Example of endowed Lie algebras and their prolongations in the classification of (2,5) distributions (the problem in E. Cartan's "5 Variables" paper)

Theorem. Let $\mathcal{E} = (\mathcal{A}, P, (b))$ be a 6-dim Lie algebra endowed with a generating 2-plane and 1-dimensional isotropy subalgebra (b). If \mathcal{E} is not a prolongation of the graded nilpotent 5-dim Lie algebra then the linear operator $ad b|_P$ has zero trace. If it is non-singular then the endowed algebra is isomorphic (over \mathbb{C}) to the endowed Lie algebra

$$[a_1, a_2] = a_3, \quad [a_1, a_3] = a_4, \quad [a_2, a_3] = a_5, \quad [a_1, b] = a_2, \quad [a_2, b] = -a_1$$

 $[a_1, a_4] = [a_2, a_5] = \lambda_1 a_3 + \lambda_2 b, \quad [a_1, a_5] = [a_2, a_4] = 0$

(the other brackets are defined by Jacobi identity), endowed with the plane (a_1, a_2) and isotropy subalgebra (b). At least one of λ_1, λ_2 is non-zero, and

$$\lambda = \lambda_1^2 / \lambda_2$$

is a complete invariant with respect to isomorphisms of endowed algebras. As a non-endowed algebra it is $so(3) \oplus so(3)$ provided $\lambda_2 \neq 0$ and $\lambda \neq 4$. For such λ , the endowed algebra \mathcal{E} has the following properties:

• it is a prolongation of the 5-dimensional Lie algebra

 $[X_1, X_2] = X_3, \ [X_2, X_3] = X_1, \ [X_3, X_1] = X_2, \ [Y_1, Y_2] = Y_2, \ [X_i, Y_j] = 0$ endowed with generating 2-plane spanned by $a_1 = Y_1 + \theta X_1, \ a_2 = Y_2 + X_2$

• it describes the problem of rolling balls of radii R_1, R_2 .

The relation between λ , θ , and R_1, R_2 is as follows:

$$\lambda = -\left(\frac{1-\theta^2}{\theta}\right)^2 = \left(\frac{1+\mu^2}{\mu}\right)^2, \quad where \quad \mu = \frac{R_1}{R_2}$$

Theorem. The endowed Lie algebra \mathcal{E} is prolongable if and only if

$$\lambda = 100/9 \quad \Leftrightarrow \quad \theta = \pm 3i \quad \Leftrightarrow \quad \mu = R_1/R_2 \in \{3, \ 1/3\}$$

and in this case the prolongation is g_2 .

Remark. The fact that in the problem of rolling balls the symmetries form g_2 , on top of "visible" $so(3) \oplus so(3)$, if and only if the ratio of the radii is 1:3 is R.Bryant's theorem (lecture notes, 1998). He proved it by computing Cartan tensor, following Cartan's constructions. First published proof is due to I. Zelenko (2006); it is also computation of Cartan tensor, but with a different construction based on his joint approach with A. Agrachev. Another published proof, based on a work with Lie algebras, is due to G. Bor and R. Montgomery (2009). A nice math related to rolling balls (split-octonions) is contained in one of A. Agrachev's works (2007).

Homogeneous bracket generating affine distribution A + (B) of \mathbb{R}^3 and \mathbb{R}^4

Theorem. The symmetry algebra of a homogeneous affine distribution germ D = A + (B) on \mathbb{R}^n , n = 3, 4, is one of the following:

- (a) n = 3, 4: any *n*-dimensional Lie algebra admitting a generating 2-plane
- (b) n = 4: one of the 5-dimensional solvable Lie algebras

$$\begin{array}{ll} [b,a] = c & [a,c] = \theta b & [w,b] = b & [w,a] = 0 \\ \mathcal{A}^{5}_{\theta} & [b,c] = d & [a,d] = 0 & [w,c] = c & [w,d] = 2d \\ \theta \in \{1,0\} & [b,d] = 0 & [c,d] = 0 \end{array}$$

(c) n = 3, 4: Lie algebra of vector fields germs on \mathbb{R}^2 of the form $c\frac{\partial}{\partial y_1} + f(y_1, y_2)\frac{\partial}{\partial y_2}, c \in \mathbb{R}.$

(d) n = 3, 4: Lie algebra of vector field germs on \mathbb{R}

In each of these cases except case (d) for n = 4 the affine distribution D can be described by an 4-dimensional Lie algebra endowed with an affine line.

Theorem. The symmetry algebra is ∞ -dimensional (one of the cases cases (c), (d)) if and only if

$$[B, [B, A]] \in (B, [B, A]]).$$

In each of the cases (c) and (d) all affine distributions are diffeomorphic. These cases hold if and only if

Case (c)	\mathbb{R}^{3} $[B, [B, A]] \in (B, [B, A]])$ $[A, [B, A]] \in (B, [B, A]])$ Normal form: $B = \frac{\partial}{\partial x_{1}}$ $A = \frac{\partial}{\partial x_{2}} + x_{1} \frac{\partial}{\partial x_{3}}$	\mathbb{R}^{4} $[B, [B, A]] \in (B, [B, A]])$ $[A, [A, [B, A]] \in (B, [B, A]], [A, [B, A]])$ Normal form: $B = \frac{\partial}{\partial x_{1}}$ $A = \frac{\partial}{\partial x_{2}} + x_{1}\frac{\partial}{\partial x_{3}} + x_{3}\frac{\partial}{\partial x_{4}}$
Case (d)	$\begin{split} & [B, [B, A]] \in (B, [B, A]]) \\ & [A, [B, A]] \notin (B, [B, A]]) \\ & \text{Normal form:} \\ & B = \frac{\partial}{\partial x_1} \\ & A = (1 + x_1 x_2) \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3} \end{split}$	$[B, [B, A]] \in (B, [B, A]])$ $[A, [A, [B, A]] \notin (B, [B, A]], [A, [B, A]])$ Normal form: $B = \frac{\partial}{\partial x_1}$ $A = (1 + x_2 x_3) \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3} + x_3 \frac{\partial}{\partial x_4}$

Remark. The conditions in the table imply that D = A + (B) is homogeneous for \mathbb{R}^3 and case (c) for \mathbb{R}^4 . In the case (d) for \mathbb{R}^4 the affine distribution is homogeneous if and only if it satisfies the given conditions and the condition

$$[B, [A, [A, [B, A]] \in (B, [B, A]], [A, [B, A]])$$

2

3-dim Lie algebra \mathcal{A} admitting a generating $a + (b)$	$\begin{array}{c} \# \text{ moduli} \\ \text{ in classif.} \\ \text{ of } \mathcal{A} \\ \text{ and classif.} \\ \text{ of endowed } \mathcal{A} \end{array}$	endowed algebra is prolongable if and only if	Prolongation (if prolongable)
so(3)	0; 1	never prolongable	
sl(2)	0; 1	$dim(b, [b, \mathcal{A}]) = 2$	$\mathcal{A}_{\infty,1}$
$(3, 2, 0) \ dim \mathcal{A}^2 = 2 \ (\mathcal{A}^2)^2 = 0$	$1; \begin{array}{c} b \notin \mathcal{A}^2: & 1 \\ b \in \mathcal{A}^2: & 2 \end{array}$	$b\in \mathcal{A}^2$	$\mathcal{A}_{\infty,2}$
(3, 1, 0) non-nilp. $dim\mathcal{A}^2 = 1$ $[\mathcal{A}, \mathcal{A}^2] \neq 0$	0; 1	always prolongable	$\mathcal{A}_{\infty,2}$
$\begin{array}{c} (3,1,0)\\ \text{nilp.}\\ (\text{Heisenberg})\\ dim\mathcal{A}^2 = 1\\ [\mathcal{A},\mathcal{A}^2] = 0 \end{array}$	0; 0	always prolongable	$\mathcal{A}_{\infty,2}$

3-dim Lie algebras $\mathcal A$ admitting a generating line $a + (b$)
and distinguishing prolongable endowed algebras	

 $\mathcal{A}_{\infty,1}$: Lie algebra of vector field germs on \mathbb{R}

 $\mathcal{A}_{\infty,2}$: Lie algebra of vector fields of the form $c\frac{\partial}{\partial y_1} + f(y_1, y_2)\frac{\partial}{\partial y_2}, \ c \in \mathbb{R}.$

Classification of homogeneous affine distributions A + (B) on \mathbb{R}^3 = classification of non-prolongable 3-dim Lie algebras endowed with generating affine line a + (b)

$\begin{array}{c} \text{3-dim Lie algebra} \\ \mathcal{A} = (a, b, c) \end{array}$	normal form for \mathcal{A} endowed with $a + (b)$	parameters
so(3)	[b,a] = c $[a,c] = tb$ $[c,b] = a$	t > 0
sl(2)	$[b,a] = c \qquad [a,c] = tb \qquad [c,b] = a$	<i>t</i> > 0
	[b,a] = c $[a,c] = tb$ $[c,b] = -a$	$t \neq 0$
$(3,2,0)$ $dim\mathcal{A}^2 = 2$ $(\mathcal{A}^2)^2 = 0$	$[b,a] = c$ $[b,c] = \pm a + \lambda c$ $[a,c] = 0$	$\lambda \ge 0, \pm:$ invariants of \mathcal{A}

Normal forms:

so(3): take any vector fields X_1, X_2, X_3 on \mathbb{R}^3 , independent at 0, such that $[X_1, X_2] = X_3$, $[X_2, X_3] = X_1$, $[X_3, X_1] = X_2$. A normal form for affine distribution is A + (B), $B = X_1$, $A = \sqrt{tX_2}$.

sl(2): similar

(4,2,0): take any vector fields A, B, C on \mathbb{R}^3 , independent at 0, such that [B, A] = C, $[B, C] = \pm A + \lambda C$, [A, C] = 0. A normal form is A + (B), for example $A = \frac{\partial}{\partial x_2}$, $B = \frac{\partial}{\partial x_1} \mp x_3 \frac{\partial}{\partial x_2} + (x_2 + \lambda x_3) \frac{\partial}{\partial x_3}$, $\theta \ge 0$.

type of \mathcal{A}	Normal form for prolongable 3-dim Lie algebra $\mathcal{A} = (a, b, c)$ endowed with $a + (b)$	dim(Aut)	prolongation
sl(2)	$egin{aligned} [b,a] &= c \ [b,c] &= b \ [a,c] &= -a \end{aligned}$	0	$\mathcal{A}_{\infty,1}$
$(3,2,0)$ $dim\mathcal{A}^2 = 2$ $\left(\mathcal{A}^2\right)^2 = 0$	[a, b] = -c [b, c] = 0 $[a, c] = t_1 b + t_2 c$ $t_1, t_2 \in \mathbb{R}, \ t_1 \neq 0$	2	$\mathcal{A}_{\infty,2}$
$ \begin{array}{c} (3,1,0) \\ \text{non-nilp.} \\ dim\mathcal{A}^2 = 1 \\ [\mathcal{A},\mathcal{A}^2] \neq 0 \end{array} $		2	$\mathcal{A}_{\infty,2}$
(3, 1, 0)nilp. (Heisenberg) $dim\mathcal{A}^2 = 1$ $[\mathcal{A}, \mathcal{A}^2] = 0$	$egin{aligned} [b,a] &= c \ [b,c] &= 0 \ [a,c] &= 0 \end{aligned}$	2	$\mathcal{A}_{\infty,2}$

Prolongable 3-dim Lie algebras endowed with generating affine line a + (b)

Homogeneous bracket generating affine distributions A + (B) on \mathbb{R}^4 with 5-dimensional symmetry algebra

Theorem. If the symmetry algebra of a homogeneous bracket generating affine distribution germ D = A + (B) on \mathbb{R}^4 is 5-dimensional then, as an endowed Lie algebra it is isomorphic to the Lie algebra

 $\begin{array}{ll} [b,a] = c & [a,c] = \theta b & [w,b] = b & [w,a] = 0 \\ [b,c] = d & [a,d] = 0 & [w,c] = c & [w,d] = 2d \\ [b,d] = 0 & [c,d] = 0 \end{array}$

endowed with a line a + (b) and isotropy subalgebra (w). The parameter $\theta \in \mathbb{R}$ is an invariant of the endowed algebra.

Corollary. The distribution D can be described by the 4-dimensional subalgebra (a, b, c, d) of \mathcal{A}_{θ} endowed with the line a + (b). The parameter θ is an invariant of D with respect to diffeomorphisms.

Corollary. The distribution D is diffeomorphic to

$$B = \frac{\partial}{\partial x_1}, \quad A = \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_3} + \frac{1}{2} \left(x_1^2 - \theta x_3^2 \right) \frac{\partial}{\partial x_4}$$

4-dim Lie algebra \mathcal{A} admitting a generating $a + (b)$	$\begin{array}{c} \# \text{ moduli} \\ \text{ in classif.} \\ \text{ of } \mathcal{A} \\ \text{ and classif.} \\ \text{ of endowed } \mathcal{A} \end{array}$	endowed algebra is prolongable if and only if	Prolongation (if prolongable)
$so(3)\oplus\mathbb{R}$	0; 2	never prolongable	
$sl(2)\oplus \mathbb{R}$	0; 2	$dim(b,[b,\mathcal{A}])=2$	$\mathcal{A}_{\infty,1}$
$(4, 3, 1, 0)$ $dim\mathcal{A}^{2} = 3$ $dim\left(\mathcal{A}^{2}\right)^{2} = 1$	1; 2	$b\in \mathcal{A}^2$	$\mathcal{A}_{5, heta}$
$(4, 3, 0) dim \mathcal{A}^{2} = 3 (\mathcal{A}^{2})^{2} = 0$	2; 2	$b\in \mathcal{A}^2$	$\mathcal{A}_{\infty,1}$
(4, 2, 0) $dim \mathcal{A}^2 = 2$ $(\mathcal{A}^2)^2 = 0$	non-degen.: 0; 2 degen.: 1; 1 see (*)	one of the following: for the operator $ad \ b _{\mathcal{A}^2}$ and its eigenvalues λ_1, λ_2 : $ad \ b _{\mathcal{A}^2} \text{ is scalar}$ $\lambda_1 = \lambda_2 = 0,$ $ad \ b _{\mathcal{A}^2} \neq 0$ $\lambda_1 : \lambda_2 = 1 : 2$	$\mathcal{A}_{\infty,1}$ $\mathcal{A}_{5, heta}$ $\mathcal{A}_{5, heta}$

4-dim Lie algebras ${\mathcal A}$ admitting a generating line a+(b) and distinguishing prolongable endowed algebras

(*) a (4,2,0) Lie algebra \mathcal{A} is degenerate if there exists $x \notin \mathcal{A}^2$ such that $ad x|_{\mathcal{A}^2} = 0$. In this case the condition in the last column is a condition on \mathcal{A} .

4-dim Lie algebra	normal form for		nanamatang
$\mathcal{A} = (a, b, c, d)$	\mathcal{A} endowed with $a + (b)$		parameters
	[b,a] = c	[a,c] = d	
	$[b,c] = -a + t_1 d$	$[c,d] = t_2 a$	$t_1 \ge 0$
$(2) \oplus \mathbb{D}$	$[b,d] = -t_1 t_2 c$	$[d,a] = t_2 c$	$t_2 > 0$
$SO(3)\oplus\mathbb{R}$	$\overline{[a,b]} = -t_1c$	[b,c] = d	
	$[a, c] = t_1 b$	[c,d] = b	$t_1 > 0$
	[a,d] = 0	[d,b] = c	
	[b,a] = c	[a,c] = d	
	$[b,c] = -a + t_1 d$	$[c,d] = t_2 a$	$t_1 \ge 0,$
	$[b,d] = -t_1 t_2 c$	$[d,a] = t_2c$	$t_2 < 0$
	$\boxed{[a,b] = -t_1c}$	[b,c] = d	
$sl(2)\oplus \mathbb{R}$	$[a,c] = t_1 b$	[c, d] = -b	$t_1 > 0$
	[a, d] = 0	[d,b] = c	-
	[b,a] = c	[a,d] = c	
	[b,c] = d	[a, c] = -d	
	[b, d] = 0	[d,c] = -a	
(1 2 1 0)	[b,a] = c	[a,c] = d	$\lambda \ge 0, \pm$:
(4, 3, 1, 0) dim $A^2 - 3$	$[b,c] = \pm a + \lambda c +$	t_1d	invariants of \mathcal{A}
$\frac{\alpha i \pi \mathcal{A}}{1} = 0$		[a,d] = 0	
$dim\left(\mathcal{A}^{2}\right) = 1$	$[b,d] = \lambda d$	[c,d] = 0	$t_1 \in \mathbb{R}$
(4, 3, 0)	[b,a] = c	[a,c] = 0	
(4, 5, 0) dim $\Lambda^2 = 3$	[b,c] = d,	[a, d] = 0	$\lambda_1, \lambda_2 \in \mathbb{R}$:
$(4^2)^2 = 0$	$[b,d] = a + \lambda_1 c +$	$\lambda_2 d$	invariants of \mathcal{A}
$(\mathcal{A}^2) = 0$		[c, d] = 0	
	[b,a] = c	$[a,c] = t_1 c$	$t_1 \in \mathbb{R}$
	[b,c] = d,	$[a,d] = t_1 d$	$t_2 \neq -\frac{2}{9}$
(4, 2, 0)	$[b,d] = t_2c + d$	[c, d] = 0	Ŭ
$dim A^2 - 2$		-	see $(*)$
$(42)^2$	[b,a] = c	$[a,c] = t_1 c$	
$(\mathcal{A}^{-}) = 0$	[b,c] = d,	$[a,d] = t_1 d$	
	$[b,d] = \pm c$	[c,d] = 0	\pm : invariant of \mathcal{A}

Classification of homogeneous affine distributions A + (B) on \mathbb{R}^4 = classification of non-prolongable 4-dim Lie algebras endowed with generating affine line a + (b)

(*) For (4,2,0) Lie algebras: if $t_1 \neq 0$ the classification of \mathcal{A} is discrete: there are exactly three cases corresponding to $t_1 < -\frac{1}{4}$, $t_1 = \frac{1}{4}$, $t_1 > -\frac{1}{4}$; If $t_2 = 0$ then t_1 is as invariant of \mathcal{A} .

Normal form for prolongable 4-dim Lie algebra $\mathcal{A} = (a, b, c, d)$ endowed with $a + (b)$	type of $\mathcal A$	dim(Aut)	prolongation
$ \begin{bmatrix} [b,a] = c & [a,c] = d \\ [b,c] = b & [a,d] = t_1c \\ [b,d] = c & [c,d] = t_1b + d \\ t_1 \in \mathbb{R} \end{bmatrix} $	$sl(2)\oplus \mathbb{R}$	0	$\mathcal{A}_{\infty,1}$
$\begin{bmatrix} [b,a] = c & [a,c] = d \\ [b,c] = 0 & [a,d] = t_1 b + t_2 c + t_3 d \\ [b,d] = 0 & [c,d] = 0 \\ t_1, t_2, t_3 \in \mathbb{R} \end{bmatrix}$	$\begin{array}{c c} t_1 \neq 0: \ (4,3,0) \\ t_1 = 0: \ (4,2,0) \end{array}$	2	$\mathcal{A}_{\infty,1}$
$ \begin{bmatrix} [b,a] = c & [a,c] = d \\ [b,c] = c & [a,d] = t_1c + t_2d \\ [b,d] = d & [c,d] = 0 \\ t_1,t_2 \in \mathbb{R} \end{bmatrix} $	(4, 2, 0)	0	$\mathcal{A}_{\infty,1}$
$ \begin{bmatrix} b, a \end{bmatrix} = c & [a, c] = t_1 c + t_2 b \\ [b, c] = d & [a, d] = t_1 d \\ [b, d] = 0 & [c, d] = 0 \\ t_1, t_2 \in \mathbb{R} $	$t_1 \neq 0: (4, 3, 1, 0)$ $t_1 = 0: (4, 2, 0)$	1	$\mathcal{A}_{5, heta}$ $ heta=t_2-rac{1}{4}t_1^2$
$\begin{bmatrix} b, a \end{bmatrix} = c & [a, c] = t_1 c \\ [b, c] = d & [a, d] = t_1 d \\ [b, d] = -\frac{2}{9}c + d & [c, d] = 0 \\ t_1 \in \mathbb{R} \end{bmatrix}$	(4, 2, 0)	0	$\mathcal{A}_{5, heta}$ $ heta=-rac{1}{4}t_1^2$

Prolongable 4-dim Lie algebras endowed with generating affine line a + (b)