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Jacobi’s problem
I Jacobi’s Geodesic problem-1835: Find a curve x(t) on the

ellipsoid E = {x ∈ Rn+1 :
∑n

i=0
1
ai

x2
i = 1 that connects two

given points of E whose length L =
∫ 1

0

√∑n
i=0(dxi

dt )2 dt is
minimal.

I Jacobi’s method of solution: Elliptical coordinates: u0, u1, u2.
Solutions of x2

1
a1−u +

x2
2

a2−u +
x2

3
a3−u = 1

I If a1 < a2 < a3, then u0 < a1 < u1 < a2 < u2 < a3.
I u1, u2 are the coordinates on the ellipsoid

∑3
i=1

x2
i

ai−u0
= 1.

I ds2 = (u2 − u1)( u2−u0
f (u2)

du2
2 −

u1−u0
f (u1)

du2
1), f (u) =

4(a1 − u)(a2 − u)(a3 − u)

I Associated Hamiltonian: H = 1
u2−u1

( f (u2)
u2−u0

p2
2 −

f (u1)
u1−u0

p2
1) = 1.

I 1
u2−u1

( f (u2)
u2−u0

∂S
∂u2

2 − f (u1)
u1−u0

∂S
∂u1

2
) = 1 Jacobi’s equation-Separable

I
√

u2−u0
f (u2)(u2−α)du2 −

√
u1−u0

f (u1)(u1−α)du1 = 0, α constant.
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J. Moser and the problem of Jacobi:
I Integrability by the method of sparation of variables- Inverse

method ( See Mechanics by Landau and Lifschitz).
I J. Moser, 1975: Jacobi’s problem in the coordinates x0, . . . , xn of

the ambient space Rn+1.
I Basic problem: How to write the Hamiltonian for optimal

problems in which tangents of curves ( i.e., controls) are
constrained by state constraints?

I On the ellipsoid E = {x ∈ Rn+1 : (x,A−1x) = 1}, dx
dt (t) = u(t),

(u(t),Ax(t)) = 0.
I Moser’s resolution: H = H0 + λ1G1 + λG2, H0 is the ambient

Hamiltonian 1
2
∑n+1

i=1 p2
i , G1 = (x,A−1x)− 1,G2 = (x,A−1p).

Choose λ1, λ2 so that the cotangent bundle G1 = G2 = 0
invariant under ~H, i.e., {H,G1} = {H,G2} = 0 there.

I λ1 = 1
{G1,G2}{H0,G2} = (p,A−1p)

2||A−1x||2 , λ2 = −{H0,G1}
{G1,G2} = (p,A−1x)

||A−1x||2 .

Velimir Jurdjevic University of Toronto
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Integrals of motion
I dx

dt = ∂H
∂p |G1=G2=0 = p, dp

dt = −∂H
∂x |G1=G2=0 = − (p,A−1p)

2||A−1x||2 A−1x
I Integrals of motion;

Fk = p2
k +

∑n
j=0,j 6=k

(xjpk−xkpj)
2

(ak−aj)
), k = 0, . . . , n,

A = diag(a0, . . . , an).
I There are n functionally independent integrals generated by

F0, . . . ,Fn (
∑n

i=0 Fi = H = 1), and {Fi,Fj} = 0.
I Jacobi’s problem is Liouville integrable.
I Arnold’s querry: What are the hidden symmetries that account

for the integrability of Jacobi’s problem?
I My earlier work suggested that ”all” integrable systems (tops,

elastic problems, Toda lattices,etc.) are the projections of
left-invariant Hamiltonian systems on Lie groups with additional
symmetries.

I Question: Are ”hidden” symmetries hidden in Lie algebras and
Lie groups?Velimir Jurdjevic University of Toronto

Jacobi’s geodesic problem and Lie groups
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Main point of the talk- Spectral representation and hidden
symmetries

I The elliptic geodesic problem on Sn is equivalent to Jacobi’s
problem on En.

I The cotangent bundle of the sphere Sn is a coadjoint orbit.
I The Hamiltonian system of the geodesic problem on Sn when

represented on the coadjoint orbit can be seen as the restricition
of a left invariant Hamiltonian system on the semidirect product
SOn+1(R) o Symn+1

I This Hamiltonian system admits a spectral matrix representation
- the spectral invariants generate the integrals of motion for the
elliptic geodesic problem which correspond to the integrals
Fk, k = 0, 1, . . . , n on the ellipsoid.

I This recognition identifies a large class of intergrable problems
in which Jacobi’s problem is only a particular case.

Velimir Jurdjevic University of Toronto
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Elliptic geodesic problem on the sphere
I M = Sn = {x ∈ Rn+1 : ||x|| = 1} and A is an (n + 1)× (n + 1)

diagonal matrix with positive diagonal entries a0, . . . , an.
I x(t) a curve in M, (dx

dt ,A
dx
dt ) is called Elliptic metric.

I Length=
∫ T

0

√
(dx

dt (t),A dx
dt (t)) dt, (x(t), dx

dt ) = 0.
I Corresponding time optimal control problem: Minimize

∫ t
0 ds

over the trajectories (x(s), u(s)) in M of the control system
dx
ds = u(s),C1 = (u(s), x(s)) = 0,C2 = (u(s),Au(s))− 1 = 0,
x(0) = x0, x(t) = x1.

I (PMP) with constraints: Let
T?Sn = {(x, p) : ||x|| = 1, x · p = 0}.

I Ham. lift: hu(x, p) = −1 + (p, u)− λ1C1 − 1
2λ2C2 subject to

C1 = 0,C2 = 0.
I Maximality condition⇒ λ2Au = p− λ1x.
I C1 = 0⇒ λ1 = (A−1p,x)

(A−1x,x) .
Velimir Jurdjevic University of Toronto

Jacobi’s geodesic problem and Lie groups
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Hamiltonian equations
I C2 = 0⇒ (A−1p− λ1x, p− λ1x) = λ2

2 and hu = 0⇒ λ2 = 1.
I This yields a Hamiltonian H0 = 1

2(A−1(p− λ1x), (p− λ1x)) in
Rn+1 × Rn+1.

I The ” right” Hamiltonian H is given by H = H0 + λ3C3 + λ4C4,
C3 = ||x||2 − 1, C4 = (x, p).

I {H0,C3} = {H0,C4} = 0⇒ λ3 = 1
2 , λ4 = 0.

I H = 1
2(A−1(p− λ1x), (p− λ1x)) + 1

2(||x||2 − 1).
I Geodesic equations on the sphere: λ1 = (A−1p,x)

(A−1x,x) ,
dx
dt = ∂H

∂p = A−1(p− λ1x), dp
dt = −∂H

∂x = λ1(A−1(p− λ1x)− x
subject to H0 = 1

2 , i.e., (A−1(p− λ1x), (p− λ1x)) = 1
I Passage to the ellipsoid y = A
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Semidirect product

I g = sln+1(R), p = {A ∈ g : AT = A}, k = son+1(R).

I The Killing form 〈A,B〉 = − 1
2 Tr(AB).

I g = p⊕ k and [p, p] ⊆ k, [p, k] ⊆ p, [k, k] ⊆ k.
I g∗ the dual of g.
I l ∈ g∗ ←→ L ∈ g iff l(X) = 〈L,X〉∀X ∈ g.
I Proposition. The coadjoint orbit of the semidirect product

G = pn SOn+1(R) through a matrix X0 = x0 ⊗ x0 − ||x0||2
n+1 I is

equal to
{P + K) : P = x⊗ x− ||x||

2

n+1 I,K = x ∧ p, ||x|| = ||x0||, p · x = 0}
and is isomorphic to the cotangent bundle of the sphere
||x|| = ||x0|| (T. Ratiu, 1980).

I (x, p) ∈ T∗Sn ⇐⇒ P + K ∈ p⊕ k.
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Spectral representation
I Geodesic equations on the coadjoint orbit ( after the

reparametrization ds
dt = (x(t) · A−1x(t))−1:

dP
ds = [A−1KA−1,P], dK

ds = [A−1KA−1,K] + [A−1,P].

I Spectral representation: dLλ
ds = [Ωλ,Lλ] where

I Lλ = P− λK − λ2A,Ωλ = A−1KA−1 − λA−1.
I Proof: dLλ

ds = [A−1KA−1,P]− λ([A−1KA−1,K] + [A−1,P]) =
[A−1KA−1 − λA−1,P− λK]− λ2[A−1,K] = [Ωλ,Lλ]

I F(z) = Rzx(t) · x(t)(1 + Rzp(t) · p(t))− (Rzx(t) · p(t))2,
Rz = (zI − A)−1, is constant along the geodesic flow.(Newmann
problem, J. Moser, Chern Symposium(1979) ) (The spectral
invariants)

I Constants of motion
Fk(x, p) = x2

k +
∑n

j=1,j 6=k
(xjpk−xkpj)

2

ak−aj
, k = 0, . . . , n, or

I Gk(y, q) = q2
k +

∑n
j=1,j6=k

(yjqk−ykqj)
2

ak−aj
, k = 0, . . . , n
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Groups with k, p decompositions
I G is a semisimple Lie group, g is its Lie algebra.
I Assumption. g = p⊕ k, p is a vector space (Cartan space), k is a

Lie subalgebra of g and [p, p] = k, [p, k] = p.
I B ∈ p is said to be regular if {X ∈ p : [X,B] = 0} is a maximal

Abelian algebra in p.
I Natural control problem: dg

dt = g(B + u(t)), u(t) ∈ k, B regular.
I Controllability: Given g0 and g1 both in G there exist T > 0 and

a control u(t) ∈ k such that the solution g(t) with g(0) = g0 also
satisfies g(T) = g1.

I Suppose now that Q is a positive definite quadratic form on k.
Then for any boundary conditions g0 and g1 there exists T > 0
such that the optimal control problem Min 1

2

∫ T
0 Q(u(t), u(t))dt

has a solution.
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Left invariant Hamiltonians
I Special case 〈X,Y〉 = −Tr(ad(X) ◦ ad(Y)) (Cartan-Killing

form).
I Suppose φ : k→ k is a linear automorphism such that
〈φ(u), u〉 > 0, and 〈φ(u), v〉 = 〈 u, φ(v)〉∀u, v ∈ k. Then
Q(u, u) = 〈φ(u), u〉.

I Background: T∗G = g∗ × G. l ∈ g∗ ←→ L ∈ g via the Killing
form. L = P + K,P ∈ p,K ∈ k.

I Normal extrema Maxu(− 1
2〈φ(u), u〉+ 〈B,P〉+ 〈u,K〉 occurs

when u = φ−1(K). Hence normal extrema are integral curves of
a single Hamiltonian H = 1

2〈K, φ
−1(K)〉+ 〈B,P〉.

I g∗ is a double Poisson algebra: one induced by the semisimple
Lie bracket on g and the other by the semidirect product on pn k.

I dK
dt = [φ−1(K),K] + [B,P], dP

dt = [φ−1(K),P] + ε[B,K], ε = 0, 1.
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G = SLn(R)

I g = sln(R), k = son(R) and p = {X ∈ sln(R) : XT = X}.
I 〈X,Y〉 = −1

2 Trace(XY)

I If A is a positive diagonal matrix take φ(K) = AKA,∀K ∈ k.
I 〈AK1A,K2〉 = 〈AK2A,K1〉, 〈AKA,K〉 > 0

I B = A−1 − Trace(A−1)
n I.

I H = 〈A−1KA−1,K〉+ 〈B,P〉.
I dK

dt = [A−1KA−1,K] + [A−1,P], dP
dt = [A−1KA−1,P] + ε[A−1,K].

I Spectral representation:
Ωλ = A−1KA−1 − λA−1,Lλ = P− λK − (λ2 − ε)A.

I dLλ
dt = [Ωλ,Lλ]

I The spectral invariants Poisson commute(A. Reyman)
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G = SLn(R)

I g = sln(R), k = son(R) and p = {X ∈ sln(R) : XT = X}.
I 〈X,Y〉 = −1

2 Trace(XY)

I If A is a positive diagonal matrix take φ(K) = AKA,∀K ∈ k.
I 〈AK1A,K2〉 = 〈AK2A,K1〉, 〈AKA,K〉 > 0

I B = A−1 − Trace(A−1)
n I.

I H = 〈A−1KA−1,K〉+ 〈B,P〉.
I dK

dt = [A−1KA−1,K] + [A−1,P], dP
dt = [A−1KA−1,P] + ε[A−1,K].

I Spectral representation:
Ωλ = A−1KA−1 − λA−1,Lλ = P− λK − (λ2 − ε)A.

I dLλ
dt = [Ωλ,Lλ]

I The spectral invariants Poisson commute(A. Reyman)
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I Back to the general case H = 1
2〈K, φ

−1(K)〉+ 〈B,P〉.
I For which φ is the above Hamiltonian integrable?
I The simplest case: φ = I. Then,
I Ham. Eq.: dK

dt = [K,K] + [B,P] = [B,P], dP
dt = [K,P] + ε[B,K].

I Spectral representation:
Ωλ = P− εB,Lλ = P− λK + (λ2 − ε)B: dLλ

dt = [Ωλ,Lλ].
I Extra integrals of motion: Let k0 = {K ∈ k : [K,B] = 0}.
I k0 is a Lie subalgebra of k. Let k⊥0 be the orthogonal complement

relative to the Killing form.
I Since 〈k0, [B,P]〉 = 〈[k0,B],P〉 = 0, [B,P] ∈ k⊥0 .
I So K0(t) is constant. (A. Bolsinov and J. Zimmerman).
I Simply Connected Spaces of Constant Curvature:

Sn = SOn+1/SOn,Hn = SO(1, n)/SOn,Rn = SEn/SOn.

pε = {P =

(
0 −εpT

p 0

)
, p ∈ Rn}, k = son(R).
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Integrable cases

I Let Gε = SOn+1(R) when ε = 1, SO(1, n) when ε =
−1, and SEn, ε = 0.

I Let Mε = Gε/SOn(R)

I Write K = K0 + K1,K0 ∈ k0,K1 ∈ k⊥.

I ||K1(t)|| = κ(t) where κ(t) is the first curvature of the projected
curve x(t) on Mε.

I 1
2

∫ T
0 ||K(t)||2 dt = 1

2

∫ T
0 κ(t)2 dt + const

I Elastica When K0 = 0 κ(t) is expressible in terms of elliptic
functions, κ2(t)τ(t) = constant and higher curvatures of x(t) are
all zero. (P. Griffiths,1983, and V. Jurdjevic-F.M. Perez, 2002)
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Jacobi-Newmann- Moser case
I p = {P ∈ sln+1(R) : PT = P}, k = son+1(R)
I We are in pn son(R) with dP

dt = [K,P], dK
dt = [B,P].

I On coadjoint orbit through rank one matrices
P(t) = q(t)⊗ q(t)− 1

n ||q0)||2I,K(t) = q(t) ∧ p(t), and

H =
1
2
〈K,K〉h + 〈A,P〉h =

1
2

(||p|2||q||2) + (Aq, q).

I The equations for q(t) and p(t) are also Hamiltonian in
Rn+1 × Rn+1 with respect to Ĥ = 1

2(||p||2 + (Bq · q).
I Ĥ is the Hamiltonian for the mechanical problem of finding the

motion of a particle on the sphere under a quadratic potential
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2(||p||2 + (Bq · q).
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Some natural questions

I What is the geometric significance behind the optimal control
problem of minimizing 1

2

∫ T
0 〈φ(u), u〉 dt over the trajectories of

dg
dt = g(B + u(t)), u(t) ∈ k ?

I Are there other cases (corresponding to different φ) that admit
representations with spectral parameter?

I Integration on arbitrary orbits?
I Integration on the quotient spaces G/K where K is the Lie group

whose Lie algebra is k.

I THANK YOU.

Velimir Jurdjevic University of Toronto
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