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Drifted sub-Riemannian control system in X
3:

Admissible velocities form a distribution of ellipses:

Ellx = {a(x) cosϕ+ b(x) sinϕ+ c(x)} ⊂ TxX
3, a, b, c ∈ Vect(X 3);

admissible trajectories: γ̇(t) ∈ Ellγ(t)

locally extremal admissible trajectories (extremal trajectories):
γ(0) = A, γ(T ) = B , δT = 0;

drifting sub-Riemannian front:

S r
A = {γ(r) ∈ X 3 | γ(0) = A, γ is extremal}.
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Examples:

Plane case (drifting circle): a = (1, 0, 0), b = (0, 1, 0), c = (0, λ, 0)

Three possibilities 0 < λ < 1, λ = 1, λ > 1.

Drifting disk: a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1)

All admissible trajectories are extremal!!!
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Sub-Riemannian front

Degenerate case: a = (1, 0,−y), b = (0, 1, x), c = 0
Sub-Riemannian structure: x dy − y dx − dz = 0, ds2 = dx2 + dy2

Degenerate =
(1) quasihomogeneous with deg x = deg y = 1, deg z = 2
+
(2) (x , y)-rotation invariant.
The equations are integrable explicitly.

Non-degenerate (non-quasihomogeneous, non-integrable) case is more
complicated and I do not have a figure.
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Degenerate contact hyperbolic drifting sub-Riemannian front

a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, x)
Degenerate =
(1) quasihomogeneous with deg x = deg y = 1, deg z = 2
+
(2) hyperbolic-rotation invariant what will be explained later.
The equations are integrable explicitly.
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Theorem1

If a, b, c are generic then for almost every point A ∈ X 3 there are only two
possibilities:

1 A is contact hyperbolic and Sε

A is the non-degenerate contact
hyperbolic drifting sub-Riemannian front for sufficiently small ε:

2 A is contact elliptic.
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Conjecture

If a, b, c are generic and for almost every contact elliptic point Sε

A is the
non-degenerate sub-Riemannian front for sufficiently small ε.
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Contact hyperbolic and contact elliptic points

M4 = X 3 × R;

H3
m = 〈(a(x), 1), (b(x), 1), (c(x), 1)〉 ⊂ TmM

4, m = (x, t);

H3
m = ker θ(m), θ is 1-form on M,

let K 1
m ⊂ H3

m, dθ(m)(K 1
m,H

3
m) = 0;

Ellx defines Cone2m ⊂ H3
m ⊂ TmM

4;

Cone
2
m and K 1

m in H3
m:

Contact hyperbolic and contact elliptic points
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Example:

For a sub-Riemannian structure K 1 is generated by the vector ẋ = 0,
ṫ = 1, Cone2 is dt2 = ds2, and all points are contact elliptic.
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Theorem2

In a neighborhood of a contact hyperbolic point in M4 there exist local
coordinates (u, v ,w , z) such that the our control system is described by
the equations:

du2 − dv dw + α u dv2 + β u dw2 + . . . = 0, α, β ∈ R,

dz = v dw − w dv ,

where α = 0 or 1 and . . . are terms of higher quasihomogeneous degree if
deg u = deg v = degw = 1, deg z = 2.
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Cases:

Degenerate (twice-quasihomogeneous) du2 − dv dw = 0,
dz = v dw − w dv , deg(u, v ,w , z) = (1, 1, 1, 2), = (0, 1,−1, 0); this
case is integrable and analogous to the degenerate sub-Riemannian
case in the contact elliptic situation.

Half-degenerate (quasihomogeneous) du2 − dv dw + u dv2 = 0,
dz = v dw −w dv , deg(u, v ,w , z) = (2, 1, 3, 4); this case is integrable
too and does not have analogy in the contact elliptic situation.

Non-degenerate (non-quasihomogeneous) α = 1, β 6= 0, this case is
non-integrable and described by Theorem 1.

() May 22, 2012 11 / 14



Connection with two Arnold’s normal forms

Ellm = PCone2m ⊂ PTmM
4 is a plane quadric (conic) lying in the

projective plane PH3
m;

Ell
∗

m ⊂ PT ∗

mM
4 is (again!) a two-dimensional cone with a vertex

PH3
m ∈ PT ∗

mM
4;

Σ6 ⊂ PT ∗M4, Σ ∩ PT ∗

mM
4 = Ell

∗

m;

M4 = X 3 × R, PT ∗M4 ⊃ J1(X ,R) ∼= T ∗X × R,
a, b, c : T ∗X → R, Σ = {a2 + b2 − (c − 1)2 = 0}
a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, x), p2 + q2 − (rx − 1)2 = 1
a = (1, 0,−y), b = (0, 1, x), c = 0, (p − ry)2 + (q + rx)2 = 1

two Arnold’s local normal forms for Σ in a neighborhood of PHm

w. r. t. contact diffeomorphisms of PT ∗

mM
4:

p21 ± q21 − p22 = 0,

p1 dq1 − q1 dp1 + · · ·+ p3 dq3 − q3 dp3 − 2du = 0;

+ = contact ellipticity, − = contact hyperbolicity.
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Connection with systems of linear PDE
(

∂t 0
0 ∂t

)

=

(

∂a 0
0 −∂a

)

+

(

0 ∂b
∂b 0

)

+

(

∂c 0
0 ∂c

)

J1(X ,R) ∼= T ∗X × R, a, b, c : T ∗X → R,

σ =

(

a 0
0 −a

)

+

(

0 b

b 0

)

+

(

c 0
0 c

)

−

(

1 0
0 1

)

Σ = {det σ} = {a2 + b2 − (c − 1)2 = 0}

Examples:

a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, x),
∂a = ∂x , ∂b = ∂y , ∂c = x∂z

a = (1, 0,−y), b = (0, 1, x), c = 0,
∂a = ∂x − y∂z , ∂b = ∂y + x∂z , ∂c = 0
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CONGRATULATIONS TO ANDREY !!!

() May 22, 2012 14 / 14


