent Libor rates
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No-arbitrage condition for the rating based model

Recall the defaultable bond price process with fractional recovery of Treasury value q
K—1
Bc(l‘7 Tk) = Z B,'(t7 Tk)1{C,:i} + qC-r, B(l‘7 Tk)1{Ct:K}«

i=1

iff the forward bond price process

is a Qr, -local martingale for every k =1,...,n—1



We postulate that the forward bond price process is given by

M — Kz_f ﬁﬁ % e_;’of Ai(s)dsq S+ 1
B(t, Tx) 1+ 6H(t T) {Cr=i} c. l{c=K}

i=1 j=1 1=0

=H(t, Ty, f)
K—1 ,
= Y H(t, T, ) N oy + go, 1ok
i=1

where )\; is some [F-adapted process that is integrable on [0, T*].



We postulate that the forward bond price process is given by

Bo(t, T) K—1 i k—1 1 p
c(t, Tk) 1 (s)ds
— 1 = —— /o7 1c-n + 10—
B(t, Tk) ;gg 1 +(5/H/(f, T/) {C=iy T Qc,_1{c=K}
=H(t, Ty, f)
K—1 .
Z H(t, Tk, ,')ev/o )\i(S)dS1{Ct:l_} +9c. ek}, (3)

i=1

where )\; is some [F-adapted process that is integrable on [0, T*].

Note that this specification is consistent with the definition of H; which implies the
following connection of bond prices and inter-rating spreads:

Bj(t,Tk) _ B/(t,Tk_1) 1

Bi1(t, Tx)  Bji—a(t, Tk—1) 1+ k1 Hj(t, Tk—1)

and relation

Bi(t,Te) _ Bi(t,T) 11 _B(t.T)
B(t,Ti)  B(t, Ti) 15 Bi-1(t, Ti)’




Lemma

Let Ty be a tenor date and assume that H;(-, Tx) are given by (2). The process
H(-, Tx, i) has the following dynamics under Pr,

]H[(ta Tk? I) = H(07 Tk7 I)

5 . i k—1
><&</ b(s, Tk,i)dsf/ Ve Y hi(s—, T)(s, T)dW™
0 0

j=1 I=1

+/0' /d <ﬁﬁ (1 + hi(s—, T;)(eits % _ 1))—1 B 1)

j=1 I=1

x(u — v'¥)(ds, dx)),

where b (s, Ty, i) is the drift term.




No-arbitrage condition

Theorem

Let Ty be a tenor date. Assume that the processes H;(-, Tx), j=1,...,K—1, are
given by (2). Then the process ﬁ defined in (3) is a local martingale with respect

to the forward measure Qr, and filtration G iff:
for almost all t < Ty on the set {C;: # K}

% HG T C)

+ Z ( Tk /)efo j(s)ds ))\C”(t)

J=1#Cy H(f* Tkvct)ef“c’

bH 3 e fo)‘Cy s)ds
(t, Tk,C[)-F)\CP(t) = e T A~ )\C,K(t) (4)




No-arbitrage condition

Theorem

Let Ty be a tenor date. Assume that the processes H;(-, Tx), j=1,...,K—1, are
given by (2). Then the process ﬁ defined in (3) is a local martingale with respect

to the forward measure Qr, and filtration G iff:
for almost all t < Ty on the set {C;: # K}

- e fo)‘Cy s)ds
b (t, Tx, Ct) + Ac (1) = thm Acik (1) 4)

+ Z < Tk j)efo j(s)ds ))\C”(t)

J=1#Cy H(f* Tk’@)efokc,

Sketch of the proof: Use the fact that the jump times of the conditional Markov chain
C do not coincide with the jumps of any F-adapted semimartingale, use martingales
related to the indicator processes 1;¢,—;}, i € K, and stochastic calculus for
semimartingales.
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This corresponds to the choice of B¢(-, Tx) as a numeraire.



Defaultable forward measures

Assume that 2t is a true martingale w.r.t. forward measure Qr,
B(-, T ) ke

The defaultable forward measure Qc, r, for the date Ty is defined on (Q, Gr, ) by

dQc, 1,
dQr,

_ B(0, Tx) Be(t, Tx)
~ Be(0, Tk) B(t, Tk)

This corresponds to the choice of B¢(-, Tx) as a numeraire.

The defaultable Libor rate Lc(-, Tx) is a martingale with respect to Qc, 7., and

dQc,7,
dQc, 7, N
Q s Tk+1 gf

_ Bc(0, Tky1)
B¢ (0, Tk)

(1 + okLc(t, Tk)).




Pricing problems I: Defaultable bond

Proposition

The price of a defaultable bond with maturity T, and fractional recovery of Treasury
value q at time t < Ty is given by

K—1
Be(t, Tk) ey = B(t, Tk) Z 1ic=iy | Eor [1 = Pi(t, Ti)| 7]
i

+’§ Eor, M t<r<ni3 Vic=it Ve, = Gl Fi]

Eor, [1{ci=i1| 71

=7

-




Pricing problems 11: Credit default swap

@ consider a maturity date T, and a defaultable bond with fractional recovery of
Treasury value g as the underlying asset

@ protection buyer pays a fixed amount S periodically at tenor dates Ty, ..., Tn_1
until default

@ protection seller promises to make a payment that covers the loss if default
happens:
1—-qc,_
has to paid at T+ if default occurs in ( Tk, Tk+1]



Pricing problems 11: Credit default swap

@ consider a maturity date T, and a defaultable bond with fractional recovery of
Treasury value g as the underlying asset

@ protection buyer pays a fixed amount S periodically at tenor dates Ty, ..., Tn_1
until default

@ protection seller promises to make a payment that covers the loss if default
happens:
1—-qc,_
has to paid at T+ if default occurs in ( Tk, Tk+1]

The swap rate S at time 0 is equal to

"L B0, T S0 Bor [(1 - a1 (7 oamo, ]

> B(O, T)Eqr, [1 — pix(0, Ti)] 7

if the observed class at time zero is i.




Pricing problems I11: use of defaultable measures

Let Y be a promised G, -measurable payoff at maturity Ty of a defaultable contingent
claim with fractional recovery q upon default and assume that Y is integrable with
respect to Qr, .

The time-t value of such a claim is given by

m(Y) = Bo(t, Ti)Eqc, 7, [YIG1].
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Example: a cap on the defaultable forward Libor rate



Pricing problems I11: use of defaultable measures

Let Y be a promised G, -measurable payoff at maturity Ty of a defaultable contingent
claim with fractional recovery q upon default and assume that Y is integrable with
respect to Qr, .

The time-t value of such a claim is given by

m(Y) = Bo(t, Ti)Eqc, 7, [YIG1].

Example: a cap on the defaultable forward Libor rate

The time-t price of a caplet with strike K and maturity T, on the defaultable Libor rate
is given by
Ci(Ti, K) = 0kBe(t, Tie1)Eag 1, [(Le( Tk, Te) = K) 1G]

and the price of the defaultable forward Libor rate cap at time t < T; is given as a sum

Ci(K) = Z Sk—1Be(t, Tk)Eqq 7, [(Le(Ti—1, Ti—1) — K) |Gl
=



Concluding remarks

@ this model provides a way to include credit risk with ratings in the Libor market
models

@ as driving processes a wide class of time-inhomogeneous Lévy processes is
used

@ extensions are possible to portfolio credit risk modeling (Eberlein, Grbac,
Schmidt (2010))

@ similar approach could be used for modeling of variations in the credit quality of
the Libor contributing banks

The talk is based on:

@ E. Eberlein and Z. Grbac, Rating-based Lévy Libor model, Preprint, University of
Freiburg, 2010. (submitted)
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