Around the Cauchy-Kowalewski theorem

Sergei Kuksin

(based on a joint work with Nikolai Nadirashvili

Cortona, 21 May 2012

$\S1.$ Introduction

Consider the Cauchy problem for a quasilinear wave equation:

(1)
$$\Box u + f(t, x, u, \nabla u, \dot{u}) = 0, \quad \dim x = d; \quad t \ge 0;$$

(2)
$$u_{t=0} = u_0, \quad u_{t=0} = u_1.$$

We can study it globally, when

x belongs to a compact Riemann manifold M and $\Box u = \ddot{u} - \Delta u$, where

 Δ – Laplace - Beltrami oparator.

Or locally, when

x belongs to a characteristic cone for $\ \Box u=\ddot{u}-\Delta u$, where Δ – Laplace - Beltrami oparator. w.r.t. some Riemann metric on \mathbb{R}^d

To begin I will assume that

$$x \in \mathbb{T}^d = \mathbb{R}^d / 2\pi \mathbb{Z}^d.$$

Let f and u_0, u_1 be analytic in all its arguments. What do we know about the solutions?

I) The Cauchy-Kowalewski theorem: There exists $\varepsilon_1 > 0$ such that for $0 \le t \le \varepsilon_1$ and $x \in \mathbb{T}^d$ problem (1), (2) has a unique analytic solution.

S. V. Kowalewski, *Zur Theorie der partiellen Differentialgleichungen*, J. Reine Angew. Math. 80 (1875).

In the proof ε_1 is the radius of analyticity, so this is a small number. What happens for $t > \varepsilon_1$?

II) The Ovsiannikov-Nirenberg theorem: Let f be continuous in t and analytic in all other variables, as well as u_0 and u_1 . Then there exists $\varepsilon_2 > 0$ such that for $0 \le t \le \varepsilon_2$ and $x \in \mathbb{T}^d$ problem (1), (2) has a unique solution, analytic in x and C^1 in t.

T. Nishida, A note on a theorem of Nirenberg, J. Diff. Geom. 12 (1977).

It is also known that

III) Theorem: If f is sufficiently smooth in x, then there exists T > 0 such that for $0 \le t \le T$ and $x \in \mathbb{T}^d$ the problem has a classical solution.

Sometimes T is fairly large, e.g. $T = \infty$.

If both theorems I) and III) apply, then, clearly, $T \ge \varepsilon_1$. But is $T > \varepsilon_1$, or $T = \varepsilon_1$?

§2. Main Result.

Choose m > d/2, assume that the nonlinearity $f(t, x, u, \nabla u, \dot{u})$ is continuous in t, H^m -smooth in x and analytic in $u, \nabla u, \dot{u}$. Let $u_0 \in H^m, u_1 \in H^{m+1}$.

Main Theorem (propagation of analyticity): Let u(t, x), $0 \le t \le T$, $x \in \mathbb{T}^d$, be a solution of the Cauchy problem (1), (2) which is H^{m+1} -smooth in x. Then: i) If u_0, u_1 and f are real-analytic in (x_1, \ldots, x_k) , $1 \le k \le d$, then u also is analytic in these variables.

ii) If u_0, u_1 and f are real-analytic in all their arguments, then u also is.

Assertion ii) was known, see:

S. Alihnac and G. Metivier, *Propagation de l'analyticité ...*, Invent. Math. 75 (1984).

The proof of this work uses heavy tools of paradifferential calculus (and their result applies to strongly nonlinear hyperbolic equations). Also see

C. Bardos and S. Benachour, *Domaine d'analyticite des solutions de l'equation d'Euler dans un ouvert de* \mathbb{R}^n . Ann. Scu. Norm. di Pisa, 4(1977) where similar result is obtained for solutions of the Euler equation (using its hyperbolic features). Assertion i) and Theorem III) (on local in time existence of a classical solution) imply a generalisation of the Ovsiannikov-Nirenberg theorem.

\S **3. Discussion of the proof.**

I am speaking about the Cauchy problem (1)-(2):

$$\Box u + f(t, x, u, \nabla u, \dot{u}) = 0, \qquad u(0, x) = u_0(x), \quad \dot{u}(0, x) = u_1(x).$$

Denote $\mathcal{H}^m = H^{m+1} \times H^m$, m > d/2. This will be the space of Cauchy data: $(u_0, u_1) \in \mathcal{H}^m$. Consider the Cauchy operator for the linear wave equation:

 $\widetilde{\Box}: u \mapsto (u_{t=0}, \dot{u}_{t=0}, \Box u).$

This is an embedding. For any T > 0 consider the spaces

 $X_m^T = C(0,T; H^{m+1}) \cap C^1(0,T; H^m), \qquad Y_m^T = \mathcal{H}^m \times C(0,T; H^m).$

 X_m^T - space of solutions, Y_m^T - space of Cauchy data and the r.h.s.'s. I will call solutions $u(t,x) \in X_m^T$ classical solutions. We have

 $\widetilde{\Box}^{-1}: Y_m^T \to X_m^T, \quad \text{but} \quad \widetilde{\Box}: X_m^T \to \mathcal{H}^m \times C(0,T;H^{m-1}).$

In this scales of function spaces we lose 1 unit of smoothness, when apply \Box after \Box^{-1} . Not good! Let us use a simple trick:

Denote $\widetilde{\Box}^{-1}Y_m^T = Z_m^T$ and provide the space Z_m^T with a norm, induces from Y_m^T . This is a Banach space such that

 $\begin{array}{l} 1) \hspace{0.2cm} \widetilde{\Box}: Z_m^T \to Y_m^T \hspace{0.2cm} \text{ is an isomorphism}, \\ 2) \hspace{0.2cm} Z_m^T \subset X_m^T \hspace{0.2cm} \text{ continuously, } \hspace{0.2cm} \text{and } \hspace{0.2cm} X_{m+1}^T \subset Z_m^T, \end{array}$

since $\widetilde{\Box}^{-1}: Y_m^T \to X_m^T$. Denote by Φ the operator of nonlinear Cauchy problem:

 $\Phi(u) = (u_{t=0}, \dot{u}_{t=0}, \Box u + f(t, x, u, \nabla u, \dot{u})).$

Since m>d/2, then the space $C(0,T;H^m)$ is a Banach algebra. As $u, \nabla u, \dot{u} \in C(0,T;H^m)$, then the mapping

 $\Phi: Z_m^T \to Y_m^T \qquad \text{is analytic.}$

Problem (1), (2) with 0 in the r.h.s. replaced by a function g(t, x) has a unique solution. So

 $\Phi: Z_m^T \to Y_m^T$ is an analytic embedding.

Consider differential of Φ at any point $u \in Z_m^T$:

$$d\Phi(u)(v) = \left(v_{t=0}, \dot{v}_{t=0}, \Box v + d_3 f[u]v + d_4 f[u]\nabla v + d_5 f[u]\dot{v}\right)$$

Here $f[u] = f(x, u, \nabla u, \dot{u})$. Easy to see that this also is an isomorphism $Z_m^T \rightleftharpoons Y_m^T$. Since Φ is an embedding, then the inverse function theorem implies Lemma: Φ is an analytic diffeomorphism of the space Z_m^T and a domain $\mathcal{O} \subset Y_m^T$, $\Phi: Z_m^T \rightleftharpoons \mathcal{O}$.

Denote

$$\mathcal{O}^0 = \{(u_0, u_1) \in \mathcal{H}^m \mid (u_0, u_1, 0) \in \mathcal{O}\}$$

Then for $0 \le t \le T$ the flow-maps

$$S_0^t: \mathcal{O}^0 \to \mathcal{H}^m, \qquad (u_0, u_1) \to (u(t), \dot{u}(t)),$$

are well defined and analytic.

So: There is a domain $\mathcal{O}^0 = \mathcal{O}^0([0,T]) \subset \mathcal{H}^m$ such that the problem

 $\Box u + f(t, x, u, \nabla u, \dot{u}) = 0, \ 0 \le t \le T, \qquad u(0, x) = u_0(x), \ \dot{u}(0, x) = u_1(x).$

has a classical solution $u \in X_m^T$ iff $(u_0, u_1) \in \mathcal{O}^0$. This solution analytically depends on (u_0, u_1) . If f analytically depends on some extra parameter ξ , then $\mathcal{O}^0 = \mathcal{O}^0_{\xi}$ and the solution u also analytically depends on ξ .

Introducing the parameters.

For simplicity let k = d. Then u_0, u_1 and f are analytic in x. The space $\mathbb{R}^d = \{\theta = (\theta_1, \dots, \theta_d)\}$ acts on \mathbb{T}^d by the shifts θR ,

 $_{\theta}R(x) = (x + \theta)$

Accordingly it acts on the nonlinear operators $f(t, x, u, \nabla u, \dot{u})$ by shifting their coefficients: $({}_{\theta}Rf)(t, x, u, \nabla u, \dot{u}) = f(t, {}_{\theta}Rx, u, \nabla u, \dot{u}).$ Clearly we have

 $(\Box + {}_{\theta}Rf(t, x, u, \nabla u, \dot{u}))({}_{\theta}Ru) = {}_{\theta}R\big((\Box u + f(t, x, u, \nabla u, \dot{u}))\big).$

Consider operator of the shifted Cauchy problem $_{\theta}\Phi(u) = (u_{t=0}, \dot{u}_{t=0}, \Box u + _{\theta}Rf(u).$ It defines an analytic mapping

$$\bar{\Phi}: \mathbb{T}^k \times Z_m^T \to Y_m^T, \qquad (\theta, u) \to {}_{\theta} \Phi(u).$$

For any θ denote by $_{\theta}u(t)$ solutions of the shifted equation $\Box + _{\theta}Rf$, and by $_{\theta}S_0^t$, $0 \le t \le T$, flow-maps of that equation.

Consider $\overline{\Phi}$ for θ in a small ball $B_{\varepsilon} = \{|\theta| \leq \varepsilon\}$. If $(u_0, u_1) \in \mathcal{O}^0$, then $(u_0, u_1, 0) \in Y_m^T$ is a regular value for $\overline{\Phi}(0, \cdot)$. By the Implicit Function Theorem, for $\theta \in B_{\varepsilon}$ and (u'_0, u'_1) close to (u_0, u_1) the flow-maps for the shifted equation ${}_{\theta}S_0^t : (u'_0, u'_1) \mapsto ({}_{\theta}u(t), {}_{\theta}\dot{u}(t)), \ 0 \leq t \leq T$, are well defined, analytic in θ and in (u'_0, u'_1) . We have:

 $_{\theta}S_{0}^{t}\circ _{\theta}R(u_{0},u_{1})= _{\theta}R\circ S_{0}^{t}(u_{0},u_{1}), \qquad \qquad \text{if } \theta\in B_{\varepsilon}.$

Consider a solution of the Cauchy problem (1), (2), $u(t, x) = S_0^t(u_0, u_1)$. The term on the right is

$$_{\theta}R \circ S_0^t(u_0, u_1) = u(t, x + \theta),$$

and the term on the left is

$$_{\theta}S_{0}^{t} \circ {}_{\theta}R(u_{0}, u_{1}) = {}_{\theta}S_{0}^{t}\Big((u_{0}, u_{1})(x+\theta)\Big), \qquad \theta \in B_{\varepsilon}.$$

We assumed that u_0 and u_1 are analytic. Then $(u_0, u_1)(x + \theta)$ is analytic in θ . As the operator $_{\theta}S_0^t(u'_0, u'_1)$ is analytic in $\theta \in B_{\varepsilon}$, then $_{\theta}S_0^t((u_0, u_1)(x + \theta))$ also is. So $u(t, x + \theta)$ is analytic in $\theta \in B_{\varepsilon}$!

We have proved the first assertion of the Main Theorem:

i) If u_0, u_1 and f are real-analytic in (x_1, \ldots, x_k) , $1 \le k \le d$, then u also is analytic in these variables.

To prove the second assertion we have to show that u is analytic in t. By analogy, we have to shift the Cauchy data u_0, u_1 not in x-variable, but in t-variable. How to do this? – Apply the Cauchy-Kowalevski theorem to find the solution $u(\theta, x), |\theta| < \varepsilon$! It is analytic, so it gives the needed time- θ shifts of the Cauchy data, analytic in θ . Now we argue as before to prove that u(t, x) is analytic in t, till it exist as a classical solution. We assumed that the Cauchy-Kowalevski theorem is applicable, i.e. that all the data are analytic.

\S 4. Related results.

i) Equations in homogeneous spaces.

The proof applies to quasilinear wave equations in a compact Riemann homogeneous space. In this case $\Box = \partial^2/\partial t^2 - \Delta$, where Δ is the corresponding Laplace-Beltrami operator. Now the translations $_{\theta}R$ should be replaced by the local isometies. For example, the theorem remans true for quasilinear wave equations on the standard sphere S^d .

ii) A local version of the result. Consider the problem

 $\Box u + f(t, x, u, \nabla u, \dot{u}) = 0, \ 0 \le t \le T, \qquad u(0, x) = u_0(x), \ \dot{u}(0, x) = u_1(x).$

in the characteristic cone

$$\{(t, x) \in [0, T] \times \mathbb{R}^d : |x| < T - t\},\$$

when the Cauchy data are given at the ball $\{|x| < T\}$. Then a natural version of the results hold true with the same proof.

iii) Quasilinear parabolic equations.

The approach to study analyticity and partial analyticity of solutions in x (but not in t) applies to other equations. For example, to quasilinear parabolic equations

(3)
$$\dot{u} - \Delta u + f(t, x, u, \nabla u) = 0, \quad x \in \mathbb{T}^d, \quad t \ge 0, \qquad u_{t=0} = u_0,$$

where f is sufficiently smooth in t, x and is analytic in u and ∇u . One can find suitable space Z_m^T and Y_m^T such that the operator Φ of the Cauchy problem (3) defines an analytic diffeomorphism between Z_m^T and a subdomain of the space Y_m^T , see [SK82], *Diffeomorphisms of functional spaces that correspond to quasilinear parabolic equations*, Math. USSR Sbornik 117 (1982).

In the same way as before we prove that if f is analytical in all its variables, then classical solutions of (3) with analytical initial data are analytical in x. This is a well known result. But we also can prove that if f is analytic in u, ∇u and in a part of the space-variables, as well as the function u_0 , then the solution u(t, x) as well is analytic in these space variables. This result seems new. This approach applies to the Navier-Stokes system on the *d*-torus with d = 2 or d = 3, perturbed by a sufficiently smooth force h(t, x), see [SK82]. It implies that if the initial data and the force h are analytical in space-variables x_1, \ldots, x_k , where $1 \le k \le d$, then a corresponding strong solution u(t, x) remains analytic in this space-variables till it exists.

Example. Consider the 3d NSE in the spherical layer $S^2 \times (0, \varepsilon) = \{(\varphi, r\})$. Let the force and initial data are

i) analytic in φ ,

ii) bounded uniformly in $t \ge 0$, uniformly in $\varepsilon \in (0, 1)$.

Due to Raugel-Sell, if positive ε is sufficiently small, then there exists a unique strong solution $u(t, \varphi, r), t \ge 0$. By our results this solution is analytic in φ .

iv) NLS equation

The result remains true for the nonlinear Schrödinger equation

(4)
$$\dot{u} - i\Delta u + f(t, x, \operatorname{Re} u, \operatorname{Im} u) = 0, \quad u_{t=0} = u_0, \quad x \in \mathbb{T}^d.$$

Function $f \in \mathbb{C}$ is continuous in t, H^m -smooth in x (m > d/2), analytic in Re u, Im u. We can replace \mathbb{T}^d by any homogeneous Riemann space, analytic and compact.

§5. Energy Transfer to High Frequencies.

Consider again eq. (4), where u_0 is analytic, f is continuous in t, analytic in x, Re u, Im u:

$$\dot{u} - i\Delta u + f(t, x, \operatorname{Re} u, \operatorname{Im} u) = 0, \qquad u_{t=0} = u_0, \quad x \in \mathbb{T}^d.$$

Solution u(t, x) is analytic in x, continuous in t. Denote

 $\rho(t) = \text{ radius of analyticity of } u(t, x) \text{ in } x = \min \{ \text{Im } z \mid z - \text{ singular point of } u(t, z) \}.$

Set

$$C(t) = \sup \left\{ |u(t,z)| \mid |\text{Im}\, z| \le \frac{1}{2}\rho(t) \right\}$$

and write

$$u(t,x) = \sum_{s} u_s(t) e^{is \cdot x}.$$

Then

$$|u_s(t)| \le C(t)e^{-\frac{1}{2}\rho(t)|s|} \quad \forall s,$$

$$\rho(t) = -\limsup_{s \to \infty} \left(\ln |u_s(t)| \right) |s|^{-1}.$$

So,

eq. (4) exhibits the energy transfer to high modes iff $\liminf_{t\to\infty} \rho(t) = 0$.

Example. Let (4) be the 1d defocusing Zakharov-Shabat equation. Its solutions u(t, x) are given by the Its-Matveev-McKean-Trubowitz formula. Therefore each u(t, x) is a meromorphic function of x and

 $\rho(t) = \min\{|\operatorname{Im} z| \mid z - \operatorname{pole} \operatorname{of} u(t, x) \text{ in } x\}.$

Now the function $\rho(t)$ is almost-periodic and $\rho \ge \rho_0 > 0$.

No energy transfer!

Example. Consider

(5)
$$\dot{u} - \delta i \Delta u + i |u|^{2p} u = 0, \quad u_{t=0} = u_0, \quad x \in \mathbb{T}^d,$$

where $\delta>0,$ $u_0(x)$ is analytic and $|u_0|\sim L.$ Low estimates on Sobolev norms of u(t) from

SK, GAFA 9 (1999), 141-184

imply that

$$\liminf_{t \to \infty} \rho(t) \le C \left(\frac{\delta}{L^{2p}}\right)^{1/3}.$$

Conjecture. If in (5) $d \ge 2$, then for a typical solution u we have $\liminf_{t\to\infty} \rho(t) = 0$.

iv) Strongly nonlinear equations.

Consider a "strongly quasilinear" wave equation:

$$\ddot{u} + \frac{\partial}{\partial x_j} A_{jk}(t, x, u, \nabla u, \dot{u}) \frac{\partial u}{\partial x_k} + f(t, x, u, \nabla u, \dot{u}) = 0,$$

The Cauchy-Kowalewski theorem still applies to the corresponding Cauchy problem. Does the principe of propagation of analyticity holds? Yes it does, but some extra ideas have to be used for a proof.

REFERENCE

SK, N. Nadirashvili "Analyticity of solutions for quasilinear wave equations", preprint 2012, 12 p., (arXiv 1205.5926)