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Vector distributions

A rank ` distribution D on an n-dimensional manifold M (or
shortly an (`, n)-distribution) is a rank l vector subbundle of the
tangent bundle TM:

D = {D(q)}, D(q) ⊂ TqM, dimD(q) = `

. Locally there exists ` smooth vector fields {Xi}`i=1 such that

D(q) = span{X1(q), . . . ,Xl(q)}
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Equivalence problem for vector distributions

The group of of diffeomorphisms of M acts naturally on the set of
(`, n)-distributions by push-forward:

A diffeomorphism F sends a distribution D to a distribution F∗D.

This action defines the equivalence relation: two distributions are
called equivalent if they lie in the same orbit w.r.t. this action.

From the point of view of Geometric Control: Equivalence of
distributions is the same as the state-feedback equivalence of the
corresponding control systems linear w.r.t. control parameters.

By complete analogy one can define a local version of this
equivalence relation considering the action of germs of
diffeomorphisms on germs of (`, n)-distributions.
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Weak derived flag and small growth vector

Question: When two germs of distributions are equivalent, or, in
other words, when two rank ` distributions are locally equivalent?

D = D1, D2(q) = D(q) + [D,D](q) =
span{Xi (q), [Xi ,Xk ](q) : 1 ≤ i < k ≤ l},

and recursively
D j(q) = D j−1(q) + [D,D j−1](q) =
= span { all iterated Lie brackets of the fields
Xi of length not greater than j evaluated at a point q} .

D j is called the jth power of the distributions D

The filtration D(q) = D1(q) ⊂ D2(q) ⊂ . . .D j(q), . . . of the
tangent bundle TqM, called a weak derived flag of D at q.

The tuple (dimD(q), dimD2(q), . . . , dimD j(q), . . .) is called the
small growth vector of Dat the point q (or, shortly, s.v.g.).
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General ideology for solving equivalence problems

We can always assume that distributions are bracket-generating
distributions,

i.e. such that for any q ∈ M there exist µ(q) ∈ N
such that Dµ(q)(q) = TqM

Except rank 1, corank 1, and (2,4)-distribution, generic germs of
(`, n)-distribution have functional invariants.
The way to solve the equivalence problem is to construct the
canonical frame (coframe) or the structure of an absolute
parallelism on a certain N-dimensional fiber bundle P over M,
{Fi}Ni=1 ⊂ Vec(P) such that

span{Fi (Q)}Ni=1 = TQP, ∀Q

Assume that [Fi ,Fj ] =
N∑

k=1

ckjiFk The structure functions ckji are

invariants. Dimension of (local) group of symmetries of D is ≤ N.
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Cartan’s (2, 3, 5) case

The smallest dimensional case when the functional invariants
appear is the case (`, n) = (2, 5) (the expected number of

functional invariants in this case is equal to 2× 3− 5 = 1.)

(2, 5)-distribution with s.g.v. (2, 3, 5) -E. Cartan, 1910:

1 Canonical frame on 14-dimensional principal bundle over M

More precisely, G2-valued Cartan connection and
for the most symmetric (2, 5)-distribution the algebra of
infinitesimal symmetries ∼ G2 ;

2 An invariant homogeneous polynomial of degree 4 on each
plane D(q).
If the roots of the projectivization of this polynomial are
distinct, then
their cross-ratio - one functional invariant of D.
(3, 6)-distribution with s.g.v. (3, 6) R. Bryant, 1979

Igor Zelenko On the role of abnormal extremals
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Tanaka’s approach: main ideas

N. Tanaka (1970, 1979)-Nilpotent Differential Geometry- the
refinement (an algebraic version) of the Cartan equivalence method
for filtered structures

1 At any point q ∈ M to pass from the weak derived flag of D
(a filtered object) to the corresponding graded object −
the symbol of D -a nilpotent graded Lie algebra;

2 Among all distributions with given constant symbol at any
point to distinguish the most simple one- the flat distribution
with given constant symbol;

3 To imitate the construction of the canonical frame for all
distributions with given constant symbol by the construction
of such frame for the the flat distribution.

All steps are described in the language of pure Linear Algebra: in
terms of natural algebraic operations in the category of graded Lie
algebras.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Review of Tanaka’s theory: the symbol of D at a point

For the weak derived flag at q ∈ M
D(q) = D1(q) ⊂ D2(q) ⊂ . . .D j(q) ⊂ · · · ⊂ Dµ(q) = TqM

set


g−i (q) = D i (q)/D i−1(q), i > 1

g−1(q) := D1(q)

and consider the corresponding graded object:

m(q) = g−1(q)⊕ g−2(q)⊕ · · · ⊕ g−µ(q)

m(q) is endowed naturally with the structure of a graded nilpotent
Lie algebra

m(q) is called the symbol of the distribution D at the point q
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Examples

Example 1 Cartan’s (2,3,5) case. A (2, 5) distribution with small
growth vector (2, 3, 5) at any point have the symbol isomorphic to

the free nilpotent 3-step Lie algebra with two generators,

i.e. the graded Lie algebra m̃ = g−1 ⊕ g−2 ⊕ g−3 such that

g−1 = span{Y1, Y2}, g−2 = span{Y3}, g−3 = span{Y4,Y5}.
and the only nonzero products are

[Y1,Y2] = Y3, [Y1,Y3] = Y4, [Y2,Y3] = Y5.

Example 2 Contact distributions have the symbol isomorphic to
the Heisenberg algebra (with the natural 2-grading).
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

The flat distribution of constant symbol m

Fix a graded nilpotent Lie algebra m =
−1⊕

i=−µ
gi .

Question: What is the most simple distribution with constant
symbol m?

Let M(m) be the simply connected Lie group with Lie algebra m;
e be the identity of M(m).

The flat (or standard) distribution Dm of type m is the
left-invariant distribution on M(m) such that Dm(e) = g−1.

In geometric-control terminology if m(q) is a symbol of a
distribution D at q, then Dm(q) is the nilpotent approximation of D
at q.

Question: What is the algebra of infinitesimal symmetries of the
flat distribution of type m?
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Universal algebraic prolongation & symmetries of the flat
distribution

The universal prolongation of the symbol m =
−1⊕

i=−µ
gi is the

maximal non-degenerate graded Lie algebra containing m as its
negative part. More precisely,

Definition. Universal prolongation of the symbol m is a graded Lie

algebra U(m) =
⊕
i∈Z

gi (m) satisfying the following conditions.
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Universal algebraic prolongation & symmetries of the flat
distribution: continued

If dimU(m) <∞, then U(m) is isomorphic to the algebra of
infinitesimal symmetries of the flat distribution Dm with symbol m.

If dimU(m) =∞, then the completion of U(m) is isomorphic to
the algebra of formal power series of infinitesimal symmetries of
the flat distribution Dm with symbol m.

The universal algebraic prolongation can be explicitly realized
inductively (g0(m), g1(m) etc).

Its calculation is reduced to pure Linear Algebra
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Realization of universal prolongation

As before, let m =
−1⊕

i=−µ
gi .

Set gi (m) = gi , i < 0

Zero-order algebraic prolongation:

g0(m) :=

{
f ∈ End(m) :

f ([v1, v2]) = [f (v1), v2] + [v1, f (v2)],
f (g i ) ⊆ g i ∀i < 0

}

g0(m) is the algebra of all derivations of m preserving the grading.

m⊕ g0(m) is a graded Lie algebra

[f , v ] =: f (v), f ∈ g0, v ∈ m
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The first and higher order algebraic prolongations

The first algebraic prolongation of m:

g1(m) =

 f ∈
⊕
i<0

Hom(gi (m), gi+1(m)) :

f ([v1, v2]) = [f (v1), v2] + [v1, f (v2)], ∀v1, v2 ∈ m



Higher order prolongation: induction step Assume that gi (m) are
already constructed for 0 ≤ i < k. Then
The kthe algebraic prolongation of m

gk(m) :=

{
f ∈

⊕
i<0 Hom(gi (m), gi+k(m)) :

f ([v1, v2]) = [f (v1), v2] + [v1, f (v2)],∀v1, v2 ∈ m

}

Then U(m) =
⊕
k∈Z

gk(m).
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Example: Universal prolongation of flat (2,3,5) distribution

The root system of G2:

 
 

m̃ = g−1 ⊕ g−2 ⊕ g−3

U(m̃) = g3 ⊕ g2 ⊕ g1 ⊕ g0⊕ g−1 ⊕ g−2 ⊕ g−3︸ ︷︷ ︸
m̃

∼= G2

 

The grading corresponds to the marking of the shorter root in the
Dynkin diagram of G2.
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Tanaka’s Main Theorem of prolongation

Assume that D is a distribution with constant symbol m, i.e.
symbols m(q) are isomorphic (as graded Lie algebras) to m for any
point q.

Suppose that dimU(m) <∞ and k ≥ 0 is the maximal integer
such that the kth algebraic prolongation gk(m) does not vanish.

Theorem (Tanaka, 1970)

1 To a distribution D with constant symbol m one can assign in
a canonical way a bundle over M of dimension equal to
dimU(m) equipped with a canonical frame.

2 Dimension of algebra of infinitesimal symmetries of D is not
greater than dimU(m).

3 This upper bound is sharp and is achieved if and only of a
distribution is locally equivalent to the flat distribution Dm.
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Tanaka’s main Theorem of prolongation: continued

More precisely, to a distribution D with constant symbol m one
can assign in a canonical way (choosing a normalization condition
on each step) a sequence of bundles {P i}ki=0 such that

1 P0 is the principal bundle over M with the structure group
having Lie algebra g0(m);

2 P i is the affine bundle over P i−1 with fibers being affine
spaces over the linear space gi (m) for any i = 1, . . . k;

3 Pk is endowed with the canonical frame.

Therefore Tanaka’s approach allows one to predict the number of
prolongations steps and the dimension of the bundle, where the
canonical frame lives, without making concrete normalizations
on each step (as the original Cartan method of equivalence
suggests)
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Restrictions and disadvantages of Tanaka’s approach

All constructions strongly depend on the notion of symbol.

In order to apply this machinery to all bracket-generating
(`, n)-distributions with fixed ` and n, one has

1 to classify all n-dimensional graded nilpotent Lie algebras with
` generators.- hopeless task in general;

2 to generilize the Tanaka prolongation procedure to
distributions with nonconstant symbol, because the set of all
possible symbols may contain moduli.
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For example,

for (2, 6)-distribution with generic s.v.g. (2, 3, 5, 6) there are 3
non-isomorphic symbols:
mε = span{Y1,Y2} ⊕ span{Y3} ⊕ span{Y4,Y5} ⊕ span{Y6}
s.t.
[Y1,Y2] = Y3, [Y1,Y3] = Y4, [Y2,Y3] = Y5,
[Y1,Y4] = Y6, [Y2,Y5] = εY6,
where ε = −1, 0, or 1 (hyperbolic, parabolic, elliptic symbols);

bracket generating (2, 7)-distribution with s.v.g. (2, 3, 5, . . .)
have 8 non-isomorphic symbols;

Moduli appears for symbols of (2, n) distributions starting
from n = 8.
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Alternative approach - Symplectification Procedure

Symplectification Procedure consists of the reduction of the
equivalence problem for distributions to extrinsic differential
geometry of curves of flags of isotropic and coisotropic
subspaces in a linear symplectic space, which is simpler in
many respects than the original equivalence problem.

It gives an explicit unified construction of canonical frames for
huge classes of distributions, independently of their Tanaka
symbol and even of the small growth vector.

The origin of the method - Optimal Control Theory
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The key idea: study of the flow of abnormal extremals

The key idea (Agrachev, 1997) is that the invariant of a geometric
structure on a manifold can be obtained by studying the flow of
extremals of variational problems naturally associated with this
geometric structure.

For a distribution take any variational problem on a space of
integral curves of this distribution with fixed endpoints
and distinguish the abnormal extremals i.e. the Pontryagin
extremals of such variational problem with zero Lagrange
multiplier near the functional. ⇒
Abnormal extremals do not depend on the functional but on the
distribution D only.
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Abnormal extremals

Abnormal extremals lie in a special even dimensional submanifold
HD of the projectivization P(T ∗M) of the cotangent bundle T ∗M.

For example,

If rankD is odd, then HD = D⊥;

If rankD = 2, then HD = (D2)⊥

where (D j)⊥ = {(p, q) ∈ PT ∗M : p(v) = 0 ∀v ∈ D j(q)}.

Liouville 1-form on T ∗M ⇒ contact structure on PT ∗M ⇒
quasi-contact (even contact) distribution ∆̃ on an open dense
subset of HD for generic D.
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Abnormal extremals (continued) and the lift of D to HD

Let C be the Cauchy characteristic distribution of ∆̃, i.e. a
subdistribution of ∆̃ such that [C , ∆̃] ⊂ ∆̃.

rankC = 1 (on an open dense subset H̃D of HD for generic D).

The integral curves of C are the (regular) abnormal extremals of D
and they define the characteristic 1-foliation on H̃D .

Let π : HD → M be the canonical projection

Define J(λ) = {v ∈ TλHD : π∗v ∈ D(π(λ))}, i.e. the pullback of
D to HD by π;
V (λ) = {v ∈ TλHD : π∗v = 0}, i.e the tangent space to the fibers
of HD .
Note that V + C ⊂ J.
We work with the distributions C , V , and J instead of the original
distribution D.
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Jacobi curve of abnormal extremal

Let γ be a segment of an abnormal extremal, Oγ be a
neighborhood of γ in HD s.t. the factor

N = Oγ/(the charactrestic one-foliation of abnormal extremals)

is a well defined smooth manifold.
Let Φ : Oγ → N be the canonical projection to the quotient
manifold.
∆ := Φ∗∆̃ is a contact distribution on N.
∀λ ∈ γ Fγ(λ) := Φ∗(J(λ))︸ ︷︷ ︸

coisotropic subspace

⊂ ∆(γ)

The curve λ→ Fγ(λ), λ ∈ γ is a curve of coisotropic subspaces of
∆(γ) ⊂ TγN, called the Jacobi curve of the abnormal extremals γ.
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Let Φ : Oγ → N be the canonical projection to the quotient
manifold.
∆ := Φ∗∆̃ is a contact distribution on N.
∀λ ∈ γ Fγ(λ) := Φ∗(J(λ))︸ ︷︷ ︸

coisotropic subspace

⊂ ∆(γ)

The curve λ→ Fγ(λ), λ ∈ γ is a curve of coisotropic subspaces of
∆(γ) ⊂ TγN, called the Jacobi curve of the abnormal extremals γ.
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The role of Jacobi curves

Any invariant of the Jacobi curve Fγ w.r.t the action of
(Conformal) Symplectic Group on the corresponding
Grassmannian of coisotropic subspaces (or, shortly, symplectic
flags) of ∆(γ) produces an invariant of the distribution D.

reduction to the geometry of curves of symplectic flags of a
linear symplectic group

The canonical bundles of moving frames associated with
Jacobi curves

⇓
the canonical frame for D itself on certain fiber bundle over
HD
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A sketch of initial developments in this direction

In the case when rankD = 2 the subspaces Fγ are Lagrangian.

By the analogy with the cross-ratio of 4 points in a projective
line, one can define a cross-ratio of 4 points in a Lagrangian
Grassmanian.
Studying asymptotic of the cross-ratio of four points on an
(unparametrized) curve Λ in a Lagrangian Grassmannian
about a diagonal (i.e. when we glue them together), one gets
a canonical projective structure and a special degree 4
differential (or relative invariant of order 4) of this curve called
the fundamental form of Λ. (Agrachev, Zelenko, 2002)

The fundamental form of Jacobi curves of abnormal extremals
gives the Cartan invariant of (2, 5)-distributions and therefore
generalize it to (2, n)-distributions for arbitrary n > 5
(Zelenko, 2004)
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Sketch of developments (continued) and some obstacles

Geometry of Jacobi curves of rank 2 distributions can be
reduced to the geometry of so-called self-dual curves in a
projective space. Using this fact and existence of the
canonical projective structure of item 1, one can construct the
canonical frame for (2, n)-distributions for arbitrary n > 5
(Boris Doubrov and Zelenko, 2005)

However, for distribution of rank greater than 2 geometry of the
corresponding Jacobi curves is more involved.
It cannot be reduced in general to geometry of curves in a
Lagrangian Grassmannian or curves in projective spaces.
“Naive”, by hand constructions of canonical moving frames for
such curves might be very cumbersome (were implemented by
Doubrov and Zelenko, 2008 in the case of (3, n)-distributions for
arbitrary n > 5)
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Tanaka like theory for curves of symplectic flag

More conceptual way to work with curves of symplectic
flags-

Tanaka like theory for this class of objects. (Doubrov,
Zelenko, 2011)
First, the Jacobi curve Fγ produces the following curve of
symplectic flags:

. . . ⊂ F νγ ⊆ . . . ⊆ F 0
γ︸ ︷︷ ︸

isotropic

⊂ F−1
γ ⊆ F−2

γ ⊆ . . . ⊆ F−νγ ⊆︸ ︷︷ ︸
coisotropic

,

where F−1
γ := Fγ , F i−1

γ := (F i
γ)′ for i < 0,

F i
γ(λ) :=

{
(F−i−1
γ (λ))∠ if F−1

γ (λ) is proper coisotropic

(F−i−2
γ (λ))∠ if F−1

γ (λ) is Lagrangian

i.e Fγ(λ) is a symplectic flag for any λ ∈ γ;
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Symbol of Jacobi curve

By construction we have the following compatibility w.r.t.
differentiation property (F i

γ(λ))′ ⊂ F i−1
γ (λ)

By analogy with the Tanaka theory let us pass from the filtered to
the graded objects:

Gri (λ) := F
(i)
γ (λ)/F

(i+1)
γ (λ)

The corresponding graded space ⊕Gri (λ) is endowed with the
natural conformal symplectic structure induced from the conformal
symplectic structure on ∆(γ).

The tangent vector to the Jacobi curve at a point corresponding to
λ can be identified with a line sλ ⊂ csp

(
⊕i∈ZGri(λ)

)
of degree

−1, i.e. s.t. sλ(Gri (λ)) ⊂ Gri−1(λ)

sλ is called the symbol of the Jacobi curve at λ.
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Symplectification procedure

Finiteness of set of symbols of curves

It is easy to classify all symbols of curves of symplectic flags

(it is a
little bit more fine classification than the classification of nilpotent
endomorphisms of a linear space, because we also have a graded
structure in addition).
For fixed rank D and dimM the set of all possible symbols of
Jacobi curves, up to an isomorphism, is finite.

Actually this follows from more general fact (E.Vinberg, 1976): If
G is a semisimple Lie group, g is its Lie algebra with given grading
g = ⊕µi=−µgi , and G0 is the connected subgroup of G with the Lie
algebra g0, then the set of orbits of elements of g−1 w.r.t. the
adjoint action of G0 is finite.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Jacobi symbols of distributions

Finiteness of the set of symbols, up to isomorphism+ classification
of symplectic symbols

⇓

For a generic point q ∈ M there exists a neighborhood U s.t. the
symbols of Jacobi curves of abnormal extremals through a generic
point of PHD over U are isomorphic to one symbol

s︸︷︷︸ ⊂ csp−1(⊕X i︸︷︷︸)
Jacobi symbol of fixed graded

the distribution D at q symplectic space V := ⊕X i
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

New Formulation:

Instead of constructing canonical frames for distributions according
to their Tanaka symbols to do it according to their Jacobi symbols,
which is

1 Jacobi symbols are simpler algebraic objects than symbols of
distributions:
Jacobi symbols are one-dimensional subspaces in the space of
degree −1 endomorphisms of a graded linear symplectic space,
while Tanaka symbols are graded nilpotent Lie algebras.
In particular, in contrast to Tanaka symbols, Jacobi symbols
are easily classified;

2 Jacobi symbols are much coarser characteristic of distributions
than Tanaka symbols:
distributions with different Tanaka symbols and even
with different small growth vectors may have the same
Jacobi symbol.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Geometry of curves of flags of isotropic/coisotropic
subspaces with constant symbol s ⊂ csp(⊕X i)

The theory is completely analogous to Tanaka’s one

Flat curve with symbol s (of type s)
Take the corresponding filtration

{V i}i∈Z, V i = ⊕j≥iX
j

The flat curve of type s is the orbit of this flag under the
action of the one-parametric group generated by the symbol
s, t → {etδV i}i∈Z, δ ∈ s is of type s.
The algebra of infinitesimal symmetries of the flat curve with
the symbol s is isomorphic to the largest graded subalgebra
UF (s) of csp(⊕X i ) containing s as its negative part-Universal
prolongation of the symbol s
UF (s) = ⊕i≥−1U

i (s), U−1(s) = s
Explicit construction recursively:
U i (s) = {A ∈ cspi(⊕jX

j) : [A, δ] ∈ U i−1(S), δ ∈ S}

Igor Zelenko On the role of abnormal extremals



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Geometry of curves of flags of isotropic/coisotropic
subspaces with constant symbol s ⊂ csp(⊕X i)

The theory is completely analogous to Tanaka’s one

Flat curve with symbol s (of type s)
Take the corresponding filtration

{V i}i∈Z, V i = ⊕j≥iX
j

The flat curve of type s is the orbit of this flag under the
action of the one-parametric group generated by the symbol
s, t → {etδV i}i∈Z, δ ∈ s is of type s.
The algebra of infinitesimal symmetries of the flat curve with
the symbol s is isomorphic to the largest graded subalgebra
UF (s) of csp(⊕X i ) containing s as its negative part-Universal
prolongation of the symbol s
UF (s) = ⊕i≥−1U

i (s), U−1(s) = s
Explicit construction recursively:
U i (s) = {A ∈ cspi(⊕jX

j) : [A, δ] ∈ U i−1(S), δ ∈ S}

Igor Zelenko On the role of abnormal extremals



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Geometry of curves of flags of isotropic/coisotropic
subspaces with constant symbol s ⊂ csp(⊕X i)

The theory is completely analogous to Tanaka’s one

Flat curve with symbol s (of type s)

Take the corresponding filtration

{V i}i∈Z, V i = ⊕j≥iX
j

The flat curve of type s is the orbit of this flag under the
action of the one-parametric group generated by the symbol
s, t → {etδV i}i∈Z, δ ∈ s is of type s.
The algebra of infinitesimal symmetries of the flat curve with
the symbol s is isomorphic to the largest graded subalgebra
UF (s) of csp(⊕X i ) containing s as its negative part-Universal
prolongation of the symbol s
UF (s) = ⊕i≥−1U

i (s), U−1(s) = s
Explicit construction recursively:
U i (s) = {A ∈ cspi(⊕jX

j) : [A, δ] ∈ U i−1(S), δ ∈ S}

Igor Zelenko On the role of abnormal extremals



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Geometry of curves of flags of isotropic/coisotropic
subspaces with constant symbol s ⊂ csp(⊕X i)

The theory is completely analogous to Tanaka’s one

Flat curve with symbol s (of type s)
Take the corresponding filtration

{V i}i∈Z, V i = ⊕j≥iX
j

The flat curve of type s is the orbit of this flag under the
action of the one-parametric group generated by the symbol
s, t → {etδV i}i∈Z, δ ∈ s is of type s.
The algebra of infinitesimal symmetries of the flat curve with
the symbol s is isomorphic to the largest graded subalgebra
UF (s) of csp(⊕X i ) containing s as its negative part-Universal
prolongation of the symbol s
UF (s) = ⊕i≥−1U

i (s), U−1(s) = s
Explicit construction recursively:
U i (s) = {A ∈ cspi(⊕jX

j) : [A, δ] ∈ U i−1(S), δ ∈ S}

Igor Zelenko On the role of abnormal extremals



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Geometry of curves of flags of isotropic/coisotropic
subspaces with constant symbol s ⊂ csp(⊕X i)

The theory is completely analogous to Tanaka’s one

Flat curve with symbol s (of type s)
Take the corresponding filtration

{V i}i∈Z, V i = ⊕j≥iX
j

The flat curve of type s is the orbit of this flag under the
action of the one-parametric group generated by the symbol
s, t → {etδV i}i∈Z, δ ∈ s is of type s.

The algebra of infinitesimal symmetries of the flat curve with
the symbol s is isomorphic to the largest graded subalgebra
UF (s) of csp(⊕X i ) containing s as its negative part-Universal
prolongation of the symbol s
UF (s) = ⊕i≥−1U

i (s), U−1(s) = s
Explicit construction recursively:
U i (s) = {A ∈ cspi(⊕jX

j) : [A, δ] ∈ U i−1(S), δ ∈ S}

Igor Zelenko On the role of abnormal extremals



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Geometry of curves of flags of isotropic/coisotropic
subspaces with constant symbol s ⊂ csp(⊕X i)

The theory is completely analogous to Tanaka’s one

Flat curve with symbol s (of type s)
Take the corresponding filtration

{V i}i∈Z, V i = ⊕j≥iX
j

The flat curve of type s is the orbit of this flag under the
action of the one-parametric group generated by the symbol
s, t → {etδV i}i∈Z, δ ∈ s is of type s.
The algebra of infinitesimal symmetries of the flat curve with
the symbol s is isomorphic to the largest graded subalgebra
UF (s) of csp(⊕X i ) containing s as its negative part-Universal
prolongation of the symbol s

UF (s) = ⊕i≥−1U
i (s), U−1(s) = s

Explicit construction recursively:
U i (s) = {A ∈ cspi(⊕jX

j) : [A, δ] ∈ U i−1(S), δ ∈ S}

Igor Zelenko On the role of abnormal extremals



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Geometry of curves of flags of isotropic/coisotropic
subspaces with constant symbol s ⊂ csp(⊕X i)

The theory is completely analogous to Tanaka’s one

Flat curve with symbol s (of type s)
Take the corresponding filtration

{V i}i∈Z, V i = ⊕j≥iX
j

The flat curve of type s is the orbit of this flag under the
action of the one-parametric group generated by the symbol
s, t → {etδV i}i∈Z, δ ∈ s is of type s.
The algebra of infinitesimal symmetries of the flat curve with
the symbol s is isomorphic to the largest graded subalgebra
UF (s) of csp(⊕X i ) containing s as its negative part-Universal
prolongation of the symbol s
UF (s) = ⊕i≥−1U

i (s), U−1(s) = s
Explicit construction recursively:
U i (s) = {A ∈ cspi(⊕jX

j) : [A, δ] ∈ U i−1(S), δ ∈ S}
Igor Zelenko On the role of abnormal extremals



Statement of the problem
Review of Tanaka theory

Symplectification procedure

Main theorem on Geometry of Curves of Flags

UF (s) = ⊕i≥−1U
i (s), U−1(s) = s

Explicit construction recursively:
U i (s) = {A ∈ cspi(⊕jX

j) : [A, δ] ∈ U i−1(S), δ ∈ S}

Theorem (Doubrov-Zelenko)To a curve of flags of
isotropic/coisotropic subspaces with constant symbol s one can
assign in a canonical way a bundle of moving frames of dimension
equal to dimUF (s).
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Distributions of maximal class

Jacobi curve of a generic abnormal extremal γ satisfies

F
−i(λ)
γ (λ) = ∆(γ) for some integer i(λ)

(2, n)-distributions of maximal class has the same Jacobi symbol
(corresponding actually to a degree −1 endomorphism of graded
symplectic space of dimension 2n − 6 with one Jordan block in its
Jordan normal form).

We checked that for n ≤ 8 all bracket generating
(2, n)-distributions with small growth vector (2, 3, 5, . . .) are of
maximal class

Actually we do not have any example of bracket generating
(2, n)-distributions with small growth vector (2, 3, 5, . . .) which are
not of maximal class.

For example, all (2, 6)-distributions with hyperbolic, parabolic, and
elliptic Tanaka symbols have the same Jacobi symbol.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

From canonical moving frames for Jacobi curves to
canonical frames for distributions

Build the following graded Lie Algebra

B(s) =

g−2︷︸︸︷
η ⊕

g−1︷ ︸︸ ︷
(⊕X I )︸ ︷︷ ︸

V︸ ︷︷ ︸
⊕

g0︷ ︸︸ ︷
UF (s)

The Heisenberg algebra -
the Tanaka symbol
of the contact distribution∆
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

Main Theorem on distributions with given Jacobi symbol

Let UT (B(s)) be the Tanaka universal algebraic prolongation of
B(s) (i.e. the maximal nondegenerate graded Lie algebra,
containing B(s) as its nonpositive part).

Theorem (Doubrov-Zelenko) Assume that D is a distribution of
maximal class with Jacobi symbol s.

Then dimUT (B(s)) <∞ and there exists a canonical frame for D
on a manifold of dimension equal to dimUT (B(s)).

In particular, the algebra of infinitesimal symmetries of a
distribution D with Jacobi symbol s is ≤ dimUT (B(s)).

Moreover, if in addition rankD = 2 or rankD is odd, this upper
bound for the algebra of infinitesimal symmetries is sharp.
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Statement of the problem
Review of Tanaka theory

Symplectification procedure

The case of rank 2 distributions of maximal class on
n-dimensional manifold

Jacobi curves are curves of complete flags consisting of all
osculating subspaces of a curve in projective space;

Only one Jacobi symbol s2
n is the right shift of the one row

Young diagram . . .︸ ︷︷ ︸
2(n−3) boxes

;

The flat curve with symbol s2
n is a curve of complete flags

consisting of all osculating subspaces of the rational normal
curve in P2n−7 (t → [1 : t : . . . : t2n−7));

UF (s) = is the image of the irreducible embedding of gl2 into
gl2n−6.
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n-dimensional manifold

Jacobi curves are curves of complete flags consisting of all
osculating subspaces of a curve in projective space;
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Symmetry algebras for symplectically flat rank 2
distributions

n = 5
UT (B(s2

5 )) = G2 (Cartan, 1910)
n = 6 UT (B(s2

n)) = B(s2
n) - the semidirect sum of gl(2,R)

and (2n − 5)-dimensional Heisenberg algebra n2n−5.
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Finite type results via controllability by abnormal
trajectories

Without assumption of maximality of class we still can give
conditions for algebra of infinitesimal symmetries to be finite
dimensional
Projections of abnormal extremals to M will be called abnormal
trajectories.
A distribution is called controllable by abnormal trajectories, if any
two points can be connected by a concatenation of abnormal
trajectories ⇔ the distribution V ⊕ C is bracket-generating.

Theorem (Doubrov-Zelenko) If a distribution D is controllable
by abnormal trajectories, then it has a finite dimensional algebra of
infinitesimal symmetries
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