Jacobi's geodesic problem and Lie groups

Velimir Jurdjevic

Department of Mathematics

Geometric Control and sub-Riemannian Geometry May 21-25, 2012. Cortona, Italy

Velimir Jurdjevic

University of Toronto

- ► Jacobi's Geodesic problem-1835: Find a curve x(t) on the ellipsoid $E = \{x \in R^{n+1} : \sum_{i=0}^{n} \frac{1}{a_i} x_i^2 = 1 \text{ that connects two given points of } E$ whose length $L = \int_0^1 \sqrt{\sum_{i=0}^{n} (\frac{dx_i}{dt})^2} dt$ is minimal.
- ► Jacobi's method of solution: Elliptical coordinates: u_0, u_1, u_2 . Solutions of $\frac{x_1^2}{a_1-u} + \frac{x_2^2}{a_2-u} + \frac{x_3^2}{a_3-u} = 1$
- If $a_1 < a_2 < a_3$, then $u_0 < a_1 < u_1 < a_2 < u_2 < a_3$.
- ▶ u_1, u_2 are the coordinates on the ellipsoid $\sum_{i=1}^{3} \frac{x_i^2}{a_i u_0} = 1$.
- ► $ds^2 = (u_2 u_1)(\frac{u_2 u_0}{f(u_2)}du_2^2 \frac{u_1 u_0}{f(u_1)}du_1^2), f(u) = 4(a_1 u)(a_2 u)(a_3 u)$
- Associated Hamiltonian: $H = \frac{1}{u_2 u_1} \left(\frac{f(u_2)}{u_2 u_0} p_2^2 \frac{f(u_1)}{u_1 u_0} p_1^2 \right) = 1.$
- $\frac{1}{u_2-u_1}\left(\frac{f(u_2)}{u_2-u_0}\frac{\partial S}{\partial u_2}^2 \frac{f(u_1)}{u_1-u_0}\frac{\partial S}{\partial u_1}^2\right) = 1$ Jacobi's equation-Separable • $\sqrt{\frac{u_2-u_0}{f(u_2)(u_2-u_0)}}du_2 - \sqrt{\frac{u_1-u_0}{f(u_1)(u_2-u_0)}}du_1 = 0, \alpha$ constant.

Velimir Jurdjevic

University of Toronto

- ► Jacobi's Geodesic problem-1835: Find a curve x(t) on the ellipsoid $E = \{x \in R^{n+1} : \sum_{i=0}^{n} \frac{1}{a_i} x_i^2 = 1 \text{ that connects two given points of } E$ whose length $L = \int_0^1 \sqrt{\sum_{i=0}^{n} (\frac{dx_i}{dt})^2} dt$ is minimal.
- ► Jacobi's method of solution: Elliptical coordinates: u_0, u_1, u_2 . Solutions of $\frac{x_1^2}{a_1-u} + \frac{x_2^2}{a_2-u} + \frac{x_3^2}{a_3-u} = 1$

• If $a_1 < a_2 < a_3$, then $u_0 < a_1 < u_1 < a_2 < u_2 < a_3$.

▶ u_1, u_2 are the coordinates on the ellipsoid $\sum_{i=1}^{3} \frac{x_i^2}{a_i - u_0} = 1$.

► $ds^2 = (u_2 - u_1)(\frac{u_2 - u_0}{f(u_2)}du_2^2 - \frac{u_1 - u_0}{f(u_1)}du_1^2), f(u) = 4(a_1 - u)(a_2 - u)(a_3 - u)$

• Associated Hamiltonian: $H = \frac{1}{u_2 - u_1} \left(\frac{f(u_2)}{u_2 - u_0} p_2^2 - \frac{f(u_1)}{u_1 - u_0} p_1^2 \right) = 1.$

• $\frac{1}{u_2-u_1}\left(\frac{f(u_2)}{u_2-u_0}\frac{\partial S}{\partial u_2}^2 - \frac{f(u_1)}{u_1-u_0}\frac{\partial S}{\partial u_1}^2\right) = 1$ Jacobi's equation-Separable • $\sqrt{\frac{u_2-u_0}{f(u_2)(u_2-\alpha)}}du_2 - \sqrt{\frac{u_1-u_0}{f(u_2)(u_2-\alpha)}}du_1 = 0, \alpha$ constant.

Velimir Jurdjevic

- ► Jacobi's Geodesic problem-1835: Find a curve x(t) on the ellipsoid $E = \{x \in R^{n+1} : \sum_{i=0}^{n} \frac{1}{a_i} x_i^2 = 1 \text{ that connects two given points of } E$ whose length $L = \int_0^1 \sqrt{\sum_{i=0}^{n} (\frac{dx_i}{dt})^2} dt$ is minimal.
- ► Jacobi's method of solution: Elliptical coordinates: u_0, u_1, u_2 . Solutions of $\frac{x_1^2}{a_1-u} + \frac{x_2^2}{a_2-u} + \frac{x_3^2}{a_3-u} = 1$
- If $a_1 < a_2 < a_3$, then $u_0 < a_1 < u_1 < a_2 < u_2 < a_3$.
- ▶ u_1, u_2 are the coordinates on the ellipsoid $\sum_{i=1}^{3} \frac{x_i^2}{a_i u_0} = 1$.
- ► $ds^2 = (u_2 u_1)(\frac{u_2 u_0}{f(u_2)}du_2^2 \frac{u_1 u_0}{f(u_1)}du_1^2), f(u) = 4(a_1 u)(a_2 u)(a_3 u)$
- Associated Hamiltonian: $H = \frac{1}{u_2 u_1} \left(\frac{f(u_2)}{u_2 u_0} p_2^2 \frac{f(u_1)}{u_1 u_0} p_1^2 \right) = 1.$
- $\frac{1}{u_2-u_1}\left(\frac{f(u_2)}{u_2-u_0}\frac{\partial S}{\partial u_2}^2 \frac{f(u_1)}{u_1-u_0}\frac{\partial S}{\partial u_1}^2\right) = 1$ Jacobi's equation-Separable • $\sqrt{\frac{u_2-u_0}{f(u_2)(u_2-\alpha)}}du_2 - \sqrt{\frac{u_1-u_0}{f(u_2)(u_2-\alpha)}}du_1 = 0, \alpha \text{ constant.}$

Velimir Jurdjevic

- ► Jacobi's Geodesic problem-1835: Find a curve x(t) on the ellipsoid $E = \{x \in R^{n+1} : \sum_{i=0}^{n} \frac{1}{a_i} x_i^2 = 1 \text{ that connects two given points of } E$ whose length $L = \int_0^1 \sqrt{\sum_{i=0}^{n} (\frac{dx_i}{dt})^2} dt$ is minimal.
- ► Jacobi's method of solution: Elliptical coordinates: u_0, u_1, u_2 . Solutions of $\frac{x_1^2}{a_1-u} + \frac{x_2^2}{a_2-u} + \frac{x_3^2}{a_3-u} = 1$
- If $a_1 < a_2 < a_3$, then $u_0 < a_1 < u_1 < a_2 < u_2 < a_3$.
- u_1, u_2 are the coordinates on the ellipsoid $\sum_{i=1}^3 \frac{x_i^2}{a_i u_0} = 1$.
- ► $ds^2 = (u_2 u_1)(\frac{u_2 u_0}{f(u_2)}du_2^2 \frac{u_1 u_0}{f(u_1)}du_1^2), f(u) = 4(a_1 u)(a_2 u)(a_3 u)$
- Associated Hamiltonian: $H = \frac{1}{u_2 u_1} \left(\frac{f(u_2)}{u_2 u_0} p_2^2 \frac{f(u_1)}{u_1 u_0} p_1^2 \right) = 1.$
- $\frac{1}{u_2-u_1}\left(\frac{f(u_2)}{u_2-u_0}\frac{\partial S}{\partial u_2}^2 \frac{f(u_1)}{u_1-u_0}\frac{\partial S}{\partial u_1}^2\right) = 1$ Jacobi's equation-Separable • $\sqrt{\frac{u_2-u_0}{f(u_2)(u_2-\alpha)}}du_2 - \sqrt{\frac{u_1-u_0}{f(u_2)(u_2-\alpha)}}du_1 = 0, \alpha$ constant.

Velimir Jurdjevic

University of Toronto

- ► Jacobi's Geodesic problem-1835: Find a curve x(t) on the ellipsoid $E = \{x \in R^{n+1} : \sum_{i=0}^{n} \frac{1}{a_i} x_i^2 = 1 \text{ that connects two given points of } E$ whose length $L = \int_0^1 \sqrt{\sum_{i=0}^{n} (\frac{dx_i}{dt})^2} dt$ is minimal.
- ► Jacobi's method of solution: Elliptical coordinates: u_0, u_1, u_2 . Solutions of $\frac{x_1^2}{a_1-u} + \frac{x_2^2}{a_2-u} + \frac{x_3^2}{a_3-u} = 1$
- If $a_1 < a_2 < a_3$, then $u_0 < a_1 < u_1 < a_2 < u_2 < a_3$.
- u_1, u_2 are the coordinates on the ellipsoid $\sum_{i=1}^3 \frac{x_i^2}{a_i u_0} = 1$.
- ► $ds^2 = (u_2 u_1)(\frac{u_2 u_0}{f(u_2)}du_2^2 \frac{u_1 u_0}{f(u_1)}du_1^2), f(u) = 4(a_1 u)(a_2 u)(a_3 u)$
- Associated Hamiltonian: $H = \frac{1}{u_2 u_1} \left(\frac{f(u_2)}{u_2 u_0} p_2^2 \frac{f(u_1)}{u_1 u_0} p_1^2 \right) = 1.$
- $\frac{1}{u_2-u_1}\left(\frac{f(u_2)}{u_2-u_0}\frac{\partial S}{\partial u_2}^2 \frac{f(u_1)}{u_1-u_0}\frac{\partial S}{\partial u_1}^2\right) = 1$ Jacobi's equation-Separable • $\sqrt{\frac{u_2-u_0}{f(u_2)(u_2-u_0)}}du_2 - \sqrt{\frac{u_1-u_0}{f(u_1)(u_2-u_0)}}du_1 = 0, \alpha$ constant.

Velimir Jurdjevic

University of Toronto

- ► Jacobi's Geodesic problem-1835: Find a curve x(t) on the ellipsoid $E = \{x \in R^{n+1} : \sum_{i=0}^{n} \frac{1}{a_i} x_i^2 = 1 \text{ that connects two given points of } E$ whose length $L = \int_0^1 \sqrt{\sum_{i=0}^{n} (\frac{dx_i}{dt})^2} dt$ is minimal.
- ► Jacobi's method of solution: Elliptical coordinates: u_0, u_1, u_2 . Solutions of $\frac{x_1^2}{a_1-u} + \frac{x_2^2}{a_2-u} + \frac{x_3^2}{a_3-u} = 1$
- If $a_1 < a_2 < a_3$, then $u_0 < a_1 < u_1 < a_2 < u_2 < a_3$.
- u_1, u_2 are the coordinates on the ellipsoid $\sum_{i=1}^3 \frac{x_i^2}{a_i u_0} = 1$.
- ► $ds^2 = (u_2 u_1)(\frac{u_2 u_0}{f(u_2)}du_2^2 \frac{u_1 u_0}{f(u_1)}du_1^2), f(u) = 4(a_1 u)(a_2 u)(a_3 u)$
- Associated Hamiltonian: $H = \frac{1}{u_2 u_1} \left(\frac{f(u_2)}{u_2 u_0} p_2^2 \frac{f(u_1)}{u_1 u_0} p_1^2 \right) = 1.$
- $\frac{1}{u_2-u_1}\left(\frac{f(u_2)}{u_2-u_0}\frac{\partial S}{\partial u_2}^2 \frac{f(u_1)}{u_1-u_0}\frac{\partial S}{\partial u_1}^2\right) = 1$ Jacobi's equation-Separable • $\sqrt{\frac{u_2-u_0}{f(u_2)(u_2-u_0)}}du_2 - \sqrt{\frac{u_1-u_0}{f(u_1)(u_2-u_0)}}du_1 = 0, \alpha \text{ constant.}$

Velimir Jurdjevic

University of Toronto

- ► Jacobi's Geodesic problem-1835: Find a curve x(t) on the ellipsoid $E = \{x \in R^{n+1} : \sum_{i=0}^{n} \frac{1}{a_i} x_i^2 = 1 \text{ that connects two given points of } E$ whose length $L = \int_0^1 \sqrt{\sum_{i=0}^{n} (\frac{dx_i}{dt})^2} dt$ is minimal.
- ► Jacobi's method of solution: Elliptical coordinates: u_0, u_1, u_2 . Solutions of $\frac{x_1^2}{a_1-u} + \frac{x_2^2}{a_2-u} + \frac{x_3^2}{a_3-u} = 1$
- If $a_1 < a_2 < a_3$, then $u_0 < a_1 < u_1 < a_2 < u_2 < a_3$.
- u_1, u_2 are the coordinates on the ellipsoid $\sum_{i=1}^3 \frac{x_i^2}{a_i u_0} = 1$.
- ► $ds^2 = (u_2 u_1)(\frac{u_2 u_0}{f(u_2)}du_2^2 \frac{u_1 u_0}{f(u_1)}du_1^2), f(u) = 4(a_1 u)(a_2 u)(a_3 u)$
- Associated Hamiltonian: $H = \frac{1}{u_2 u_1} \left(\frac{f(u_2)}{u_2 u_0} p_2^2 \frac{f(u_1)}{u_1 u_0} p_1^2 \right) = 1.$
- $\frac{1}{u_2 u_1} \left(\frac{f(u_2)}{u_2 u_0} \frac{\partial S}{\partial u_2}^2 \frac{f(u_1)}{u_1 u_0} \frac{\partial S}{\partial u_1}^2 \right) = 1$ Jacobi's equation-Separable • $\sqrt{\frac{u_2 - u_0}{f(u_2)(u_2 - \alpha)}} du_2 - \sqrt{\frac{u_1 - u_0}{f(u_2)(u_2 - \alpha)}} du_1 = 0, \alpha \text{ constant.}$

Velimir Jurdjevic

University of Toronto

- ► Jacobi's Geodesic problem-1835: Find a curve x(t) on the ellipsoid $E = \{x \in R^{n+1} : \sum_{i=0}^{n} \frac{1}{a_i} x_i^2 = 1 \text{ that connects two given points of } E$ whose length $L = \int_0^1 \sqrt{\sum_{i=0}^{n} (\frac{dx_i}{dt})^2} dt$ is minimal.
- ► Jacobi's method of solution: Elliptical coordinates: u_0, u_1, u_2 . Solutions of $\frac{x_1^2}{a_1-u} + \frac{x_2^2}{a_2-u} + \frac{x_3^2}{a_3-u} = 1$
- If $a_1 < a_2 < a_3$, then $u_0 < a_1 < u_1 < a_2 < u_2 < a_3$.
- u_1, u_2 are the coordinates on the ellipsoid $\sum_{i=1}^3 \frac{x_i^2}{a_i u_0} = 1$.
- ► $ds^2 = (u_2 u_1)(\frac{u_2 u_0}{f(u_2)}du_2^2 \frac{u_1 u_0}{f(u_1)}du_1^2), f(u) = 4(a_1 u)(a_2 u)(a_3 u)$
- Associated Hamiltonian: $H = \frac{1}{u_2 u_1} (\frac{f(u_2)}{u_2 u_0} p_2^2 \frac{f(u_1)}{u_1 u_0} p_1^2) = 1.$
- $\frac{1}{u_2-u_1} \left(\frac{f(u_2)}{u_2-u_0} \frac{\partial S}{\partial u_2}^2 \frac{f(u_1)}{u_1-u_0} \frac{\partial S}{\partial u_1}^2\right) = 1$ Jacobi's equation-Separable • $\sqrt{\frac{u_2-u_0}{f(u_2)(u_2-\alpha)}} du_2 - \sqrt{\frac{u_1-u_0}{f(u_2)(u_2-\alpha)}} du_1 = 0, \alpha$ constant.

Velimir Jurdjevic

University of Toronto

- Integrability by the method of sparation of variables- Inverse method (See Mechanics by Landau and Lifschitz).
- ▶ J. Moser, 1975: Jacobi's problem in the coordinates x_0, \ldots, x_n of the ambient space \mathbb{R}^{n+1} .
- Basic problem: How to write the Hamiltonian for optimal problems in which tangents of curves (i.e., controls) are constrained by state constraints?
- On the ellipsoid $E = \{x \in \mathbb{R}^{n+1} : (x, A^{-1}x) = 1\}, \frac{dx}{dt}(t) = u(t), (u(t), Ax(t)) = 0.$
- ▶ Moser's resolution: $H = H_0 + \lambda_1 G_1 + \lambda G_2$, H_0 is the ambient Hamiltonian $\frac{1}{2} \sum_{i=1}^{n+1} p_i^2$, $G_1 = (x, A^{-1}x) - 1$, $G_2 = (x, A^{-1}p)$. Choose λ_1, λ_2 so that the cotangent bundle $G_1 = G_2 = 0$ invariant under \vec{H} , i.e., $\{H, G_1\} = \{H, G_2\} = 0$ there.
- $\lambda_1 = \frac{1}{\{G_1, G_2\}} \{H_0, G_2\} = \frac{(p, A^{-1}p)}{2||A^{-1}x||^2}, \lambda_2 = -\frac{\{H_0, G_1\}}{\{G_1, G_2\}} = \frac{(p, A^{-1}x)}{||A^{-1}x||^2}.$

Velimir Jurdjevic

- Integrability by the method of sparation of variables- Inverse method (See Mechanics by Landau and Lifschitz).
- ▶ J. Moser, 1975: Jacobi's problem in the coordinates x_0, \ldots, x_n of the ambient space \mathbb{R}^{n+1} .
- Basic problem: How to write the Hamiltonian for optimal problems in which tangents of curves (i.e., controls) are constrained by state constraints?
- On the ellipsoid $E = \{x \in \mathbb{R}^{n+1} : (x, A^{-1}x) = 1\}, \frac{dx}{dt}(t) = u(t), (u(t), Ax(t)) = 0.$
- ▶ Moser's resolution: $H = H_0 + \lambda_1 G_1 + \lambda G_2$, H_0 is the ambient Hamiltonian $\frac{1}{2} \sum_{i=1}^{n+1} p_i^2$, $G_1 = (x, A^{-1}x) - 1$, $G_2 = (x, A^{-1}p)$. Choose λ_1, λ_2 so that the cotangent bundle $G_1 = G_2 = 0$ invariant under \vec{H} , i.e., $\{H, G_1\} = \{H, G_2\} = 0$ there.
- $\lambda_1 = \frac{1}{\{G_1, G_2\}} \{H_0, G_2\} = \frac{(p, A^{-1}p)}{2||A^{-1}x||^2}, \lambda_2 = -\frac{\{H_0, G_1\}}{\{G_1, G_2\}} = \frac{(p, A^{-1}x)}{||A^{-1}x||^2}.$

- Integrability by the method of sparation of variables- Inverse method (See Mechanics by Landau and Lifschitz).
- ▶ J. Moser, 1975: Jacobi's problem in the coordinates x_0, \ldots, x_n of the ambient space \mathbb{R}^{n+1} .
- Basic problem: How to write the Hamiltonian for optimal problems in which tangents of curves (i.e., controls) are constrained by state constraints?
- On the ellipsoid $E = \{x \in \mathbb{R}^{n+1} : (x, A^{-1}x) = 1\}, \frac{dx}{dt}(t) = u(t), (u(t), Ax(t)) = 0.$
- ▶ Moser's resolution: $H = H_0 + \lambda_1 G_1 + \lambda G_2$, H_0 is the ambient Hamiltonian $\frac{1}{2} \sum_{i=1}^{n+1} p_i^2$, $G_1 = (x, A^{-1}x) - 1$, $G_2 = (x, A^{-1}p)$. Choose λ_1, λ_2 so that the cotangent bundle $G_1 = G_2 = 0$ invariant under \vec{H} , i.e., $\{H, G_1\} = \{H, G_2\} = 0$ there.
- $\lambda_1 = \frac{1}{\{G_1, G_2\}} \{H_0, G_2\} = \frac{(p, A^{-1}p)}{2||A^{-1}x||^2}, \lambda_2 = -\frac{\{H_0, G_1\}}{\{G_1, G_2\}} = \frac{(p, A^{-1}x)}{||A^{-1}x||^2}.$

- Integrability by the method of sparation of variables- Inverse method (See Mechanics by Landau and Lifschitz).
- ▶ J. Moser, 1975: Jacobi's problem in the coordinates x_0, \ldots, x_n of the ambient space \mathbb{R}^{n+1} .
- Basic problem: How to write the Hamiltonian for optimal problems in which tangents of curves (i.e., controls) are constrained by state constraints?
- On the ellipsoid $E = \{x \in \mathbb{R}^{n+1} : (x, A^{-1}x) = 1\}, \frac{dx}{dt}(t) = u(t), (u(t), Ax(t)) = 0.$
- ► Moser's resolution: $H = H_0 + \lambda_1 G_1 + \lambda G_2$, H_0 is the ambient Hamiltonian $\frac{1}{2} \sum_{i=1}^{n+1} p_i^2$, $G_1 = (x, A^{-1}x) - 1$, $G_2 = (x, A^{-1}p)$. Choose λ_1, λ_2 so that the cotangent bundle $G_1 = G_2 = 0$ invariant under \vec{H} , i.e., $\{H, G_1\} = \{H, G_2\} = 0$ there.
- $\lambda_1 = \frac{1}{\{G_1, G_2\}} \{H_0, G_2\} = \frac{(p, A^{-1}p)}{2||A^{-1}x||^2}, \lambda_2 = -\frac{\{H_0, G_1\}}{\{G_1, G_2\}} = \frac{(p, A^{-1}x)}{||A^{-1}x||^2}.$

- Integrability by the method of sparation of variables- Inverse method (See Mechanics by Landau and Lifschitz).
- ▶ J. Moser, 1975: Jacobi's problem in the coordinates x_0, \ldots, x_n of the ambient space \mathbb{R}^{n+1} .
- Basic problem: How to write the Hamiltonian for optimal problems in which tangents of curves (i.e., controls) are constrained by state constraints?
- On the ellipsoid $E = \{x \in \mathbb{R}^{n+1} : (x, A^{-1}x) = 1\}, \frac{dx}{dt}(t) = u(t), (u(t), Ax(t)) = 0.$
- ► Moser's resolution: $H = H_0 + \lambda_1 G_1 + \lambda G_2$, H_0 is the ambient Hamiltonian $\frac{1}{2} \sum_{i=1}^{n+1} p_i^2$, $G_1 = (x, A^{-1}x) - 1$, $G_2 = (x, A^{-1}p)$. Choose λ_1, λ_2 so that the cotangent bundle $G_1 = G_2 = 0$ invariant under \vec{H} , i.e., $\{H, G_1\} = \{H, G_2\} = 0$ there.

• $\lambda_1 = \frac{1}{\{G_1, G_2\}} \{H_0, G_2\} = \frac{(p, A^{-1}p)}{2||A^{-1}x||^2}, \lambda_2 = -\frac{\{H_0, G_1\}}{\{G_1, G_2\}} = \frac{(p, A^{-1}x)}{||A^{-1}x||^2}.$

- Integrability by the method of sparation of variables- Inverse method (See Mechanics by Landau and Lifschitz).
- ▶ J. Moser, 1975: Jacobi's problem in the coordinates x_0, \ldots, x_n of the ambient space \mathbb{R}^{n+1} .
- Basic problem: How to write the Hamiltonian for optimal problems in which tangents of curves (i.e., controls) are constrained by state constraints?
- On the ellipsoid $E = \{x \in \mathbb{R}^{n+1} : (x, A^{-1}x) = 1\}, \frac{dx}{dt}(t) = u(t), (u(t), Ax(t)) = 0.$
- ► Moser's resolution: $H = H_0 + \lambda_1 G_1 + \lambda G_2$, H_0 is the ambient Hamiltonian $\frac{1}{2} \sum_{i=1}^{n+1} p_i^2$, $G_1 = (x, A^{-1}x) - 1$, $G_2 = (x, A^{-1}p)$. Choose λ_1, λ_2 so that the cotangent bundle $G_1 = G_2 = 0$ invariant under \vec{H} , i.e., $\{H, G_1\} = \{H, G_2\} = 0$ there.

•
$$\lambda_1 = \frac{1}{\{G_1, G_2\}} \{H_0, G_2\} = \frac{(p, A^{-1}p)}{2||A^{-1}x||^2}, \lambda_2 = -\frac{\{H_0, G_1\}}{\{G_1, G_2\}} = \frac{(p, A^{-1}x)}{||A^{-1}x||^2}.$$

•
$$\frac{dx}{dt} = \frac{\partial H}{\partial p}|_{G_1 = G_2 = 0} = p, \frac{dp}{dt} = -\frac{\partial H}{\partial x}|_{G_1 = G_2 = 0} = -\frac{(p, A^{-1}p)}{2||A^{-1}x||^2}A^{-1}x$$

$$F_k = p_k^2 + \sum_{j=0, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{(a_k - a_j)}, k = 0, \dots, n,$$

$$A = diag(a_0, \dots, a_n).$$

- ► There are *n* functionally independent integrals generated by F_0, \ldots, F_n ($\sum_{i=0}^n F_i = H = 1$), and $\{F_i, F_j\} = 0$.
- ► Jacobi's problem is Liouville integrable.
- Arnold's querry: What are the hidden symmetries that account for the integrability of Jacobi's problem?
- My earlier work suggested that "all" integrable systems (tops, elastic problems, Toda lattices,etc.) are the projections of left-invariant Hamiltonian systems on Lie groups with additional symmetries.
- Question: Are "hidden" symmetries hidden in Lie algebras and

•
$$\frac{dx}{dt} = \frac{\partial H}{\partial p}|_{G_1 = G_2 = 0} = p, \frac{dp}{dt} = -\frac{\partial H}{\partial x}|_{G_1 = G_2 = 0} = -\frac{(p, A^{-1}p)}{2||A^{-1}x||^2}A^{-1}x$$

$$F_k = p_k^2 + \sum_{j=0, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{(a_k - a_j)}, k = 0, \dots, n,$$

$$A = diag(a_0, \dots, a_n).$$

- There are *n* functionally independent integrals generated by $F_0, \ldots, F_n (\sum_{i=0}^n F_i = H = 1)$, and $\{F_i, F_j\} = 0$.
- Jacobi's problem is Liouville integrable.
- Arnold's querry: What are the hidden symmetries that account for the integrability of Jacobi's problem?
- My earlier work suggested that "all" integrable systems (tops, elastic problems, Toda lattices,etc.) are the projections of left-invariant Hamiltonian systems on Lie groups with additional symmetries.
- Question: Are "hidden" symmetries hidden in Lie algebras and

•
$$\frac{dx}{dt} = \frac{\partial H}{\partial p}|_{G_1 = G_2 = 0} = p, \frac{dp}{dt} = -\frac{\partial H}{\partial x}|_{G_1 = G_2 = 0} = -\frac{(p, A^{-1}p)}{2||A^{-1}x||^2}A^{-1}x$$

$$F_k = p_k^2 + \sum_{j=0, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{(a_k - a_j)}, k = 0, \dots, n,$$

$$A = diag(a_0, \dots, a_n).$$

- ► There are *n* functionally independent integrals generated by F_0, \ldots, F_n ($\sum_{i=0}^n F_i = H = 1$), and $\{F_i, F_j\} = 0$.
- Jacobi's problem is Liouville integrable.
- Arnold's querry: What are the hidden symmetries that account for the integrability of Jacobi's problem?
- My earlier work suggested that "all" integrable systems (tops, elastic problems, Toda lattices,etc.) are the projections of left-invariant Hamiltonian systems on Lie groups with additional symmetries.
- Question: Are "hidden" symmetries hidden in Lie algebras and

•
$$\frac{dx}{dt} = \frac{\partial H}{\partial p}|_{G_1 = G_2 = 0} = p, \frac{dp}{dt} = -\frac{\partial H}{\partial x}|_{G_1 = G_2 = 0} = -\frac{(p, A^{-1}p)}{2||A^{-1}x||^2}A^{-1}x$$

$$F_k = p_k^2 + \sum_{j=0, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{(a_k - a_j)}, k = 0, \dots, n,$$

$$A = diag(a_0, \dots, a_n).$$

- ► There are *n* functionally independent integrals generated by F_0, \ldots, F_n ($\sum_{i=0}^n F_i = H = 1$), and $\{F_i, F_j\} = 0$.
- Jacobi's problem is Liouville integrable.
- Arnold's querry: What are the hidden symmetries that account for the integrability of Jacobi's problem?
- My earlier work suggested that "all" integrable systems (tops, elastic problems, Toda lattices,etc.) are the projections of left-invariant Hamiltonian systems on Lie groups with additional symmetries.
- Question: Are "hidden" symmetries hidden in Lie algebras and

•
$$\frac{dx}{dt} = \frac{\partial H}{\partial p}|_{G_1 = G_2 = 0} = p, \frac{dp}{dt} = -\frac{\partial H}{\partial x}|_{G_1 = G_2 = 0} = -\frac{(p, A^{-1}p)}{2||A^{-1}x||^2}A^{-1}x$$

$$F_k = p_k^2 + \sum_{j=0, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{(a_k - a_j)}, k = 0, \dots, n,$$

$$A = diag(a_0, \dots, a_n).$$

- ► There are *n* functionally independent integrals generated by F_0, \ldots, F_n ($\sum_{i=0}^n F_i = H = 1$), and $\{F_i, F_j\} = 0$.
- Jacobi's problem is Liouville integrable.
- Arnold's querry: What are the hidden symmetries that account for the integrability of Jacobi's problem?
- My earlier work suggested that "all" integrable systems (tops, elastic problems, Toda lattices,etc.) are the projections of left-invariant Hamiltonian systems on Lie groups with additional symmetries.
- Question: Are "hidden" symmetries hidden in Lie algebras and

•
$$\frac{dx}{dt} = \frac{\partial H}{\partial p}|_{G_1 = G_2 = 0} = p, \frac{dp}{dt} = -\frac{\partial H}{\partial x}|_{G_1 = G_2 = 0} = -\frac{(p, A^{-1}p)}{2||A^{-1}x||^2}A^{-1}x$$

$$F_k = p_k^2 + \sum_{j=0, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{(a_k - a_j)}, k = 0, \dots, n,$$

$$A = diag(a_0, \dots, a_n).$$

- ► There are *n* functionally independent integrals generated by F_0, \ldots, F_n ($\sum_{i=0}^n F_i = H = 1$), and $\{F_i, F_j\} = 0$.
- Jacobi's problem is Liouville integrable.
- Arnold's querry: What are the hidden symmetries that account for the integrability of Jacobi's problem?
- My earlier work suggested that "all" integrable systems (tops, elastic problems, Toda lattices,etc.) are the projections of left-invariant Hamiltonian systems on Lie groups with additional symmetries.
- Question: Are "hidden" symmetries hidden in Lie algebras and

•
$$\frac{dx}{dt} = \frac{\partial H}{\partial p}|_{G_1 = G_2 = 0} = p, \frac{dp}{dt} = -\frac{\partial H}{\partial x}|_{G_1 = G_2 = 0} = -\frac{(p, A^{-1}p)}{2||A^{-1}x||^2}A^{-1}x$$

Integrals of motion;

$$F_k = p_k^2 + \sum_{j=0, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{(a_k - a_j)}, k = 0, \dots, n,$$

$$A = diag(a_0, \dots, a_n).$$

- ► There are *n* functionally independent integrals generated by F_0, \ldots, F_n ($\sum_{i=0}^n F_i = H = 1$), and $\{F_i, F_j\} = 0$.
- Jacobi's problem is Liouville integrable.
- Arnold's querry: What are the hidden symmetries that account for the integrability of Jacobi's problem?
- My earlier work suggested that "all" integrable systems (tops, elastic problems, Toda lattices, etc.) are the projections of left-invariant Hamiltonian systems on Lie groups with additional symmetries.

Question: Are "hidden" symmetries hidden in Lie algebras and

•
$$\frac{dx}{dt} = \frac{\partial H}{\partial p}|_{G_1 = G_2 = 0} = p, \frac{dp}{dt} = -\frac{\partial H}{\partial x}|_{G_1 = G_2 = 0} = -\frac{(p, A^{-1}p)}{2||A^{-1}x||^2}A^{-1}x$$

Integrals of motion;

$$F_k = p_k^2 + \sum_{j=0, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{(a_k - a_j)}, k = 0, \dots, n,$$

$$A = diag(a_0, \dots, a_n).$$

- ► There are *n* functionally independent integrals generated by F_0, \ldots, F_n ($\sum_{i=0}^n F_i = H = 1$), and $\{F_i, F_j\} = 0$.
- Jacobi's problem is Liouville integrable.
- Arnold's querry: What are the hidden symmetries that account for the integrability of Jacobi's problem?
- My earlier work suggested that "all" integrable systems (tops, elastic problems, Toda lattices,etc.) are the projections of left-invariant Hamiltonian systems on Lie groups with additional symmetries.
- Question: Are "hidden" symmetries hidden in Lie algebras and

Lia groups?

- ► The elliptic geodesic problem on *Sⁿ* is equivalent to Jacobi's problem on *Eⁿ*.
- The cotangent bundle of the sphere S^n is a coadjoint orbit.
- ► The Hamiltonian system of the geodesic problem on S^n when represented on the coadjoint orbit can be seen as the restricition of a left invariant Hamiltonian system on the semidirect product $SO_{n+1}(R) \rtimes Sym_{n+1}$
- ► This Hamiltonian system admits a spectral matrix representation - the spectral invariants generate the integrals of motion for the elliptic geodesic problem which correspond to the integrals $F_k, k = 0, 1, ..., n$ on the ellipsoid.
- This recognition identifies a large class of intergrable problems in which Jacobi's problem is only a particular case.

- ► The elliptic geodesic problem on *Sⁿ* is equivalent to Jacobi's problem on *Eⁿ*.
- The cotangent bundle of the sphere S^n is a coadjoint orbit.
- ► The Hamiltonian system of the geodesic problem on S^n when represented on the coadjoint orbit can be seen as the restricition of a left invariant Hamiltonian system on the semidirect product $SO_{n+1}(R) \rtimes Sym_{n+1}$
- ► This Hamiltonian system admits a spectral matrix representation - the spectral invariants generate the integrals of motion for the elliptic geodesic problem which correspond to the integrals $F_k, k = 0, 1, ..., n$ on the ellipsoid.
- This recognition identifies a large class of intergrable problems in which Jacobi's problem is only a particular case.

- ► The elliptic geodesic problem on *Sⁿ* is equivalent to Jacobi's problem on *Eⁿ*.
- The cotangent bundle of the sphere S^n is a coadjoint orbit.
- ► The Hamiltonian system of the geodesic problem on Sⁿ when represented on the coadjoint orbit can be seen as the restricition of a left invariant Hamiltonian system on the semidirect product SO_{n+1}(R) × Sym_{n+1}
- ► This Hamiltonian system admits a spectral matrix representation - the spectral invariants generate the integrals of motion for the elliptic geodesic problem which correspond to the integrals $F_k, k = 0, 1, ..., n$ on the ellipsoid.
- This recognition identifies a large class of intergrable problems in which Jacobi's problem is only a particular case.

- ► The elliptic geodesic problem on *Sⁿ* is equivalent to Jacobi's problem on *Eⁿ*.
- The cotangent bundle of the sphere S^n is a coadjoint orbit.
- ► The Hamiltonian system of the geodesic problem on Sⁿ when represented on the coadjoint orbit can be seen as the restricition of a left invariant Hamiltonian system on the semidirect product SO_{n+1}(R) ⋊ Sym_{n+1}
- ► This Hamiltonian system admits a spectral matrix representation - the spectral invariants generate the integrals of motion for the elliptic geodesic problem which correspond to the integrals $F_k, k = 0, 1, ..., n$ on the ellipsoid.
- This recognition identifies a large class of intergrable problems in which Jacobi's problem is only a particular case.

- ► The elliptic geodesic problem on *Sⁿ* is equivalent to Jacobi's problem on *Eⁿ*.
- The cotangent bundle of the sphere S^n is a coadjoint orbit.
- ► The Hamiltonian system of the geodesic problem on Sⁿ when represented on the coadjoint orbit can be seen as the restricition of a left invariant Hamiltonian system on the semidirect product SO_{n+1}(R) ⋊ Sym_{n+1}
- ► This Hamiltonian system admits a spectral matrix representation - the spectral invariants generate the integrals of motion for the elliptic geodesic problem which correspond to the integrals $F_k, k = 0, 1, ..., n$ on the ellipsoid.
- This recognition identifies a large class of intergrable problems in which Jacobi's problem is only a particular case.

Background and history

Elliptic Geodesic problem on the sphere

Representation on coadjoint orbits

Integrability

Left invariant optimal control problems on Lie groups

Geometric interpretations

Background and history

Elliptic Geodesic problem on the sphere

- Representation on coadjoint orbits
- Integrability
- Left invariant optimal control problems on Lie groups
- Geometric interpretations
- **Open questions**

Background and history

Elliptic Geodesic problem on the sphere

Representation on coadjoint orbits

Integrability

Left invariant optimal control problems on Lie groups

Geometric interpretations

Background and history

Elliptic Geodesic problem on the sphere

Representation on coadjoint orbits

Integrability

Left invariant optimal control problems on Lie groups

Geometric interpretations

Background and history

Elliptic Geodesic problem on the sphere

Representation on coadjoint orbits

Integrability

Left invariant optimal control problems on Lie groups

Geometric interpretations

Background and history

Elliptic Geodesic problem on the sphere

Representation on coadjoint orbits

Integrability

Left invariant optimal control problems on Lie groups

Geometric interpretations

Background and history

Elliptic Geodesic problem on the sphere

Representation on coadjoint orbits

Integrability

Left invariant optimal control problems on Lie groups

Geometric interpretations

Elliptic geodesic problem on the sphere

- $M = S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ and *A* is an $(n+1) \times (n+1)$ diagonal matrix with positive diagonal entries a_0, \ldots, a_n .
- ► x(t) a curve in M, $(\frac{dx}{dt}, A\frac{dx}{dt})$ is called Elliptic metric.
- Length= $\int_0^T \sqrt{\left(\frac{dx}{dt}(t), A\frac{dx}{dt}(t)\right) dt}, (x(t), \frac{dx}{dt}) = 0.$
- Corresponding time optimal control problem: Minimize $\int_0^t ds$ over the trajectories (x(s), u(s)) in *M* of the control system $\frac{dx}{ds} = u(s), C_1 = (u(s), x(s)) = 0, C_2 = (u(s), Au(s)) 1 = 0, x(0) = x_0, x(t) = x_1.$
- (PMP) with constraints: Let
 T^{*}Sⁿ = {(x,p) : ||x|| = 1, x · p = 0}.
 Ham. lift: h_u(x,p) = −1 + (p,u) − λ₁C₁ − ½λ₂C₂ subject to
 C₁ = 0 C₂ = 0
- Maximality condition $\Rightarrow \lambda_2 A u = p \lambda_1 x$.

$$\blacktriangleright C_1 = 0 \Rightarrow \lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}.$$
- $M = S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ and *A* is an $(n+1) \times (n+1)$ diagonal matrix with positive diagonal entries a_0, \ldots, a_n .
- ► x(t) a curve in M, $(\frac{dx}{dt}, A\frac{dx}{dt})$ is called Elliptic metric.
- Length= $\int_0^T \sqrt{\left(\frac{dx}{dt}(t), A\frac{dx}{dt}(t)\right) dt}, (x(t), \frac{dx}{dt}) = 0.$
- ► Corresponding time optimal control problem: Minimize $\int_0^t ds$ over the trajectories (x(s), u(s)) in *M* of the control system $\frac{dx}{ds} = u(s), C_1 = (u(s), x(s)) = 0, C_2 = (u(s), Au(s)) 1 = 0, x(0) = x_0, x(t) = x_1.$
- (PMP) with constraints: Let
 T^{*}Sⁿ = {(x, p) : ||x|| = 1, x · p = 0}.
 Ham. lift: h_u(x, p) = −1 + (p, u) − λ₁C₁ − ½λ₂C₂ subject to
 C₁ = 0, C₂ = 0.
- Maximality condition $\Rightarrow \lambda_2 A u = p \lambda_1 x$.

$$\blacktriangleright C_1 = 0 \Rightarrow \lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}.$$

- $M = S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ and A is an $(n+1) \times (n+1)$ diagonal matrix with positive diagonal entries a_0, \ldots, a_n .
- ► x(t) a curve in M, $(\frac{dx}{dt}, A\frac{dx}{dt})$ is called Elliptic metric.
- Length= $\int_0^T \sqrt{\left(\frac{dx}{dt}(t), A\frac{dx}{dt}(t)\right)} dt, (x(t), \frac{dx}{dt}) = 0.$
- Corresponding time optimal control problem: Minimize $\int_0^t ds$ over the trajectories (x(s), u(s)) in *M* of the control system $\frac{dx}{ds} = u(s), C_1 = (u(s), x(s)) = 0, C_2 = (u(s), Au(s)) 1 = 0, x(0) = x_0, x(t) = x_1.$
- (PMP) with constraints: Let $T^*S^n = \{(x, p) : ||x|| = 1, x \cdot p = 0\}.$
- ► Ham. lift: $h_u(x,p) = -1 + (p,u) \lambda_1 C_1 \frac{1}{2}\lambda_2 C_2$ subject to $C_1 = 0, C_2 = 0.$
- Maximality condition $\Rightarrow \lambda_2 A u = p \lambda_1 x$.

$$\blacktriangleright C_1 = 0 \Rightarrow \lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}.$$

- ► $M = S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ and A is an $(n+1) \times (n+1)$ diagonal matrix with positive diagonal entries a_0, \ldots, a_n .
- ► x(t) a curve in M, $(\frac{dx}{dt}, A\frac{dx}{dt})$ is called Elliptic metric.
- Length= $\int_0^T \sqrt{\left(\frac{dx}{dt}(t), A\frac{dx}{dt}(t)\right)} dt, (x(t), \frac{dx}{dt}) = 0.$
- ► Corresponding time optimal control problem: Minimize $\int_0^t ds$ over the trajectories (x(s), u(s)) in *M* of the control system $\frac{dx}{ds} = u(s), C_1 = (u(s), x(s)) = 0, C_2 = (u(s), Au(s)) 1 = 0, x(0) = x_0, x(t) = x_1.$

(PMP) with constraints: Let T^{*}Sⁿ = {(x,p) : ||x|| = 1, x · p = 0}. Ham. lift: h_u(x,p) = −1 + (p,u) − λ₁C₁ − ½λ₂C₂ subject to C₁ = 0, C₂ = 0

• Maximality condition $\Rightarrow \lambda_2 A u = p - \lambda_1 x$.

$$\blacktriangleright C_1 = 0 \Rightarrow \lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}.$$

- ► $M = S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ and A is an $(n+1) \times (n+1)$ diagonal matrix with positive diagonal entries a_0, \ldots, a_n .
- ► x(t) a curve in M, $(\frac{dx}{dt}, A\frac{dx}{dt})$ is called Elliptic metric.
- Length= $\int_0^T \sqrt{\left(\frac{dx}{dt}(t), A\frac{dx}{dt}(t)\right)} dt, (x(t), \frac{dx}{dt}) = 0.$
- ► Corresponding time optimal control problem: Minimize $\int_0^t ds$ over the trajectories (x(s), u(s)) in *M* of the control system $\frac{dx}{ds} = u(s), C_1 = (u(s), x(s)) = 0, C_2 = (u(s), Au(s)) 1 = 0, x(0) = x_0, x(t) = x_1.$
- (PMP) with constraints: Let $T^*S^n = \{(x, p) : ||x|| = 1, x \cdot p = 0\}.$
- Ham. lift: $h_u(x,p) = -1 + (p,u) \lambda_1 C_1 \frac{1}{2}\lambda_2 C_2$ subject to $C_1 = 0, C_2 = 0.$
- Maximality condition $\Rightarrow \lambda_2 A u = p \lambda_1 x$.

$$\blacktriangleright C_1 = 0 \Rightarrow \lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}.$$

- $M = S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ and *A* is an $(n+1) \times (n+1)$ diagonal matrix with positive diagonal entries a_0, \ldots, a_n .
- ► x(t) a curve in M, $(\frac{dx}{dt}, A\frac{dx}{dt})$ is called Elliptic metric.
- Length= $\int_0^T \sqrt{\left(\frac{dx}{dt}(t), A\frac{dx}{dt}(t)\right)} dt, (x(t), \frac{dx}{dt}) = 0.$
- Corresponding time optimal control problem: Minimize $\int_0^t ds$ over the trajectories (x(s), u(s)) in *M* of the control system $\frac{dx}{ds} = u(s), C_1 = (u(s), x(s)) = 0, C_2 = (u(s), Au(s)) 1 = 0, x(0) = x_0, x(t) = x_1.$
- (PMP) with constraints: Let $T^*S^n = \{(x, p) : ||x|| = 1, x \cdot p = 0\}.$
- ► Ham. lift: $h_u(x, p) = -1 + (p, u) \lambda_1 C_1 \frac{1}{2}\lambda_2 C_2$ subject to $C_1 = 0, C_2 = 0.$
- Maximality condition $\Rightarrow \lambda_2 A u = p \lambda_1 x$.

►
$$C_1 = 0 \Rightarrow \lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}.$$

- $M = S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ and A is an $(n+1) \times (n+1)$ diagonal matrix with positive diagonal entries a_0, \ldots, a_n .
- ► x(t) a curve in M, $(\frac{dx}{dt}, A\frac{dx}{dt})$ is called Elliptic metric.
- Length= $\int_0^T \sqrt{\left(\frac{dx}{dt}(t), A\frac{dx}{dt}(t)\right)} dt, (x(t), \frac{dx}{dt}) = 0.$
- ► Corresponding time optimal control problem: Minimize $\int_0^t ds$ over the trajectories (x(s), u(s)) in *M* of the control system $\frac{dx}{ds} = u(s), C_1 = (u(s), x(s)) = 0, C_2 = (u(s), Au(s)) 1 = 0, x(0) = x_0, x(t) = x_1.$
- (PMP) with constraints: Let $T^*S^n = \{(x, p) : ||x|| = 1, x \cdot p = 0\}.$ • Ham lift: $h_n(x, p) = -1 + (p, u) - \lambda_1 C_1 - \frac{1}{2} \lambda_2 C_2$
- Ham. lift: $h_u(x,p) = -1 + (p,u) \lambda_1 C_1 \frac{1}{2}\lambda_2 C_2$ subject to $C_1 = 0, C_2 = 0.$
- Maximality condition $\Rightarrow \lambda_2 A u = p \lambda_1 x$.

- $M = S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ and A is an $(n+1) \times (n+1)$ diagonal matrix with positive diagonal entries a_0, \ldots, a_n .
- ► x(t) a curve in M, $(\frac{dx}{dt}, A\frac{dx}{dt})$ is called Elliptic metric.
- Length= $\int_0^T \sqrt{\left(\frac{dx}{dt}(t), A\frac{dx}{dt}(t)\right)} dt, (x(t), \frac{dx}{dt}) = 0.$
- ► Corresponding time optimal control problem: Minimize $\int_0^t ds$ over the trajectories (x(s), u(s)) in *M* of the control system $\frac{dx}{ds} = u(s), C_1 = (u(s), x(s)) = 0, C_2 = (u(s), Au(s)) 1 = 0, x(0) = x_0, x(t) = x_1.$
- (PMP) with constraints: Let
 T*Sⁿ = {(x, p) : ||x|| = 1, x · p = 0}.

 Ham. lift: h_u(x, p) = −1 + (p, u) − λ₁C₁ − ½λ₂C₂ subject to
 C₁ = 0, C₂ = 0.
- Maximality condition $\Rightarrow \lambda_2 A u = p \lambda_1 x$.

•
$$C_1 = 0 \Rightarrow \lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}.$$

Velimir Jurdjevic

•
$$C_2 = 0 \Rightarrow (A^{-1}p - \lambda_1 x, p - \lambda_1 x) = \lambda_2^2 \text{ and } h_u = 0 \Rightarrow \lambda_2 = 1$$

- ► This yields a Hamiltonian $H_0 = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x))$ in $R^{n+1} \times R^{n+1}$.
- The "right" Hamiltonian *H* is given by $H = H_0 + \lambda_3 C_3 + \lambda_4 C_4$, $C_3 = ||x||^2 - 1, C_4 = (x, p).$

► {
$$H_0, C_3$$
} = { H_0, C_4 } = 0 $\Rightarrow \lambda_3 = \frac{1}{2}, \lambda_4 = 0.$

•
$$H = \frac{1}{2}(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) + \frac{1}{2}(||x||^2 - 1).$$

• Geodesic equations on the sphere: $\lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}$,

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} = A^{-1}(p - \lambda_1 x), \frac{dp}{dt} = -\frac{\partial H}{\partial x} = \lambda_1 (A^{-1}(p - \lambda_1 x) - x)$$

subject to $H_0 = \frac{1}{2}$, i.e., $(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) = 1$

• Passage to the ellipsoid $y = A^{\frac{1}{2}}x, q = A^{\frac{1}{2}}u$

•
$$y \cdot A^{-1}y = 1$$
 and $y \cdot A^{-1}q = 0$.

• Geodesics on the ellipsoid: $\frac{dy}{dt} = q, \frac{dq}{dt} = -\frac{q \cdot A^{-1} q}{||A^{-1}y||^2} A^{-1} y$

Velimir Jurdjevic

- $C_2 = 0 \Rightarrow (A^{-1}p \lambda_1 x, p \lambda_1 x) = \lambda_2^2 \text{ and } h_u = 0 \Rightarrow \lambda_2 = 1.$
- ► This yields a Hamiltonian $H_0 = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x))$ in $R^{n+1} \times R^{n+1}$.
- The "right" Hamiltonian *H* is given by $H = H_0 + \lambda_3 C_3 + \lambda_4 C_4$, $C_3 = ||x||^2 - 1, C_4 = (x, p).$

►
$$\{H_0, C_3\} = \{H_0, C_4\} = 0 \Rightarrow \lambda_3 = \frac{1}{2}, \lambda_4 = 0.$$

- ► $H = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x)) + \frac{1}{2}(||x||^2 1).$
- Geodesic equations on the sphere: $\lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}$,

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} = A^{-1}(p - \lambda_1 x), \frac{dp}{dt} = -\frac{\partial H}{\partial x} = \lambda_1 (A^{-1}(p - \lambda_1 x) - x)$$

subject to $H_0 = \frac{1}{2}$, i.e., $(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) = 1$

• Passage to the ellipsoid $y = A^{\frac{1}{2}}x, q = A^{\frac{1}{2}}u$

•
$$y \cdot A^{-1}y = 1$$
 and $y \cdot A^{-1}q = 0$.

• Geodesics on the ellipsoid: $\frac{dy}{dt} = q, \frac{dq}{dt} = -\frac{q \cdot A^{-1} q}{||A^{-1}y||^2} A^{-1} y$

Velimir Jurdjevic

- $C_2 = 0 \Rightarrow (A^{-1}p \lambda_1 x, p \lambda_1 x) = \lambda_2^2 \text{ and } h_u = 0 \Rightarrow \lambda_2 = 1.$
- ► This yields a Hamiltonian $H_0 = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x))$ in $R^{n+1} \times R^{n+1}$.
- The "right" Hamiltonian *H* is given by $H = H_0 + \lambda_3 C_3 + \lambda_4 C_4$, $C_3 = ||x||^2 - 1$, $C_4 = (x, p)$.

► {
$$H_0, C_3$$
} = { H_0, C_4 } = 0 $\Rightarrow \lambda_3 = \frac{1}{2}, \lambda_4 = 0.$

- ► $H = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x)) + \frac{1}{2}(||x||^2 1).$
- Geodesic equations on the sphere: $\lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}$,

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} = A^{-1}(p - \lambda_1 x), \frac{dp}{dt} = -\frac{\partial H}{\partial x} = \lambda_1 (A^{-1}(p - \lambda_1 x) - x)$$

subject to $H_0 = \frac{1}{2}$, i.e., $(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) = 1$

• Passage to the ellipsoid $y = A^{\frac{1}{2}}x, q = A^{\frac{1}{2}}u$

•
$$y \cdot A^{-1}y = 1$$
 and $y \cdot A^{-1}q = 0$.

• Geodesics on the ellipsoid: $\frac{dy}{dt} = q, \frac{dq}{dt} = -\frac{q \cdot A^{-1} q}{||A^{-1}y||^2} A^{-1} y$

Velimir Jurdjevic

- $C_2 = 0 \Rightarrow (A^{-1}p \lambda_1 x, p \lambda_1 x) = \lambda_2^2 \text{ and } h_u = 0 \Rightarrow \lambda_2 = 1.$
- ► This yields a Hamiltonian $H_0 = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x))$ in $R^{n+1} \times R^{n+1}$.
- The "right" Hamiltonian *H* is given by $H = H_0 + \lambda_3 C_3 + \lambda_4 C_4$, $C_3 = ||x||^2 - 1, C_4 = (x, p).$

► {
$$H_0, C_3$$
} = { H_0, C_4 } = 0 $\Rightarrow \lambda_3 = \frac{1}{2}, \lambda_4 = 0.$

- ► $H = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x)) + \frac{1}{2}(||x||^2 1).$
- Geodesic equations on the sphere: $\lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}$,

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} = A^{-1}(p - \lambda_1 x), \frac{dp}{dt} = -\frac{\partial H}{\partial x} = \lambda_1 (A^{-1}(p - \lambda_1 x) - x)$$

subject to $H_0 = \frac{1}{2}$, i.e., $(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) = 1$

• Passage to the ellipsoid $y = A^{\frac{1}{2}}x, q = A^{\frac{1}{2}}u$

•
$$y \cdot A^{-1}y = 1$$
 and $y \cdot A^{-1}q = 0$.

• Geodesics on the ellipsoid: $\frac{dy}{dt} = q, \frac{dq}{dt} = -\frac{q \cdot A^{-1} q}{||A^{-1}y||^2} A^{-1} y$

Velimir Jurdjevic

- $C_2 = 0 \Rightarrow (A^{-1}p \lambda_1 x, p \lambda_1 x) = \lambda_2^2 \text{ and } h_u = 0 \Rightarrow \lambda_2 = 1.$
- ► This yields a Hamiltonian $H_0 = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x))$ in $R^{n+1} \times R^{n+1}$.
- The "right" Hamiltonian *H* is given by $H = H_0 + \lambda_3 C_3 + \lambda_4 C_4$, $C_3 = ||x||^2 - 1, C_4 = (x, p).$

► {
$$H_0, C_3$$
} = { H_0, C_4 } = 0 $\Rightarrow \lambda_3 = \frac{1}{2}, \lambda_4 = 0.$

- ► $H = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x)) + \frac{1}{2}(||x||^2 1).$
- Geodesic equations on the sphere: $\lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}$,

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} = A^{-1}(p - \lambda_1 x), \frac{dp}{dt} = -\frac{\partial H}{\partial x} = \lambda_1 (A^{-1}(p - \lambda_1 x) - x)$$

subject to $H_0 = \frac{1}{2}$, i.e., $(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) = 1$

• Passage to the ellipsoid $y = A^{\frac{1}{2}}x, q = A^{\frac{1}{2}}u$

•
$$y \cdot A^{-1}y = 1$$
 and $y \cdot A^{-1}q = 0$.

• Geodesics on the ellipsoid: $\frac{dy}{dt} = q, \frac{dq}{dt} = -\frac{q \cdot A^{-1} q}{||A^{-1}y||^2} A^{-1} y$

Velimir Jurdjevic

- $C_2 = 0 \Rightarrow (A^{-1}p \lambda_1 x, p \lambda_1 x) = \lambda_2^2 \text{ and } h_u = 0 \Rightarrow \lambda_2 = 1.$
- ► This yields a Hamiltonian $H_0 = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x))$ in $R^{n+1} \times R^{n+1}$.
- The "right" Hamiltonian *H* is given by $H = H_0 + \lambda_3 C_3 + \lambda_4 C_4$, $C_3 = ||x||^2 - 1, C_4 = (x, p).$
- ► $\{H_0, C_3\} = \{H_0, C_4\} = 0 \Rightarrow \lambda_3 = \frac{1}{2}, \lambda_4 = 0.$
- ► $H = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x)) + \frac{1}{2}(||x||^2 1).$
- Geodesic equations on the sphere: $\lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}$,

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} = A^{-1}(p - \lambda_1 x), \frac{dp}{dt} = -\frac{\partial H}{\partial x} = \lambda_1 (A^{-1}(p - \lambda_1 x) - x)$$

subject to $H_0 = \frac{1}{2}$, i.e., $(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) = 1$

• Passage to the ellipsoid
$$y = A^{\frac{1}{2}}x, q = A^{\frac{1}{2}}u$$

▶
$$y \cdot A^{-1}y = 1$$
 and $y \cdot A^{-1}q = 0$

• Geodesics on the ellipsoid: $\frac{dy}{dt} = q, \frac{dq}{dt} = -\frac{q \cdot A^{-1} q}{||A^{-1}y||^2} A^{-1} y$

Velimir Jurdjevic

- $C_2 = 0 \Rightarrow (A^{-1}p \lambda_1 x, p \lambda_1 x) = \lambda_2^2 \text{ and } h_u = 0 \Rightarrow \lambda_2 = 1.$
- ► This yields a Hamiltonian $H_0 = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x))$ in $R^{n+1} \times R^{n+1}$.
- The "right" Hamiltonian *H* is given by $H = H_0 + \lambda_3 C_3 + \lambda_4 C_4$, $C_3 = ||x||^2 - 1, C_4 = (x, p).$
- ► $\{H_0, C_3\} = \{H_0, C_4\} = 0 \Rightarrow \lambda_3 = \frac{1}{2}, \lambda_4 = 0.$
- ► $H = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x)) + \frac{1}{2}(||x||^2 1).$
- Geodesic equations on the sphere: $\lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}$,
 - $\frac{dx}{dt} = \frac{\partial H}{\partial p} = A^{-1}(p \lambda_1 x), \frac{dp}{dt} = -\frac{\partial H}{\partial x} = \lambda_1 (A^{-1}(p \lambda_1 x) x)$ subject to $H_0 = \frac{1}{2}$, i.e., $(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) = 1$
- Passage to the ellipsoid $y = A^{\frac{1}{2}}x, q = A^{\frac{1}{2}}u$

•
$$y \cdot A^{-1}y = 1$$
 and $y \cdot A^{-1}q = 0$.

• Geodesics on the ellipsoid: $\frac{dy}{dt} = q, \frac{dq}{dt} = -\frac{q \cdot A^{-1} q}{||A^{-1}y||^2} A^{-1} y$

Velimir Jurdjevic

- $C_2 = 0 \Rightarrow (A^{-1}p \lambda_1 x, p \lambda_1 x) = \lambda_2^2 \text{ and } h_u = 0 \Rightarrow \lambda_2 = 1.$
- ► This yields a Hamiltonian $H_0 = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x))$ in $R^{n+1} \times R^{n+1}$.
- The "right" Hamiltonian *H* is given by $H = H_0 + \lambda_3 C_3 + \lambda_4 C_4$, $C_3 = ||x||^2 - 1, C_4 = (x, p).$
- ► $\{H_0, C_3\} = \{H_0, C_4\} = 0 \Rightarrow \lambda_3 = \frac{1}{2}, \lambda_4 = 0.$
- ► $H = \frac{1}{2}(A^{-1}(p \lambda_1 x), (p \lambda_1 x)) + \frac{1}{2}(||x||^2 1).$
- Geodesic equations on the sphere: $\lambda_1 = \frac{(A^{-1}p,x)}{(A^{-1}x,x)}$,

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} = A^{-1}(p - \lambda_1 x), \frac{dp}{dt} = -\frac{\partial H}{\partial x} = \lambda_1 (A^{-1}(p - \lambda_1 x) - x)$$

subject to $H_0 = \frac{1}{2}$, i.e., $(A^{-1}(p - \lambda_1 x), (p - \lambda_1 x)) = 1$

• Passage to the ellipsoid $y = A^{\frac{1}{2}}x, q = A^{\frac{1}{2}}u$

•
$$y \cdot A^{-1}y = 1$$
 and $y \cdot A^{-1}q = 0$.

• Geodesics on the ellipsoid: $\frac{dy}{dt} = q, \frac{dq}{dt} = -\frac{q \cdot A^{-1} q}{||A^{-1}y||^2} A^{-1} y$

Velimir Jurdjevic

- ▶ $\mathfrak{g} = sl_{n+1}(R), \mathfrak{p} = \{A \in \mathfrak{g} : A^T = A\}, \mathfrak{k} = so_{n+1}(R).$
- The Killing form $\langle A, B \rangle = -\frac{1}{2}Tr(AB)$.
- ▶ $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$ and $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}, [\mathfrak{p}, \mathfrak{k}] \subseteq \mathfrak{p}, [\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}.$
- ▶ g^{*} the dual of g.
- $\blacktriangleright \ l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g} \text{ iff } l(X) = \langle L, X \rangle \forall X \in \mathfrak{g}.$
- ▶ Proposition. The coadjoint orbit of the semidirect product $G = \mathfrak{p} \ltimes SO_{n+1}(R)$ through a matrix $X_0 = x_0 \otimes x_0 \frac{||x_0||^2}{n+1}I$ is equal to
 - $\{P+K\}: P = x \otimes x \frac{||x||^2}{n+1}I, K = x \wedge p, ||x|| = ||x_0||, p \cdot x = 0\}$ and is isomorphic to the cotangent bundle of the sphere $||x|| = ||x_0||$ (T. Ratiu, 1980).
- $\blacktriangleright (x,p) \in T^*S^n \Longleftrightarrow P + K \in \mathfrak{p} \oplus \mathfrak{k}.$

- ▶ $\mathfrak{g} = sl_{n+1}(R), \mathfrak{p} = \{A \in \mathfrak{g} : A^T = A\}, \mathfrak{k} = so_{n+1}(R).$
- The Killing form $\langle A, B \rangle = -\frac{1}{2}Tr(AB)$.
- ▶ $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$ and $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}, [\mathfrak{p}, \mathfrak{k}] \subseteq \mathfrak{p}, [\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}.$
- ▶ g^{*} the dual of g.
- $\blacktriangleright \ l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g} \text{ iff } l(X) = \langle L, X \rangle \forall X \in \mathfrak{g}.$
- ▶ Proposition. The coadjoint orbit of the semidirect product $G = \mathfrak{p} \ltimes SO_{n+1}(R)$ through a matrix $X_0 = x_0 \otimes x_0 \frac{||x_0||^2}{n+1}I$ is equal to
 - $\{P+K\}: P = x \otimes x \frac{||x||^2}{n+1}I, K = x \wedge p, ||x|| = ||x_0||, p \cdot x = 0\}$ and is isomorphic to the cotangent bundle of the sphere $||x|| = ||x_0||$ (T. Ratiu, 1980).
- $\blacktriangleright (x,p) \in T^*S^n \Longleftrightarrow P + K \in \mathfrak{p} \oplus \mathfrak{k}.$

- ▶ $\mathfrak{g} = sl_{n+1}(R), \mathfrak{p} = \{A \in \mathfrak{g} : A^T = A\}, \mathfrak{k} = so_{n+1}(R).$
- The Killing form $\langle A, B \rangle = -\frac{1}{2}Tr(AB)$.
- $\blacktriangleright \ \mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k} \text{ and } [\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}, [\mathfrak{p}, \mathfrak{k}] \subseteq \mathfrak{p}, [\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}.$
- ▶ g^{*} the dual of g.
- $\blacktriangleright \ l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g} \text{ iff } l(X) = \langle L, X \rangle \forall X \in \mathfrak{g}.$
- ▶ Proposition. The coadjoint orbit of the semidirect product $G = \mathfrak{p} \ltimes SO_{n+1}(R)$ through a matrix $X_0 = x_0 \otimes x_0 \frac{||x_0||^2}{n+1}I$ is equal to
 - $\{P+K\}: P = x \otimes x \frac{||x||^2}{n+1}I, K = x \wedge p, ||x|| = ||x_0||, p \cdot x = 0\}$ and is isomorphic to the cotangent bundle of the sphere $||x|| = ||x_0||$ (T. Ratiu, 1980).
- $\blacktriangleright (x,p) \in T^*S^n \Longleftrightarrow P + K \in \mathfrak{p} \oplus \mathfrak{k}.$

- $\mathfrak{g} = sl_{n+1}(R), \mathfrak{p} = \{A \in \mathfrak{g} : A^T = A\}, \mathfrak{k} = so_{n+1}(R).$
- The Killing form $\langle A, B \rangle = -\frac{1}{2}Tr(AB)$.
- ▶ $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$ and $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}, [\mathfrak{p}, \mathfrak{k}] \subseteq \mathfrak{p}, [\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}$.
- ▶ g* the dual of g.
- $\blacktriangleright \ l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g} \text{ iff } l(X) = \langle L, X \rangle \forall X \in \mathfrak{g}.$
- ▶ Proposition. The coadjoint orbit of the semidirect product $G = \mathfrak{p} \ltimes SO_{n+1}(R)$ through a matrix $X_0 = x_0 \otimes x_0 \frac{||x_0||^2}{n+1}I$ is equal to
 - $\{P+K\}: P = x \otimes x \frac{||x||^2}{n+1}I, K = x \wedge p, ||x|| = ||x_0||, p \cdot x = 0\}$ and is isomorphic to the cotangent bundle of the sphere $||x|| = ||x_0||$ (T. Ratiu, 1980).
- $\blacktriangleright (x,p) \in T^*S^n \iff P + K \in \mathfrak{p} \oplus \mathfrak{k}.$

- $\mathfrak{g} = sl_{n+1}(R), \mathfrak{p} = \{A \in \mathfrak{g} : A^T = A\}, \mathfrak{k} = so_{n+1}(R).$
- The Killing form $\langle A, B \rangle = -\frac{1}{2}Tr(AB)$.
- ▶ $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$ and $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}, [\mathfrak{p}, \mathfrak{k}] \subseteq \mathfrak{p}, [\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}.$
- g^{*} the dual of g.
- $\blacktriangleright \ l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g} \text{ iff } l(X) = \langle L, X \rangle \forall X \in \mathfrak{g}.$
- ▶ Proposition. The coadjoint orbit of the semidirect product $G = \mathfrak{p} \ltimes SO_{n+1}(R)$ through a matrix $X_0 = x_0 \otimes x_0 \frac{||x_0||^2}{n+1}I$ is equal to
 - $\{P+K\}: P = x \otimes x \frac{||x||^2}{n+1}I, K = x \wedge p, ||x|| = ||x_0||, p \cdot x = 0\}$ and is isomorphic to the cotangent bundle of the sphere $||x|| = ||x_0||$ (T. Ratiu, 1980).
- $\blacktriangleright (x,p) \in T^*S^n \Longleftrightarrow P + K \in \mathfrak{p} \oplus \mathfrak{k}.$

- $\mathfrak{g} = sl_{n+1}(R), \mathfrak{p} = \{A \in \mathfrak{g} : A^T = A\}, \mathfrak{k} = so_{n+1}(R).$
- The Killing form $\langle A, B \rangle = -\frac{1}{2}Tr(AB)$.
- ▶ $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$ and $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}, [\mathfrak{p}, \mathfrak{k}] \subseteq \mathfrak{p}, [\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}$.
- g^{*} the dual of g.
- $\blacktriangleright \ l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g} \text{ iff } l(X) = \langle L, X \rangle \forall X \in \mathfrak{g}.$
- ▶ Proposition. The coadjoint orbit of the semidirect product $G = \mathfrak{p} \ltimes SO_{n+1}(R)$ through a matrix $X_0 = x_0 \otimes x_0 \frac{||x_0||^2}{n+1}I$ is equal to
 - $\{P+K\}: P = x \otimes x \frac{||x||^2}{n+1}I, K = x \wedge p, ||x|| = ||x_0||, p \cdot x = 0\}$ and is isomorphic to the cotangent bundle of the sphere $||x|| = ||x_0||$ (T. Ratiu, 1980).

$$(x,p) \in T^*S^n \Longleftrightarrow P + K \in \mathfrak{p} \oplus \mathfrak{k}.$$

- $\mathfrak{g} = sl_{n+1}(R), \mathfrak{p} = \{A \in \mathfrak{g} : A^T = A\}, \mathfrak{k} = so_{n+1}(R).$
- The Killing form $\langle A, B \rangle = -\frac{1}{2}Tr(AB)$.
- ▶ $\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}$ and $[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k}, [\mathfrak{p}, \mathfrak{k}] \subseteq \mathfrak{p}, [\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k}$.
- g^{*} the dual of g.
- $\blacktriangleright \ l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g} \text{ iff } l(X) = \langle L, X \rangle \forall X \in \mathfrak{g}.$
- ▶ Proposition. The coadjoint orbit of the semidirect product $G = \mathfrak{p} \ltimes SO_{n+1}(R)$ through a matrix $X_0 = x_0 \otimes x_0 \frac{||x_0||^2}{n+1}I$ is equal to
 - $\{P+K\}: P = x \otimes x \frac{||x||^2}{n+1}I, K = x \wedge p, ||x|| = ||x_0||, p \cdot x = 0\}$ and is isomorphic to the cotangent bundle of the sphere $||x|| = ||x_0||$ (T. Ratiu, 1980).

$$\blacktriangleright (x,p) \in T^*S^n \Longleftrightarrow P + K \in \mathfrak{p} \oplus \mathfrak{k}.$$

- Geodesic equations on the coadjoint orbit (after the reparametrization $\frac{ds}{dt} = (x(t) \cdot A^{-1}x(t))^{-1}$: $\frac{dP}{ds} = [A^{-1}KA^{-1}, P], \frac{dK}{ds} = [A^{-1}KA^{-1}, K] + [A^{-1}, P].$
- Spectral representation: $\frac{dL_{\lambda}}{ds} = [\Omega_{\lambda}, L_{\lambda}]$ where
- $\blacktriangleright L_{\lambda} = P \lambda K \lambda^2 A, \Omega_{\lambda} = A^{-1} K A^{-1} \lambda A^{-1}.$
- **Proof:** $\frac{dL_{\lambda}}{ds} = [A^{-1}KA^{-1}, P] \lambda([A^{-1}KA^{-1}, K] + [A^{-1}, P]) = [A^{-1}KA^{-1} \lambda A^{-1}, P \lambda K] \lambda^2[A^{-1}, K] = [\Omega_{\lambda}, L_{\lambda}]$
- F(z) = R_zx(t) ⋅ x(t)(1 + R_zp(t) ⋅ p(t)) (R_zx(t) ⋅ p(t))², R_z = (zI - A)⁻¹, is constant along the geodesic flow.(Newmann problem, J. Moser, Chern Symposium(1979)) (The spectral invariants)
- Constants of motion $F_k(x,p) = x_k^2 + \sum_{j=1, j \neq k}^n \frac{(x_j p_k - x_k p_j)^2}{a_k - a_j}$

•
$$G_k(y,q) = q_k^2 + \sum_{j=1, j \neq k}^n \frac{(y_j q_k - y_k q_j)^2}{a_k - a_j}, k = 0, \dots, n$$

Velimir Jurdjevic

- Geodesic equations on the coadjoint orbit (after the reparametrization $\frac{ds}{dt} = (x(t) \cdot A^{-1}x(t))^{-1}$: $\frac{dP}{ds} = [A^{-1}KA^{-1}, P], \frac{dK}{ds} = [A^{-1}KA^{-1}, K] + [A^{-1}, P].$
- Spectral representation: $\frac{dL_{\lambda}}{ds} = [\Omega_{\lambda}, L_{\lambda}]$ where

$$\blacktriangleright L_{\lambda} = P - \lambda K - \lambda^2 A, \Omega_{\lambda} = A^{-1} K A^{-1} - \lambda A^{-1}.$$

- **Proof:** $\frac{dL_{\lambda}}{ds} = [A^{-1}KA^{-1}, P] \lambda([A^{-1}KA^{-1}, K] + [A^{-1}, P]) = [A^{-1}KA^{-1} \lambda A^{-1}, P \lambda K] \lambda^2[A^{-1}, K] = [\Omega_{\lambda}, L_{\lambda}]$
- F(z) = R_zx(t) ⋅ x(t)(1 + R_zp(t) ⋅ p(t)) (R_zx(t) ⋅ p(t))², R_z = (zI - A)⁻¹, is constant along the geodesic flow.(Newmann problem, J. Moser, Chern Symposium(1979)) (The spectral invariants)
- ▶ Constants of motion
 F_k(x,p) = x²_k + ∑ⁿ_{j=1,j≠k} (x_{jpk}-x_{kpj})²/(a_k-a_j), k = 0,...,n,
 G_k(y,q) = q²_k + ∑ⁿ_{j=1,j≠k} (y_{jqk}-y_{kqj})²/(a_k-a_j), k = 0,...,n

Velimir Jurdjevic

- Geodesic equations on the coadjoint orbit (after the reparametrization $\frac{ds}{dt} = (x(t) \cdot A^{-1}x(t))^{-1}$: $\frac{dP}{ds} = [A^{-1}KA^{-1}, P], \frac{dK}{ds} = [A^{-1}KA^{-1}, K] + [A^{-1}, P].$
- Spectral representation: $\frac{dL_{\lambda}}{ds} = [\Omega_{\lambda}, L_{\lambda}]$ where

$$L_{\lambda} = P - \lambda K - \lambda^2 A, \Omega_{\lambda} = A^{-1} K A^{-1} - \lambda A^{-1}$$

- **Proof:** $\frac{dL_{\lambda}}{ds} = [A^{-1}KA^{-1}, P] \lambda([A^{-1}KA^{-1}, K] + [A^{-1}, P]) = [A^{-1}KA^{-1} \lambda A^{-1}, P \lambda K] \lambda^2[A^{-1}, K] = [\Omega_{\lambda}, L_{\lambda}]$
- F(z) = R_zx(t) ⋅ x(t)(1 + R_zp(t) ⋅ p(t)) (R_zx(t) ⋅ p(t))², R_z = (zI - A)⁻¹, is constant along the geodesic flow.(Newmann problem, J. Moser, Chern Symposium(1979)) (The spectral invariants)
- Constants of motion $E_n(x, y) = x^2 + \sum_{n=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$

$$F_k(x,p) = x_k^- + \sum_{j=1, j \neq k} \frac{(y_j - y_k - y_j)}{a_k - a_j}, k = 0, \dots, n, o$$

$$G_k(y,q) = q_k^2 + \sum_{j=1, j \neq k}^n \frac{(y_j q_k - y_k q_j)^2}{a_k - a_j}, k = 0, \dots, n$$

Velimir Jurdjevic

- Geodesic equations on the coadjoint orbit (after the reparametrization $\frac{ds}{dt} = (x(t) \cdot A^{-1}x(t))^{-1}$: $\frac{dP}{ds} = [A^{-1}KA^{-1}, P], \frac{dK}{ds} = [A^{-1}KA^{-1}, K] + [A^{-1}, P].$
- Spectral representation: $\frac{dL_{\lambda}}{ds} = [\Omega_{\lambda}, L_{\lambda}]$ where
- $L_{\lambda} = P \lambda K \lambda^2 A, \Omega_{\lambda} = A^{-1} K A^{-1} \lambda A^{-1}.$
- ► **Proof:** $\frac{dL_{\lambda}}{ds} = [A^{-1}KA^{-1}, P] \lambda([A^{-1}KA^{-1}, K] + [A^{-1}, P]) = [A^{-1}KA^{-1} \lambda A^{-1}, P \lambda K] \lambda^2[A^{-1}, K] = [\Omega_{\lambda}, L_{\lambda}]$
- F(z) = R_zx(t) ⋅ x(t)(1 + R_zp(t) ⋅ p(t)) (R_zx(t) ⋅ p(t))², R_z = (zI - A)⁻¹, is constant along the geodesic flow.(Newmann problem, J. Moser, Chern Symposium(1979)) (The spectral invariants)
- ▶ Constants of motion
 F_k(x,p) = x²_k + ∑ⁿ_{j=1,j≠k} (x_{jpk}-x_kp_j)²/(a_k-a_j), k = 0,...,n,
 G_k(y,q) = q²_k + ∑ⁿ_{j=1,j≠k} (y_{jqk}-y_{kqj})²/(a_k-a_j), k = 0,...,n

Velimir Jurdjevic

- Geodesic equations on the coadjoint orbit (after the reparametrization $\frac{ds}{dt} = (x(t) \cdot A^{-1}x(t))^{-1}$: $\frac{dP}{ds} = [A^{-1}KA^{-1}, P], \frac{dK}{ds} = [A^{-1}KA^{-1}, K] + [A^{-1}, P].$ • Spectral representation: $\frac{dL_{\lambda}}{ds} = [\Omega_{\lambda}, L_{\lambda}]$ where $L_{\lambda} = P - \lambda K - \lambda^2 A \Omega_{\lambda} = A^{-1} K A^{-1} - \lambda A^{-1}.$ • Proof: $\frac{dL_{\lambda}}{dr} = [A^{-1}KA^{-1}, P] - \lambda([A^{-1}KA^{-1}, K] + [A^{-1}, P]) =$ $[A^{-1}KA^{-1} - \lambda A^{-1}, P - \lambda K] - \lambda^2[A^{-1}, K] = [\Omega_{\lambda}, L_{\lambda}]$ • $F(z) = R_z x(t) \cdot x(t) (1 + R_z p(t) \cdot p(t)) - (R_z x(t) \cdot p(t))^2$, $R_z = (zI - A)^{-1}$, is constant along the geodesic flow. (Newmann problem, J. Moser, Chern Symposium(1979)) (The spectral invariants)
- Constants of motion
 F_k(x,p) = x²_k + ∑ⁿ_{j=1,j≠k} (x_{jpk}-x_kp_j)²/(a_k-a_j), k = 0,...,n, or
 G_k(y,q) = q²_k + ∑ⁿ_{j=1,j≠k} (y_{jqk}-y_{kqj})²/(a_k-a_j), k = 0,...,n

Velimir Jurdjevic

- Geodesic equations on the coadjoint orbit (after the reparametrization $\frac{ds}{dt} = (x(t) \cdot A^{-1}x(t))^{-1}$: $\frac{dP}{dz} = [A^{-1}KA^{-1}, P], \frac{dK}{dz} = [A^{-1}KA^{-1}, K] + [A^{-1}, P].$ • Spectral representation: $\frac{dL_{\lambda}}{ds} = [\Omega_{\lambda}, L_{\lambda}]$ where • $L_{\lambda} = P - \lambda K - \lambda^2 A$, $\Omega_{\lambda} = A^{-1} K A^{-1} - \lambda A^{-1}$. • Proof: $\frac{dL_{\lambda}}{ds} = [A^{-1}KA^{-1}, P] - \lambda([A^{-1}KA^{-1}, K] + [A^{-1}, P]) =$ $[A^{-1}KA^{-1} - \lambda A^{-1}, P - \lambda K] - \lambda^2 [A^{-1}, K] = [\Omega_{\lambda}, L_{\lambda}]$ • $F(z) = R_z x(t) \cdot x(t) (1 + R_z p(t) \cdot p(t)) - (R_z x(t) \cdot p(t))^2$, $R_z = (zI - A)^{-1}$, is constant along the geodesic flow. (Newmann problem, J. Moser, Chern Symposium(1979)) (The spectral invariants)
- Constants of motion
 F_k(x,p) = x²_k + ∑ⁿ_{j=1,j≠k} (x_{jpk}-x_{kpj})²/(a_k-a_j), k = 0,...,n, or

 G_k(y,q) = q²_k + ∑ⁿ_{j=1,j≠k} (y_{jqk}-y_{kqj})²/(a_k-a_j), k = 0,...,n

Velimir Jurdjevic

- Geodesic equations on the coadjoint orbit (after the reparametrization $\frac{ds}{dt} = (x(t) \cdot A^{-1}x(t))^{-1}$: $\frac{dP}{ds} = [A^{-1}KA^{-1}, P], \frac{dK}{ds} = [A^{-1}KA^{-1}, K] + [A^{-1}, P].$ • Spectral representation: $\frac{dL_{\lambda}}{ds} = [\Omega_{\lambda}, L_{\lambda}]$ where • $L_{\lambda} = P - \lambda K - \lambda^2 A$, $\Omega_{\lambda} = A^{-1} K A^{-1} - \lambda A^{-1}$. • Proof: $\frac{dL_{\lambda}}{ds} = [A^{-1}KA^{-1}, P] - \lambda([A^{-1}KA^{-1}, K] + [A^{-1}, P]) =$ $[A^{-1}KA^{-1} - \lambda A^{-1}, P - \lambda K] - \lambda^2 [A^{-1}, K] = [\Omega_{\lambda}, L_{\lambda}]$ • $F(z) = R_z x(t) \cdot x(t) (1 + R_z p(t) \cdot p(t)) - (R_z x(t) \cdot p(t))^2$, $R_z = (zI - A)^{-1}$, is constant along the geodesic flow. (Newmann problem, J. Moser, Chern Symposium(1979)) (The spectral invariants)
- Constants of motion
 F_k(x,p) = x²_k + ∑ⁿ_{j=1,j≠k} (x_jp_k-x_kp_j)²/a_k-a_j, k = 0,...,n, or

 G_k(y,q) = q²_k + ∑ⁿ_{j=1,j≠k} (y_jq_k-y_kq_j)²/a_k-a_j, k = 0,...,n

Velimir Jurdjevic

- G is a semisimple Lie group, \mathfrak{g} is its Lie algebra.
- ► Assumption. g = p ⊕ t, p is a vector space (Cartan space), t is a Lie subalgebra of g and [p, p] = t, [p, t] = p.
- ▶ B ∈ p is said to be regular if {X ∈ p : [X, B] = 0} is a maximal Abelian algebra in p.
- ▶ Natural control problem: $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}, B$ regular.
- ▶ Controllability: Given g_0 and g_1 both in *G* there exist T > 0 and a control $u(t) \in \mathfrak{k}$ such that the solution g(t) with $g(0) = g_0$ also satisfies $g(T) = g_1$.
- Suppose now that Q is a positive definite quadratic form on \mathfrak{k} . Then for any boundary conditions g_0 and g_1 there exists T > 0 such that the optimal control problem $Min_2^1 \int_0^T Q(u(t), u(t))dt$ has a solution.

- G is a semisimple Lie group, \mathfrak{g} is its Lie algebra.
- ► Assumption. g = p ⊕ ℓ, p is a vector space (Cartan space), ℓ is a Lie subalgebra of g and [p, p] = ℓ, [p, ℓ] = p.
- ▶ B ∈ p is said to be regular if {X ∈ p : [X, B] = 0} is a maximal Abelian algebra in p.
- ▶ Natural control problem: $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}, B$ regular.
- ▶ Controllability: Given g_0 and g_1 both in *G* there exist T > 0 and a control $u(t) \in \mathfrak{k}$ such that the solution g(t) with $g(0) = g_0$ also satisfies $g(T) = g_1$.
- Suppose now that Q is a positive definite quadratic form on \mathfrak{k} . Then for any boundary conditions g_0 and g_1 there exists T > 0 such that the optimal control problem $Min_2^1 \int_0^T Q(u(t), u(t))dt$ has a solution.

- G is a semisimple Lie group, \mathfrak{g} is its Lie algebra.
- Assumption. g = p ⊕ ℓ, p is a vector space (Cartan space), ℓ is a Lie subalgebra of g and [p, p] = ℓ, [p, ℓ] = p.
- ▶ B ∈ p is said to be regular if {X ∈ p : [X, B] = 0} is a maximal Abelian algebra in p.
- ▶ Natural control problem: $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}, B$ regular.
- ▶ Controllability: Given g_0 and g_1 both in *G* there exist T > 0 and a control $u(t) \in \mathfrak{k}$ such that the solution g(t) with $g(0) = g_0$ also satisfies $g(T) = g_1$.
- Suppose now that Q is a positive definite quadratic form on \mathfrak{k} . Then for any boundary conditions g_0 and g_1 there exists T > 0 such that the optimal control problem $Min_{\frac{1}{2}} \int_0^T Q(u(t), u(t))dt$ has a solution.

- G is a semisimple Lie group, \mathfrak{g} is its Lie algebra.
- Assumption. g = p ⊕ ℓ, p is a vector space (Cartan space), ℓ is a Lie subalgebra of g and [p, p] = ℓ, [p, ℓ] = p.
- ▶ B ∈ p is said to be regular if {X ∈ p : [X, B] = 0} is a maximal Abelian algebra in p.
- ▶ Natural control problem: $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}, B$ regular.
- ▶ Controllability: Given g_0 and g_1 both in *G* there exist T > 0 and a control $u(t) \in \mathfrak{k}$ such that the solution g(t) with $g(0) = g_0$ also satisfies $g(T) = g_1$.
- Suppose now that Q is a positive definite quadratic form on \mathfrak{k} . Then for any boundary conditions g_0 and g_1 there exists T > 0 such that the optimal control problem $Min_2^1 \int_0^T Q(u(t), u(t))dt$ has a solution.

- G is a semisimple Lie group, \mathfrak{g} is its Lie algebra.
- Assumption. g = p ⊕ ℓ, p is a vector space (Cartan space), ℓ is a Lie subalgebra of g and [p, p] = ℓ, [p, ℓ] = p.
- ▶ B ∈ p is said to be regular if {X ∈ p : [X, B] = 0} is a maximal Abelian algebra in p.
- ▶ Natural control problem: $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}, B$ regular.
- ► Controllability: Given g_0 and g_1 both in *G* there exist T > 0 and a control $u(t) \in \mathfrak{k}$ such that the solution g(t) with $g(0) = g_0$ also satisfies $g(T) = g_1$.
- Suppose now that Q is a positive definite quadratic form on \mathfrak{k} . Then for any boundary conditions g_0 and g_1 there exists T > 0 such that the optimal control problem $Min_2^1 \int_0^T Q(u(t), u(t))dt$ has a solution.

- G is a semisimple Lie group, \mathfrak{g} is its Lie algebra.
- Assumption. g = p ⊕ ℓ, p is a vector space (Cartan space), ℓ is a Lie subalgebra of g and [p, p] = ℓ, [p, ℓ] = p.
- ▶ B ∈ p is said to be regular if {X ∈ p : [X, B] = 0} is a maximal Abelian algebra in p.
- ▶ Natural control problem: $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}, B$ regular.
- ► Controllability: Given g_0 and g_1 both in *G* there exist T > 0 and a control $u(t) \in \mathfrak{k}$ such that the solution g(t) with $g(0) = g_0$ also satisfies $g(T) = g_1$.
- Suppose now that Q is a positive definite quadratic form on \mathfrak{k} . Then for any boundary conditions g_0 and g_1 there exists T > 0 such that the optimal control problem $Min_2^1 \int_0^T Q(u(t), u(t))dt$ has a solution.

Left invariant Hamiltonians

- Special case $\langle X, Y \rangle = -Tr(ad(X) \circ ad(Y))$ (Cartan-Killing form).
- Suppose $\phi : \mathfrak{k} \to \mathfrak{k}$ is a linear automorphism such that $\langle \phi(u), u \rangle > 0$, and $\langle \phi(u), v \rangle = \langle u, \phi(v) \rangle \forall u, v \in \mathfrak{k}$. Then $Q(u, u) = \langle \phi(u), u \rangle$.
- ▶ Background: $T^*G = \mathfrak{g}^* \times G$. $l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g}$ via the Killing form. $L = P + K, P \in \mathfrak{p}, K \in \mathfrak{k}$.
- ▶ Normal extrema $Max_u(-\frac{1}{2}\langle\phi(u),u\rangle + \langle B,P\rangle + \langle u,K\rangle$ occurs when $u = \phi^{-1}(K)$. Hence normal extrema are integral curves of a single Hamiltonian $H = \frac{1}{2}\langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- g* is a double Poisson algebra: one induced by the semisimple Lie bracket on g and the other by the semidirect product on p κ ℓ.
 dK/dt = [φ⁻¹(K), K] + [B, P], dP/dt = [φ⁻¹(K), P] + ε[B, K], ε = 0, 1.

Velimir Jurdjevic
- Special case $\langle X, Y \rangle = -Tr(ad(X) \circ ad(Y))$ (Cartan-Killing form).
- Suppose $\phi : \mathfrak{k} \to \mathfrak{k}$ is a linear automorphism such that $\langle \phi(u), u \rangle > 0$, and $\langle \phi(u), v \rangle = \langle u, \phi(v) \rangle \forall u, v \in \mathfrak{k}$. Then $Q(u, u) = \langle \phi(u), u \rangle$.
- ▶ Background: $T^*G = \mathfrak{g}^* \times G$. $l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g}$ via the Killing form. $L = P + K, P \in \mathfrak{p}, K \in \mathfrak{k}$.
- ▶ Normal extrema $Max_u(-\frac{1}{2}\langle\phi(u),u\rangle + \langle B,P\rangle + \langle u,K\rangle$ occurs when $u = \phi^{-1}(K)$. Hence normal extrema are integral curves of a single Hamiltonian $H = \frac{1}{2}\langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- g* is a double Poisson algebra: one induced by the semisimple Lie bracket on g and the other by the semidirect product on p κ ℓ.
 dK/dt = [φ⁻¹(K), K] + [B, P], dP/dt = [φ⁻¹(K), P] + ε[B, K], ε = 0, 1.

Velimir Jurdjevic

- Special case $\langle X, Y \rangle = -Tr(ad(X) \circ ad(Y))$ (Cartan-Killing form).
- Suppose $\phi : \mathfrak{k} \to \mathfrak{k}$ is a linear automorphism such that $\langle \phi(u), u \rangle > 0$, and $\langle \phi(u), v \rangle = \langle u, \phi(v) \rangle \forall u, v \in \mathfrak{k}$. Then $Q(u, u) = \langle \phi(u), u \rangle$.
- ▶ Background: $T^*G = \mathfrak{g}^* \times G$. $l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g}$ via the Killing form. $L = P + K, P \in \mathfrak{p}, K \in \mathfrak{k}$.
- ▶ Normal extrema $Max_u(-\frac{1}{2}\langle\phi(u),u\rangle + \langle B,P\rangle + \langle u,K\rangle$ occurs when $u = \phi^{-1}(K)$. Hence normal extrema are integral curves of a single Hamiltonian $H = \frac{1}{2}\langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- g* is a double Poisson algebra: one induced by the semisimple Lie bracket on g and the other by the semidirect product on p κ ℓ.
 dK/dt = [φ⁻¹(K), K] + [B, P], dP/dt = [φ⁻¹(K), P] + ε[B, K], ε = 0, 1.

Velimir Jurdjevic

- Special case $\langle X, Y \rangle = -Tr(ad(X) \circ ad(Y))$ (Cartan-Killing form).
- Suppose $\phi : \mathfrak{k} \to \mathfrak{k}$ is a linear automorphism such that $\langle \phi(u), u \rangle > 0$, and $\langle \phi(u), v \rangle = \langle u, \phi(v) \rangle \forall u, v \in \mathfrak{k}$. Then $Q(u, u) = \langle \phi(u), u \rangle$.
- ▶ Background: $T^*G = \mathfrak{g}^* \times G$. $l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g}$ via the Killing form. $L = P + K, P \in \mathfrak{p}, K \in \mathfrak{k}$.
- ▶ Normal extrema $Max_u(-\frac{1}{2}\langle \phi(u), u \rangle + \langle B, P \rangle + \langle u, K \rangle$ occurs when $u = \phi^{-1}(K)$. Hence normal extrema are integral curves of a single Hamiltonian $H = \frac{1}{2}\langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- g* is a double Poisson algebra: one induced by the semisimple Lie bracket on g and the other by the semidirect product on p κ ℓ.
 dK/dt = [φ⁻¹(K), K] + [B, P], dP/dt = [φ⁻¹(K), P] + ε[B, K], ε = 0, 1.

Velimir Jurdjevic

- Special case $\langle X, Y \rangle = -Tr(ad(X) \circ ad(Y))$ (Cartan-Killing form).
- Suppose $\phi : \mathfrak{k} \to \mathfrak{k}$ is a linear automorphism such that $\langle \phi(u), u \rangle > 0$, and $\langle \phi(u), v \rangle = \langle u, \phi(v) \rangle \forall u, v \in \mathfrak{k}$. Then $Q(u, u) = \langle \phi(u), u \rangle$.
- ▶ Background: $T^*G = \mathfrak{g}^* \times G$. $l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g}$ via the Killing form. $L = P + K, P \in \mathfrak{p}, K \in \mathfrak{k}$.
- ▶ Normal extrema $Max_u(-\frac{1}{2}\langle \phi(u), u \rangle + \langle B, P \rangle + \langle u, K \rangle$ occurs when $u = \phi^{-1}(K)$. Hence normal extrema are integral curves of a single Hamiltonian $H = \frac{1}{2}\langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- g* is a double Poisson algebra: one induced by the semisimple Lie bracket on g and the other by the semidirect product on p κ ℓ.
 dK/dt = [φ⁻¹(K), K] + [B, P], dP/dt = [φ⁻¹(K), P] + ε[B, K], ε = 0, 1.

- Special case $\langle X, Y \rangle = -Tr(ad(X) \circ ad(Y))$ (Cartan-Killing form).
- Suppose $\phi : \mathfrak{k} \to \mathfrak{k}$ is a linear automorphism such that $\langle \phi(u), u \rangle > 0$, and $\langle \phi(u), v \rangle = \langle u, \phi(v) \rangle \forall u, v \in \mathfrak{k}$. Then $Q(u, u) = \langle \phi(u), u \rangle$.
- ▶ Background: $T^*G = \mathfrak{g}^* \times G$. $l \in \mathfrak{g}^* \longleftrightarrow L \in \mathfrak{g}$ via the Killing form. $L = P + K, P \in \mathfrak{p}, K \in \mathfrak{k}$.
- ▶ Normal extrema $Max_u(-\frac{1}{2}\langle \phi(u), u \rangle + \langle B, P \rangle + \langle u, K \rangle$ occurs when $u = \phi^{-1}(K)$. Hence normal extrema are integral curves of a single Hamiltonian $H = \frac{1}{2}\langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- g* is a double Poisson algebra: one induced by the semisimple
 Lie bracket on g and the other by the semidirect product on p ⋉ €.

•
$$\frac{dK}{dt} = [\phi^{-1}(K), K] + [B, P], \frac{dP}{dt} = [\phi^{-1}(K), P] + \epsilon[B, K], \epsilon = 0, 1.$$

Velimir Jurdjevic

• $\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$

$$\blacktriangleright \langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

- ▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.
- $\triangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$

$$\blacktriangleright B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\blacktriangleright H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

- $\quad \bullet \ \ \frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \\ \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$
- Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \epsilon)A$$

$$\blacktriangleright \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

► The spectral invariants Poisson commute(A. Reyman)

Velimir Jurdjevic

• $\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$

$$\blacktriangleright \langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

- ▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.
- $\blacktriangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$

$$\blacktriangleright B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\blacktriangleright H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

- $\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$
- Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \epsilon)A$$

$$\blacktriangleright \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

 $G=SL_n(R)$

- $\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$
- $\blacktriangleright \langle X, Y \rangle = -\frac{1}{2} Trace(XY)$
- ▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.
- $\triangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$

$$\blacktriangleright B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\blacktriangleright H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

- $\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$
- Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \epsilon)A$$

$$\blacktriangleright \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

•
$$\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$$

$$\langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

- ▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.
- $\blacktriangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$

►
$$B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\blacktriangleright H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

- $\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$
- Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \epsilon)A$$

$$\blacktriangleright \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

•
$$\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$$

$$\langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.

$$\blacktriangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$$

►
$$B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\blacktriangleright H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

•
$$\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$$

Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \epsilon)A.$$

$$\blacktriangleright \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

•
$$\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$$

$$\langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.

$$\blacktriangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$$

►
$$B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\bullet \ H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

- $\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$
- Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \epsilon)A$$

$$\blacktriangleright \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

•
$$\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$$

$$\langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.

$$\blacktriangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$$

►
$$B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\bullet \ H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

•
$$\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$$

Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \lambda)^2$$

$$\blacktriangleright \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

► The spectral invariants Poisson commute(A. Reyman)

Velimir Jurdjevic

•
$$\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$$

$$\langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.

$$\blacktriangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$$

►
$$B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\bullet \ H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

•
$$\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$$

Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \epsilon)A.$$

•
$$\frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

► The spectral invariants Poisson commute(A. Reyman)

Velimir Jurdjevic

•
$$\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$$

$$\langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.

$$\blacktriangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$$

►
$$B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\blacktriangleright H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

•
$$\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$$

Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \epsilon)A.$$

$$\frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

► The spectral invariants Poisson commute(A. Reyman)

•
$$\mathfrak{g} = sl_n(R), \mathfrak{k} = so_n(R) \text{ and } \mathfrak{p} = \{X \in sl_n(R) : X^T = X\}.$$

$$\langle X, Y \rangle = -\frac{1}{2} Trace(XY)$$

▶ If *A* is a positive diagonal matrix take $\phi(K) = AKA, \forall K \in \mathfrak{k}$.

$$\blacktriangleright \langle AK_1A, K_2 \rangle = \langle AK_2A, K_1 \rangle, \langle AKA, K \rangle > 0$$

►
$$B = A^{-1} - \frac{Trace(A^{-1})}{n}I.$$

$$\blacktriangleright H = \langle A^{-1}KA^{-1}, K \rangle + \langle B, P \rangle.$$

•
$$\frac{dK}{dt} = [A^{-1}KA^{-1}, K] + [A^{-1}, P], \frac{dP}{dt} = [A^{-1}KA^{-1}, P] + \epsilon[A^{-1}, K].$$

Spectral representation:

$$\Omega_{\lambda} = A^{-1}KA^{-1} - \lambda A^{-1}, L_{\lambda} = P - \lambda K - (\lambda^2 - \lambda K)$$

$$\frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}]$$

The spectral invariants Poisson commute(A. Reyman)

 $\epsilon A.$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

$$\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B; \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}$.
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^{n} = SO_{n+1}/SO_{n}, \mathbb{H}^{n} = SO(1, n)/SO_{n}, \mathbb{R}^{n} = SE_{n}/SO_{n}.$$
$$\mathfrak{p}_{\epsilon} = \{P = \begin{pmatrix} 0 & -\epsilon p^{T} \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^{n}\}, \mathfrak{k} = so_{n}(R).$$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

$$\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B; \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}$.
- ▶ \mathfrak{k}_0 is a Lie subalgebra of \mathfrak{k} . Let \mathfrak{k}_0^{\perp} be the orthogonal complement relative to the Killing form.
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^{n} = SO_{n+1}/SO_{n}, \mathbb{H}^{n} = SO(1, n)/SO_{n}, \mathbb{R}^{n} = SE_{n}/SO_{n}.$$
$$\mathfrak{p}_{\epsilon} = \{P = \begin{pmatrix} 0 & -\epsilon p^{T} \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^{n}\}, \mathfrak{k} = so_{n}(R).$$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

$$\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B; \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}.$
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^{n} = SO_{n+1}/SO_{n}, \mathbb{H}^{n} = SO(1, n)/SO_{n}, \mathbb{R}^{n} = SE_{n}/SO_{n}.$$
$$\mathfrak{p}_{\epsilon} = \{P = \begin{pmatrix} 0 & -\epsilon p^{T} \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^{n}\}, \mathfrak{k} = so_{n}(R).$$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

 $\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B; \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K,B] = 0\}$.
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^{n} = SO_{n+1}/SO_{n}, \mathbb{H}^{n} = SO(1, n)/SO_{n}, \mathbb{R}^{n} = SE_{n}/SO_{n}.$$
$$\mathfrak{p}_{\epsilon} = \{P = \begin{pmatrix} 0 & -\epsilon p^{T} \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^{n}\}, \mathfrak{k} = so_{n}(R).$$

Velimir Jurdjevic

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation: $\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B: \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$
- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}$.
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^{n} = SO_{n+1}/SO_{n}, \mathbb{H}^{n} = SO(1, n)/SO_{n}, \mathbb{R}^{n} = SE_{n}/SO_{n}.$$
$$\mathfrak{p}_{\epsilon} = \{P = \begin{pmatrix} 0 & -\epsilon p^{T} \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^{n}\}, \mathfrak{k} = so_{n}(R).$$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

$$\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B; \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}.$
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^{n} = SO_{n+1}/SO_{n}, \mathbb{H}^{n} = SO(1, n)/SO_{n}, \mathbb{R}^{n} = SE_{n}/SO_{n}.$$
$$\mathfrak{p}_{\epsilon} = \{P = \begin{pmatrix} 0 & -\epsilon p^{T} \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^{n}\}, \mathfrak{k} = so_{n}(R).$$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

$$\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B: \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}.$
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^{n} = SO_{n+1}/SO_{n}, \mathbb{H}^{n} = SO(1, n)/SO_{n}, \mathbb{R}^{n} = SE_{n}/SO_{n}.$$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

$$\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B; \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}.$
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^n = SO_{n+1}/SO_n, \mathbb{H}^n = SO(1,n)/SO_n, \mathbb{R}^n = SE_n/SO_n$$

$$\mathfrak{p}_{\epsilon} = \{ P = \begin{pmatrix} 0 & -\epsilon p^T \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^n \}, \mathfrak{k} = so_n(R).$$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

$$\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B; \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}.$
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- ▶ So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^n = SO_{n+1}/SO_n, \mathbb{H}^n = SO(1,n)/SO_n, \mathbb{R}^n = SE_n/SO_n$$

$$\mathfrak{p}_{\epsilon} = \{ P = \begin{pmatrix} 0 & -\epsilon p^T \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^n \}, \mathfrak{k} = so_n(R).$$

- Back to the general case $H = \frac{1}{2} \langle K, \phi^{-1}(K) \rangle + \langle B, P \rangle$.
- For which ϕ is the above Hamiltonian integrable?
- The simplest case: $\phi = I$. Then,
- ▶ Ham. Eq.: $\frac{dK}{dt} = [K, K] + [B, P] = [B, P], \frac{dP}{dt} = [K, P] + \epsilon[B, K].$
- Spectral representation:

$$\Omega_{\lambda} = P - \epsilon B, L_{\lambda} = P - \lambda K + (\lambda^2 - \epsilon)B; \ \frac{dL_{\lambda}}{dt} = [\Omega_{\lambda}, L_{\lambda}].$$

- Extra integrals of motion: Let $\mathfrak{k}_0 = \{K \in \mathfrak{k} : [K, B] = 0\}.$
- Since $\langle \mathfrak{k}_0, [B, P] \rangle = \langle [\mathfrak{k}_0, B], P \rangle = 0, [B, P] \in \mathfrak{k}_0^{\perp}$.
- ▶ So $K_0(t)$ is constant. (A. Bolsinov and J. Zimmerman).
- Simply Connected Spaces of Constant Curvature:

$$S^n = SO_{n+1}/SO_n, \mathbb{H}^n = SO(1,n)/SO_n, \mathbb{R}^n = SE_n/SO_n.$$

$$\mathfrak{p}_{\epsilon} = \{P = \begin{pmatrix} 0 & -\epsilon p^T \\ p & 0 \end{pmatrix}, p \in \mathbb{R}^n\}, \mathfrak{k} = so_n(R).$$

- Let $G_{\epsilon} = SO_{n+1}(R)$ when $\epsilon = 1$, SO(1, n) when $\epsilon = -1$, and SE_n , $\epsilon = 0$.
- Let $M_{\epsilon} = G_{\epsilon}/SO_n(R)$
- Write $K = K_0 + K_1, K_0 \in \mathfrak{k}_0, K_1 \in \mathfrak{k}^{\perp}$.
- ► $||K_1(t)|| = \kappa(t)$ where $\kappa(t)$ is the first curvature of the projected curve x(t) on M_{ϵ} .
- $\frac{1}{2} \int_0^T ||K(t)||^2 dt = \frac{1}{2} \int_0^T \kappa(t)^2 dt + const$
- ▶ Elastica When $K_0 = 0 \kappa(t)$ is expressible in terms of elliptic functions, $\kappa^2(t)\tau(t) = constant$ and higher curvatures of x(t) are all zero. (P. Griffiths, 1983, and V. Jurdjevic-F.M. Perez, 2002)

- Let $G_{\epsilon} = SO_{n+1}(R)$ when $\epsilon = 1$, SO(1, n) when $\epsilon = -1$, and $SE_n, \epsilon = 0$.
- Let $M_{\epsilon} = G_{\epsilon}/SO_n(R)$
- Write $K = K_0 + K_1, K_0 \in \mathfrak{k}_0, K_1 \in \mathfrak{k}^{\perp}$.
- ► $||K_1(t)|| = \kappa(t)$ where $\kappa(t)$ is the first curvature of the projected curve x(t) on M_{ϵ} .
- $\frac{1}{2} \int_0^T ||K(t)||^2 dt = \frac{1}{2} \int_0^T \kappa(t)^2 dt + const$
- ▶ Elastica When $K_0 = 0 \kappa(t)$ is expressible in terms of elliptic functions, $\kappa^2(t)\tau(t) = constant$ and higher curvatures of x(t) are all zero. (P. Griffiths, 1983, and V. Jurdjevic-F.M. Perez, 2002)

- Let $G_{\epsilon} = SO_{n+1}(R)$ when $\epsilon = 1$, SO(1, n) when $\epsilon = -1$, and $SE_n, \epsilon = 0$.
- Let $M_{\epsilon} = G_{\epsilon}/SO_n(R)$
- Write $K = K_0 + K_1, K_0 \in \mathfrak{k}_0, K_1 \in \mathfrak{k}^{\perp}$.
- ► $||K_1(t)|| = \kappa(t)$ where $\kappa(t)$ is the first curvature of the projected curve x(t) on M_{ϵ} .
- $\frac{1}{2} \int_0^T ||K(t)||^2 dt = \frac{1}{2} \int_0^T \kappa(t)^2 dt + const$
- ▶ Elastica When $K_0 = 0 \kappa(t)$ is expressible in terms of elliptic functions, $\kappa^2(t)\tau(t) = constant$ and higher curvatures of x(t) are all zero. (P. Griffiths, 1983, and V. Jurdjevic-F.M. Perez, 2002)

- Let $G_{\epsilon} = SO_{n+1}(R)$ when $\epsilon = 1$, SO(1, n) when $\epsilon = -1$, and $SE_n, \epsilon = 0$.
- Let $M_{\epsilon} = G_{\epsilon}/SO_n(R)$
- Write $K = K_0 + K_1, K_0 \in \mathfrak{k}_0, K_1 \in \mathfrak{k}^{\perp}$.
- I|K₁(t)|| = κ(t) where κ(t) is the first curvature of the projected curve x(t) on M_ϵ.
- $\frac{1}{2} \int_0^T ||K(t)||^2 dt = \frac{1}{2} \int_0^T \kappa(t)^2 dt + const$
- ▶ Elastica When $K_0 = 0 \kappa(t)$ is expressible in terms of elliptic functions, $\kappa^2(t)\tau(t) = constant$ and higher curvatures of x(t) are all zero. (P. Griffiths, 1983, and V. Jurdjevic-F.M. Perez, 2002)

- Let $G_{\epsilon} = SO_{n+1}(R)$ when $\epsilon = 1$, SO(1, n) when $\epsilon = -1$, and $SE_n, \epsilon = 0$.
- Let $M_{\epsilon} = G_{\epsilon}/SO_n(R)$
- Write $K = K_0 + K_1, K_0 \in \mathfrak{k}_0, K_1 \in \mathfrak{k}^{\perp}$.
- ► $||K_1(t)|| = \kappa(t)$ where $\kappa(t)$ is the first curvature of the projected curve x(t) on M_{ϵ} .
- $\frac{1}{2} \int_0^T ||K(t)||^2 dt = \frac{1}{2} \int_0^T \kappa(t)^2 dt + const$
- ▶ Elastica When $K_0 = 0 \kappa(t)$ is expressible in terms of elliptic functions, $\kappa^2(t)\tau(t) = constant$ and higher curvatures of x(t) are all zero. (P. Griffiths, 1983, and V. Jurdjevic-F.M. Perez, 2002)

- Let $G_{\epsilon} = SO_{n+1}(R)$ when $\epsilon = 1$, SO(1, n) when $\epsilon = -1$, and $SE_n, \epsilon = 0$.
- Let $M_{\epsilon} = G_{\epsilon}/SO_n(R)$
- Write $K = K_0 + K_1, K_0 \in \mathfrak{k}_0, K_1 \in \mathfrak{k}^{\perp}$.
- ► $||K_1(t)|| = \kappa(t)$ where $\kappa(t)$ is the first curvature of the projected curve x(t) on M_{ϵ} .
- $\frac{1}{2} \int_0^T ||K(t)||^2 dt = \frac{1}{2} \int_0^T \kappa(t)^2 dt + const$
- ► Elastica When $K_0 = 0 \kappa(t)$ is expressible in terms of elliptic functions, $\kappa^2(t)\tau(t) = constant$ and higher curvatures of x(t) are all zero. (P. Griffiths, 1983, and V. Jurdjevic-F.M. Perez, 2002)

$$\blacktriangleright \mathfrak{p} = \{P \in sl_{n+1}(R) : P^T = P\}, \mathfrak{k} = so_{n+1}(R)$$

- We are in $\mathfrak{p} \ltimes so_n(R)$ with $\frac{dP}{dt} = [K, P], \frac{dK}{dt} = [B, P].$
- On coadjoint orbit through rank one matrices

$$P(t) = q(t) \otimes q(t) - \frac{1}{n} ||q_0||^2 I, K(t) = q(t) \wedge p(t)$$
, and

$$H = \frac{1}{2} \langle K, K \rangle_{\mathfrak{h}} + \langle A, P \rangle_{\mathfrak{h}} = \frac{1}{2} (||p|^2||q||^2) + (Aq, q).$$

- ▶ The equations for q(t) and p(t) are also Hamiltonian in $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ with respect to $\hat{H} = \frac{1}{2}(||p||^2 + (Bq \cdot q))$.
- *Ĥ* is the Hamiltonian for the mechanical problem of finding the motion of a particle on the sphere under a quadratic potential (*Bq* · *q*). (C. Newmann, 1859).
- A detailed analysis of spectral invariants of $L_{\lambda} = \frac{1}{\lambda}P K + \lambda B$ recovers the formulas of J. Moser in proving complete integrability of Newmann's problem (Chern Symposium 1979)

Velimir Jurdjevic

- $\flat \mathfrak{p} = \{P \in sl_{n+1}(R) : P^T = P\}, \mathfrak{k} = so_{n+1}(R)$
- We are in $\mathfrak{p} \ltimes so_n(R)$ with $\frac{dP}{dt} = [K, P], \frac{dK}{dt} = [B, P].$
- On coadjoint orbit through rank one matrices $P(t) = q(t) \otimes q(t) - \frac{1}{n} ||q_0\rangle ||^2 I, K(t) = q(t) \wedge p(t), \text{ and}$ $H = \frac{1}{2} \langle K, K \rangle_{\mathfrak{h}} + \langle A, P \rangle_{\mathfrak{h}} = \frac{1}{2} (||p|^2||q||^2) + (Aq,q).$
- ▶ The equations for q(t) and p(t) are also Hamiltonian in $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ with respect to $\hat{H} = \frac{1}{2}(||p||^2 + (Bq \cdot q))$.
- *Ĥ* is the Hamiltonian for the mechanical problem of finding the motion of a particle on the sphere under a quadratic potential (*Bq* ⋅ *q*). (C. Newmann, 1859).
- A detailed analysis of spectral invariants of $L_{\lambda} = \frac{1}{\lambda}P K + \lambda B$ recovers the formulas of J. Moser in proving complete integrability of Newmann's problem (Chern Symposium 1979)

$$\flat \mathfrak{p} = \{P \in sl_{n+1}(R) : P^T = P\}, \mathfrak{k} = so_{n+1}(R)$$

- We are in $\mathfrak{p} \ltimes so_n(R)$ with $\frac{dP}{dt} = [K, P], \frac{dK}{dt} = [B, P].$
- On coadjoint orbit through rank one matrices

$$P(t) = q(t) \otimes q(t) - \frac{1}{n} ||q_0\rangle ||^2 I, K(t) = q(t) \wedge p(t), \text{ and}$$
$$H = \frac{1}{2} \langle K, K \rangle_{\mathfrak{h}} + \langle A, P \rangle_{\mathfrak{h}} = \frac{1}{2} (||p|^2||q||^2) + (Aq, q).$$

- ▶ The equations for q(t) and p(t) are also Hamiltonian in $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ with respect to $\hat{H} = \frac{1}{2}(||p||^2 + (Bq \cdot q))$.
- *Ĥ* is the Hamiltonian for the mechanical problem of finding the motion of a particle on the sphere under a quadratic potential (*Bq* ⋅ *q*). (C. Newmann, 1859).
- A detailed analysis of spectral invariants of $L_{\lambda} = \frac{1}{\lambda}P K + \lambda B$ recovers the formulas of J. Moser in proving complete integrability of Newmann's problem (Chern Symposium 1979)

$$\flat \mathfrak{p} = \{P \in sl_{n+1}(R) : P^T = P\}, \mathfrak{k} = so_{n+1}(R)$$

- We are in $\mathfrak{p} \ltimes so_n(R)$ with $\frac{dP}{dt} = [K, P], \frac{dK}{dt} = [B, P].$
- On coadjoint orbit through rank one matrices

$$P(t) = q(t) \otimes q(t) - \frac{1}{n} ||q_0\rangle ||^2 I, K(t) = q(t) \wedge p(t), \text{ and}$$
$$H = \frac{1}{2} \langle K, K \rangle_{\mathfrak{h}} + \langle A, P \rangle_{\mathfrak{h}} = \frac{1}{2} (||p|^2||q||^2) + (Aq, q)$$

- ► The equations for q(t) and p(t) are also Hamiltonian in $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ with respect to $\hat{H} = \frac{1}{2}(||p||^2 + (Bq \cdot q))$.
- *Ĥ* is the Hamiltonian for the mechanical problem of finding the motion of a particle on the sphere under a quadratic potential (*Bq* · *q*). (C. Newmann, 1859).
- A detailed analysis of spectral invariants of $L_{\lambda} = \frac{1}{\lambda}P K + \lambda B$ recovers the formulas of J. Moser in proving complete integrability of Newmann's problem (Chern Symposium 1979)

$$\flat \mathfrak{p} = \{P \in sl_{n+1}(R) : P^T = P\}, \mathfrak{k} = so_{n+1}(R)$$

- We are in $\mathfrak{p} \ltimes so_n(R)$ with $\frac{dP}{dt} = [K, P], \frac{dK}{dt} = [B, P].$
- On coadjoint orbit through rank one matrices

$$P(t) = q(t) \otimes q(t) - \frac{1}{n} ||q_0\rangle ||^2 I, K(t) = q(t) \wedge p(t), \text{ and}$$
$$H = \frac{1}{2} \langle K, K \rangle_{\mathfrak{h}} + \langle A, P \rangle_{\mathfrak{h}} = \frac{1}{2} (||p|^2||q||^2) + (Aq, q)$$

- ► The equations for q(t) and p(t) are also Hamiltonian in $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ with respect to $\hat{H} = \frac{1}{2}(||p||^2 + (Bq \cdot q))$.
- *Ĥ* is the Hamiltonian for the mechanical problem of finding the motion of a particle on the sphere under a quadratic potential (*Bq* · *q*). (C. Newmann, 1859).
- A detailed analysis of spectral invariants of $L_{\lambda} = \frac{1}{\lambda}P K + \lambda B$ recovers the formulas of J. Moser in proving complete integrability of Newmann's problem (Chern Symposium 1979)
Jacobi-Newmann- Moser case

$$\flat \mathfrak{p} = \{P \in sl_{n+1}(R) : P^T = P\}, \mathfrak{k} = so_{n+1}(R)$$

- We are in $\mathfrak{p} \ltimes so_n(R)$ with $\frac{dP}{dt} = [K, P], \frac{dK}{dt} = [B, P].$
- On coadjoint orbit through rank one matrices

$$P(t) = q(t) \otimes q(t) - \frac{1}{n} ||q_0\rangle ||^2 I, K(t) = q(t) \wedge p(t), \text{ and}$$
$$H = \frac{1}{2} \langle K, K \rangle_{\mathfrak{h}} + \langle A, P \rangle_{\mathfrak{h}} = \frac{1}{2} (||p|^2||q||^2) + (Aq, q)$$

- ► The equations for q(t) and p(t) are also Hamiltonian in $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ with respect to $\hat{H} = \frac{1}{2}(||p||^2 + (Bq \cdot q))$.
- *Ĥ* is the Hamiltonian for the mechanical problem of finding the motion of a particle on the sphere under a quadratic potential (*Bq* · *q*). (C. Newmann, 1859).
- A detailed analysis of spectral invariants of $L_{\lambda} = \frac{1}{\lambda}P K + \lambda B$ recovers the formulas of J. Moser in proving complete integrability of Newmann's problem (Chern Symposium 1979)

- ▶ What is the geometric significance behind the optimal control problem of minimizing $\frac{1}{2} \int_0^T \langle \phi(u), u \rangle$ dt over the trajectories of $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}$?
- Are there other cases (corresponding to different φ) that admit representations with spectral parameter?
- Integration on arbitrary orbits?
- ▶ Integration on the quotient spaces *G*/*K* where *K* is the Lie group whose Lie algebra is *ℓ*.

- ▶ What is the geometric significance behind the optimal control problem of minimizing $\frac{1}{2} \int_0^T \langle \phi(u), u \rangle$ dt over the trajectories of $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}$?
- Are there other cases (corresponding to different φ) that admit representations with spectral parameter?
- Integration on arbitrary orbits?
- ▶ Integration on the quotient spaces *G*/*K* where *K* is the Lie group whose Lie algebra is *ŧ*.

- ▶ What is the geometric significance behind the optimal control problem of minimizing $\frac{1}{2} \int_0^T \langle \phi(u), u \rangle$ dt over the trajectories of $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}$?
- Are there other cases (corresponding to different φ) that admit representations with spectral parameter?
- Integration on arbitrary orbits?
- ▶ Integration on the quotient spaces *G*/*K* where *K* is the Lie group whose Lie algebra is *ŧ*.

- ▶ What is the geometric significance behind the optimal control problem of minimizing $\frac{1}{2} \int_0^T \langle \phi(u), u \rangle$ dt over the trajectories of $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}$?
- Are there other cases (corresponding to different φ) that admit representations with spectral parameter?
- Integration on arbitrary orbits?
- ▶ Integration on the quotient spaces *G*/*K* where *K* is the Lie group whose Lie algebra is *ŧ*.

- ▶ What is the geometric significance behind the optimal control problem of minimizing $\frac{1}{2} \int_0^T \langle \phi(u), u \rangle$ dt over the trajectories of $\frac{dg}{dt} = g(B + u(t)), u(t) \in \mathfrak{k}$?
- Are there other cases (corresponding to different φ) that admit representations with spectral parameter?
- Integration on arbitrary orbits?
- ▶ Integration on the quotient spaces *G*/*K* where *K* is the Lie group whose Lie algebra is *ŧ*.