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Introduction

Sub-Riemannian geometry:

generalization of Riemannian geometry under non holonomic constraints

geometry underlying the theory of hypoelliptic operators

Main motivation:

understand the interplay between

→ the geometry of these spaces (optimality of geodesics, curvature)

→ the analysis of the diffusion processes on the manifold (heat equation)

Questions:

Which is the “right” Laplace operator associated with the geometry?

How to relate geometric properties and the heat kernel?
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Sub-Riemannian manifolds

Definition

A sub-Riemannian manifold is a triple S = (M ,D, 〈·, ·〉), where

(i) M is a connected smooth manifold of dimension n ≥ 3;

(ii) D is a smooth distribution of (constant) rank k < n, i.e. a smooth map that
associates to q ∈ M a k-dimensional subspace Dq of TqM .

(iii) 〈·, ·〉q is a Riemannian metric on Dq, that is smooth as function of q.

The set of horizontal vector fields on M , i.e.

D = {X ∈ Vec M | X (q) ∈ Dq, ∀ q ∈ M} .

satisfies the Lie bracket generating condition LieqD = TqM , ∀ q.
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Sub-Riemannian distance

For a horizontal curve
γ : [0,T ]→ M

ℓ(γ) =

∫ T

0

√

〈γ̇(t), γ̇(t)〉 dt.

horizontal curve

D(q)

The Carnot-Caratheodory distance induced by the sub-Riemannian structure
on M is

d(q, q′) = inf{ℓ(γ) | γ(0) = q, γ(T ) = q′, γ horizontal}.

(M , d) is a metric space and d(·, ·) is finite and continuous with respect to
the topology of M (Chow’s Theorem)
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Orthonormal frame

Locally, the pair (D, 〈·, ·〉) can be given by assigning a set of k smooth vector
fields, called a local orthonormal frame, spanning D and that are orthonormal

Dq = span{X1(q), . . . ,Xk(q)}, 〈Xi(q),Xj (q)〉 = δij .

The problem of finding geodesics, i.e. curves that minimize the length between
two given points q0, q1, is equivalent to the optimal control problem







































q̇ =
k

∑

i=1

ui Xi (q) ←− linear in control

∫ T

0

k
∑

i=1

u2

i → min ←− quadratic cost

q(0) = q0, q(T ) = q1
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Pontryagin Maximum Principle

Theorem (PMP)

If (u(t), q(t)) is optimal, there exists a lift p(t) ∈ T ∗

q(t)M and ν ≤ 0 such that

(q(t), p(t)) is the solution of the Hamiltonian system associated with

Hν(p, q, u) =

k
∑

i=1

〈p,Xi (q)〉 −
ν

2

k
∑

i=1

u2

i

Hν(p(t), q(t), u(t)) = max
w
Hν(p(t), q(t),w) (1)

ν = 1 (extr. normal): the condition (1) implies that in fact (q(t), p(t)) is a
solution of H(p, q) = 1

2

∑k
i=1
〈p,Xi(q)〉2

normal extremals are smooth
we parametrize extremals starting from q0 with

Λq0 = {p0 ∈ T ∗

q0
M ,H(p0, q0) =

1
2
} ≃ Sk−1 × R

n−k

they are local minimizers
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Pontryagin Maximum Principle

Theorem (PMP)

If (u(t), q(t)) is optimal, there exists a lift p(t) ∈ T ∗

q(t)M and ν ≤ 0 such that

(q(t), p(t)) is the solution of the Hamiltonian system associated with

Hν(p, q, u) =

k
∑

i=1

〈p,Xi (q)〉 −
ν

2

k
∑

i=1

u2

i

Hν(p(t), q(t), u(t)) = max
w
Hν(p(t), q(t),w) (1)

ν = 0 (extr. abnormal): are abnormal minimizers smooth? open problem
→ see Monti’s talk

Remark: In general a trajectory can be normal and abnormal.

In what follows, we assume no abnormal minimizers that are not normal!
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Basic features in SRG - 1

The cut and the conjugate locus starting from a point can be defined analogously
to the Riemannian case

Front

OPTIMAL GEODESICSGEODESICS

CUT LOCUS

Sphere

Conjugate Locus: set of point where geodesics lose local optimality

Cut locus: set of points where geodesics lose global optimality (and the
distance is not smooth)

Ball of radius R : points reached optimally in time T ≤ R
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Basic features in SRG - 2

Consider geodesics from a point x0 ∈ M

there are geodesics loosing
optimality arbitrarily close to x0

x 7→ d2(x0, x) is not smooth in x0

Theorem (Agrachev, after Trelat-Rifford)

Let x0 ∈ M and E (x) = 1

2
d2(x0, x). Then

E is smooth on the open dense set Σ ⊂ M

Σ(x0) = {x ∈ M | ∃! strictly normal non-conjugate minimizer from x0 to x}
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Hausdorff dimension

Define D1 := D, D2 := D + [D,D], Di+1 := Di + [Di ,D].

Hörmander cond. → ∃m ∈ N (step) s.t. Dm
q = TqM

growth vector of the structure is the sequence

G(S) := (dimD
q

k

, dimD2, . . . , dimDm

q

n

)

Mitchell Theorem: the Hausdorff dimension of (M , d) is given by the formula

Q =

m
∑

i=1

iki = k1 + 2k2 + . . .+ mkm,

The Hausdorff dimension is bigger than the topological one: Q > n
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Sub-Laplacian

The sub-Laplacian operator ∆ on (M , 〈·, ·〉 ,D) is the natural generalization of the
Laplace-Beltrami operator and is defined as follows

∆φ = div(gradφ)

gradφ is the unique horizontal vector field dual to dφ
∣

∣

D
(use the metric)

gradφ =

k
∑

i=1

Xi(φ)Xi

The divergence of a vector field X says how much the flow of X change a
volume µ, i.e. LXµ = (div X )µ

The Leibnitz rule for div gives

∆ =
k

∑

i=1

X 2

i + (div Xi)Xi

→ sum of squares + first order terms that depend on the volume

We assume that a smooth volume µ is fixed!
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Which volume?

The choice of a canonical volume is related with the definition of a canonical
sub-Laplacian.

in the Riemannian case the metric canonically defines the Riemannian volume

being a metric space, one can consider the (spherical) Hausdorff volume

in this case they are proportional

In the sub-Riemannian case the metric does not define a canonical volume in
principle

in the equiregular case we can use the structure of the Lie bracket to define a
volume, called Popp volume

the spherical Hausdorff volume is not proportional and in general, it is not
even smooth

→ See Gauthier’s talk.

Davide Barilari (École Polytechnique) Sub-Riemannian geometry May 21, 2012 15 / 36



Sub-Riemannian geometry Sub-Laplacian and Heat Equation Examples

Heat equation

Sub-Riemannian heat equation on a complete manifold M with smooth measure µ










∂ψ

∂t
(t, x) = ∆ψ(t, x), in (0,∞)×M ,

ψ(0, x) = ϕ(x), x ∈ M , ϕ ∈ C∞

0
(M).

(∗)

where ψ(0, x) = lim
t→0

ψ(t, x). Recall that

∆ =

k
∑

i=1

X 2

i + (div Xi )Xi

Theorem (Hörmander)

If X1, . . . ,Xk are bracket generating then ∆ =
∑k

i=1
X 2

i + X0 is hypoelliptic.
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Heat kernel

For f , g ∈ C∞

0
(M) with compact support, the standard divergence theorem

∫

M

f (div X ) dµ = −

∫

M

Xf dµ, (no metric required!)

applied to X = grad g gives
∫

M

f ∆g dµ = −

∫

M

〈grad f , grad g〉dµ

implies that ∆ is symmetric and negative → ∆ essentially self-adjoint on C∞

0
(M).

The problem (∗) has a unique solution for every initial datum ϕ ∈ C∞

0
(M)

ψ(t, x) := et∆ϕ(x) =

∫

M

pt(x , y)ϕ(y)dµ(y), ϕ ∈ C∞

0 (M),

where pt(x , y) ∈ C∞ is the so-called heat kernel associated to ∆.
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Results on the asymptotic of pt(x , y)

Fix x , y ∈ M , dimM = n:

Theorem (Main term, Leandre)

lim
t→0

4t log pt(x , y) = −d2(x , y) (1)

Theorem (Smooth points, Ben Arous)

Assume y ∈ Σ(x), then

pt(x , y) ∼
1

tn/2
exp

(

−
d2(x , y)

4t

)

(2)

Facts

1. In Riemannian geometry x ∈ Σ(x), in sub-Riemannian is not true!

2. The on-the-diagonal expansion indeed is different.
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Results on the asymptotic of pt(x , y)

Fix x , y ∈ M , dimM = n:

Theorem (Main term, Leandre)

lim
t→0

4t log pt(x , y) = −d2(x , y) (1)

Theorem (On the diagonal, Ben Arous)

We have the expansion

pt(x , x) ∼
1

tQ/2
(2)

Facts

1. In Riemannian geometry x ∈ Σ(x), in sub-Riemannian is not true!

2. The on-the-diagonal expansion indeed is different.
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Results on the asymptotic of pt(x , y)

Fix x , y ∈ M , dimM = n:

Theorem (Main term, Leandre)

lim
t→0

4t log pt(x , y) = −d2(x , y) (1)

Theorem (Smooth points, Ben Arous)

Assume y ∈ Σ(x), then

pt(x , y) ∼
1

tn/2
exp

(

−
d2(x , y)

4t

)

(2)

Questions

1. What happens in (2) if y ∈ Cut(x)?

2. Can we relate the expansion of pt(x , y) with the properties of the geodesics
joining x to y?
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Example: Heisenberg

In the Heisenberg group the Heat kernel is explicit (here q = (x , y , z))

pt(0, q) =
1

(4πt)2

∫

∞

−∞

τ

sinh τ
exp

(

−
x2 + y2

4t

τ

tanh τ

)

cos
(zτ

t

)

dτ.

and gives the asymptotics for cut-conjugate points ζ = (0, 0, z)

pt(0, ζ) ∼
1
t2

exp
(

−
πz

t

)

=
1
t2

exp
(

−
d2(0, ζ)

4t

)

Remark: The factor 1

2
that is added confirm the fact that the points ζ = (0, 0, z)

are not smooth points. What is the meaning of the 1

2
?
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What happens at non good point?

Let x , y ∈ M with y ∈ Cut(x) and write

pt(x , y) =

∫

M

pt/2(x , z)pt/2(z, y)dµ(z)

Idea: assume z ∈ Σ(x) ∩ Σ(y) and apply Ben-Arous expansion

pt/2(x , z)pt/2(z, y) ∼
1
tn

exp
(

−
d2(x , z) + d2(z, y)

4t

)

This led to the study of an integral of the kind

pt(x , y) =
1
tn

∫

M

cx,y(z) exp
(

−
hx,y(z)

2t

)

dµ(z)

where hx,y is the hinged energy function

hx,y (z) =
1
2

(

d2(x , z) + d2(z, y)
)

.
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Properties of hx ,y hinged energy function

Lemma

Let Γ be the set of midpoints of the minimal geodesics joining x to y.

Then min hx,y = hx,y(Γ) = d2(x , y)/4.

A minimizer is called strongly normal if any piece of it is strictly normal.

Theorem

Let γ be a strongly normal minimizer joining x and y. Let z0 be its midpoint.

Then

(i) y is conjugate to x along γ ⇔ Hessz0hx,y is degenerate.

(ii) The dimension of the space of perturbations for which γ is conjugate

is equal to dimker Hessz0hx,y .

Remark: Hess hx,y is never degenerate along the direction of the geodesic!
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Laplace integrals in R
n

Let K ⊂ R
n be a compact set and assume g has a minimum in int K

The asymptotic of the Laplace integral
∫

K

f (z)e−g(z)/tdx as t ց 0

is determined by the behavior of the function g near its minimum.

Example in R with g(z) = z2m

I (t) =

∫ b

a

f (z)e−z2m/tdz ∼ Cm f (0) t1/2m, t → 0

Example in R
n with g(z) =

∑

z
2mi

i

I (t) =

∫ b

a

f (z)e−g(z)/tdz ∼ C f (0) t
P

i
1/2mi , t → 0
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Hinged vs Asymptotics

Theorem

For a sufficiently small neighborhood N(Γ) of the set of midpoints from x to y

pt(x , y) =
1
tn

∫

N(Γ)

exp
(

−
hx,y(z)

2t

)

(cx,y (z) + O(t))dµ(z)

Assume that, in a neighborhood of the midpoints of the strongly normal geodesics

joining x to y there exists coordinates such that

hx,y(z) =
1
4
d2(x , y) + z2m1

1
+ . . .+ z2mn

n + o(|z1|
2m1 + . . .+ |zn|

2mn )

Then for some constant C > 0

pt(x , y) =
1

t
n−

P

i

1
2m

i

exp
(

−
d2(x , y)

4t

)

(C + o(1)).

Note: hx,y non degenerate (mi = 2) → the exponent is n/2
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Example: Heisenberg

In the Heisenberg group we had the asymptotics for cut-conjugate points
ζ = (0, 0, z)

pt(0, ζ) ∼
1
t2

exp
(

−
πz

t

)

=
1
t2

exp
(

−
d2(0, ζ)

4t

)

Remark: The factor 1

2
is a consequence of the fact that there exists a one

parametric family of optimal trajectories (varying the angle), hence the hinged
energy function is actually a function of two variables, being constant on the
midpoints.
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Cut/Conjugacy vs Asymptotics

Using the geometric properties of hx,y we can state also the following

Corollary

Let M be an n-dimensional complete SR manifold, µ smooth volume. Let x 6= y

and assume that every optimal geodesic joining x to y is strongly normal.

Then there exist positive constants Ci , such that for small t

C1

tn/2
e−d2(x,y)/4t ≤ pt(x , y) ≤

C2

tn−(1/2)
e−d2(x,y)/4t ,

If x and y are conjugate along at least one minimal geodesic

C3

t(n/2)+(1/4)
e−d2(x,y)/4t ≤ pt(x , y) ,

If x and y are not conjugate

pt(x , y) =
C4 + O(t)

tn/2
e−d2(x,y)/4t ,
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and assume that every optimal geodesic joining x to y is strongly normal.

Then there exist positive constants Ci , such that for small t

C1

tn/2
e−d2(x,y)/4t ≤ pt(x , y) ≤

C2

tn−(1/2)
e−d2(x,y)/4t ,

If x and y are conjugate along at least one minimal geodesic

C3

t(n/2)+(1/4)
e−d2(x,y)/4t ≤ pt(x , y) ,

If x and y are not conjugate

pt(x , y) =
C4 + O(t)

tn/2
e−d2(x,y)/4t ,
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Remarks

The precise correspondence between Hess hx,y and cut/conjugacy works at
order 1.

To have the precise asymptotic one need that the expansion of hx,y is
diagonal in some coordinates.

Nevertheless there are at least two cases that simplifies the analysis
If we have a one parametric family of optimal trajectories then hx,y is
constant along the trajectory of midpoints.
If there is only one degenerate direction then hx,y is always diagonalizable

Lemma (Splitting Lemma - Gromoll, Meyer)

Let g : R
n → R smooth such that g(0) = dg(0) = 0 and that dimker d2g(0) = 1

with 0 isolated minimum of g .

Then there exists a diffeomorphism φ of R
n and a smooth function ψ : R→ R

such that

g(φ(u)) =

n−1
∑

i=1

u2

i + ψ(un), where ψ(un) = O(u4

n).
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Bi-Heisenberg group

Is the sub-Riemannian structure on R
5 defined by the o.n. frame

X1 = ∂x1 −
α1

2
y1∂z , X2 = ∂y1 +

α1

2
x1∂z

X3 = ∂x2 −
α2

2
y2∂z , X4 = ∂y2 +

α2

2
x2∂z ,

Remark: If Z = ∂z then [X1,X2] = α1Z and [X3,X4] = α2Z ,

we restrict to the contact case α1, α2 > 0.

one can always assume 0 < α1 ≤ α2

the case α1 < α2 and α1 = α2 are really different!!!
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Exponential map

The exponential map starting from the origin Exp0 : Λ0 × R
+ → M where

Λ0 = {p0 = (r1, r2, θ1, θ2,w) ∈ T ∗

0
M | r2

1
+ r2

2
= 1, θ1, θ2 ∈ S1, w ∈ R}.

The arclength geodesics associated with p0 = (r1, r2, θ1, θ2,w) ∈ Λ0 and |w | 6= 0

xi(t) =
ri

αiw
(cos(αiwt + θi)− cos θi),

yi(t) =
ri

αiw
(sin(αiwt + θi )− sin θi), i = 1, 2, (3)

z(t) =
1

2w2
(wt −

∑

i

r2

i

αi

sinαiwt).

Lemma

Each of these geodesic is optimal up to its cut time

tcut = tconj =
2π

|w |max{α1, α2}
. (4)
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Bi-Heisenberg group

Cut locus
α < 1 → the cut locus is a three dimensional set containing the z-axis.

- Each point is reached by a one parametric family of optimal geodesics

α = 1 → the cut locus degenerates to the z-axis only.
- Each point is reached by a three parametric family of optimal geodesics

Heat Kernel at a point ζ = (0, 0, 0, 0, z) on the z-axis

α < 1 → the expansion

pt(0, ζ) ∼
1
t3

exp
(

−
d2(0, ζ)

4t

)

α = 1 → the expansion

pt(0, ζ) ∼
1
t4

exp
(

−
d2(0, ζ)

4t

)
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Bi-Heisenberg group

Cut locus
α < 1 → the cut locus is a three dimensional set containing the z-axis.

- Each point is reached by a one parametric family of optimal geodesics

α = 1 → the cut locus degenerates to the z-axis only.
- Each point is reached by a three parametric family of optimal geodesics

Heat Kernel at a point ζ = (0, 0, 0, 0, z) on the z-axis

α < 1 → the expansion

pt(0, ζ) ∼
1

t
5
2+ 1

2
exp

(

−
d2(0, ζ)

4t

)

α = 1 → the expansion

pt(0, ζ) ∼
1

t
5
2+ 3

2
exp

(

−
d2(0, ζ)

4t

)
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Application: Grushin plane

It is the generalized sub-Riemannian structure on R
2 for which an

orthonormal frame of vector fields is given by

X = ∂x , Y = x∂y . (5)

we want to compute the expansion of the heat kernel in the Grushin plane at
a cut-conjugate point, starting from a Riemannian point.

∆ = X 2 + Y 2 = ∂2

x + x2∂2

y

Remarks:

the exponential map from the origin has no cut-conjugate points

from a Riem point the exponential map is integrable in trigonometric
functions and provides a generic structure of cut and conjugate locus.

the canonical (Riemannian) volume is not smooth (actually the heat does not
cross the vertical line in this case [Boscain, Laurent])
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The sub-Riemannian Hamiltonian in T ∗
R

2 is the smooth function

H : T ∗
R

2 → R, H(px , py , x , y) =
1
2
(p2

x + x2p2

y ). (6)

There are no abormal minimizers
The arclength geodesic flow Exp : R+ × S1 → R

2

→ starting from the Riemannian point q0 = (−1,−π/4)
→ initial condition (px(0), py (0)) = (cos θ, sin θ)

Exp(t, θ) = (x(t, θ), y(t, θ)),

x(t, θ) = −
sin(θ − t sin θ)

sin θ
, (7)

y(t, θ) = −
π

4
+

1
4 sin θ

(

2t − 2 cos θ +
sin(2θ − 2t sin θ)

sin θ

)

,

the point q1 = (1, π/4) is a cut-conjugate point
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The hinged energy function

h(x , y) =
1
2

(

d2(q0, (x , y)) + d2(q1, (x , y))
)

=
1
2

(

d2(q0, (x , y)) + d2(q0, (−x ,−y))
)

,

We found an (explicit!) change of coordinates (x , y) = φ(u, v) near the origin
such that

h(φ(u, v)) = u2 + v4 + O(‖(u, v)‖5)

Using that d(q0, q1) = π, this proves

Theorem

The heat kernel pt(q0, q1) satisfies the following asymptotic expansion

pt(q0, q1) =
1

t5/4
exp

(

−
π2

4t

)

(C + O(t)) (8)
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2
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d2(q0, (x , y)) + d2(q0, (−x ,−y))
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,

We found an (explicit!) change of coordinates (x , y) = φ(u, v) near the origin
such that

h(φ(u, v)) = u2 + v4 + O(‖(u, v)‖5)

Using that d(q0, q1) = π, this proves

Theorem

The heat kernel pt(q0, q1) satisfies the following asymptotic expansion

pt(q0, q1) =
1

t2−
1
2−

1
4
exp

(

−
π2

4t

)

(C + O(t)) (8)
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Open problems and related works

→ Expansion at the cut/conjugate locus

Case of a generic 2D Riemannian and 3D sub-Riemannian

in the case of a 3D sub-Riemannian the cut locus is adjacent to the origin

→ Heat kernel and geometry

we obtained an expansion on the diagonal in the 3D

p(t, x , x) ∼
1

16t2
(1 + κ(x)t + O(t2)), for t → 0.

higher dim? Curvature of general sub-Riemannian spaces
→ see Agrachev’s talk

→ References:

- D.B., U. Boscain, R. Neel, Small time asymptotics of the SR heat kernel at

the cut locus, accepted on JDG, on ArXiv

- D.B., U. Boscain, R. The Bi-Heisenberg group in SR geometry, in
preparation.
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