Local optimality and structural stability of Pontryagin extremals with singular arcs

Laura Poggiolini Gianna Stefani

Dipartimento di Sistemi e Informatica Università di Firenze

INDAM meeting Geometric Control and sub-Riemannian Geometry

Cortona, Italy, May 21st - 25th, 2012

The Dubins–Dodgem car problem 1/2

$$T \to \min \dot{x}_1(t) = \cos(x_3) \qquad x_1(0) = h \qquad x_1(T) = 0 \dot{x}_2(t) = \sin(x_3) \qquad x_2(0) = 0 \qquad x_2(T) = 0 \qquad u \in [-1, 1]. \dot{x}_3(t) = u \qquad x_3(0) = \frac{\pi}{2} \qquad x_3(T) \in \mathbb{R}$$

$$x := \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \qquad f_0(x) = \begin{pmatrix} \cos(x_3) \\ \sin(x_3) \\ 0 \end{pmatrix} \qquad f_1(x) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$\dot{x} = f_0(x) + uf_1(x) \qquad x(0) = \begin{pmatrix} h \\ 0 \\ \frac{\pi}{2} \end{pmatrix} \qquad x(T) \in \exp \mathbb{R}f_1(0)$$

The Dubins–Dodgem car problem 2/2

$$T \to \min \dot{x}_1(t) = \cos(x_3) \qquad x_1(0) = h \qquad x_1(T) = 0 \dot{x}_2(t) = \sin(x_3) \qquad x_2(0) = 0 \qquad x_2(T) = 0 \qquad u \in [-1, 1], \dot{x}_3(t) = u \qquad x_3(0) = \frac{\pi}{2} \qquad x_3(T) \in 2\pi\mathbb{Z}$$

The problem 1/2

$\begin{array}{ll} \text{minimise } \mathcal{T} \text{ subject to} \\ \dot{\xi}(t) = f_0(\xi(t)) + u(t)f_1(\xi(t)) & t \in [0, T] \\ \xi(0) = x_0, \quad \xi(\mathcal{T}) \in \mathcal{N}_f, & u(t) \in [-1, 1] \end{array}$

Reference normal Pontryagin extremal $(\hat{T}, \hat{\xi}, \hat{u})$ with adjoint covector

 $\widehat{\lambda}$: $[0, \widehat{T}] \to T^* \mathbb{R}^n$

Aim

Look for second order conditions that ensure strong local optimality of the triplet

The problem 2/2

minimise T subject to $\dot{\xi}(t) = f_0^r(\xi(t)) + u(t)f_1^r(\xi(t)) \quad t \in [0, T]$ $\xi(0) = x_0^r, \quad \xi(T) \in \mathcal{N}_f^r, \qquad u(t) \in [-1, 1]$

Aim

Say the nominal problem corresponds to r = 0. If |r| < R, does this perturbed problem have a strong local solution that is near $(\hat{T}, \hat{\xi}, \hat{u})$? Does it look like $(\hat{T}, \hat{\xi}, \hat{u})$? Is it – at least in some local sense – the unique solution?

Different kinds of strong local optimality

(time, state)-local optimality

there exist $\varepsilon > 0$ and a neighbourhood \mathcal{V} of the graph of $\hat{\xi}$ in $\mathbb{R} \times \mathbb{R}^n$ such that the triplet is optimal among all the triplets (\mathcal{T}, ξ, u) such that

$$\left| T - \widehat{T} \right| < \varepsilon$$

$$\Xi := \operatorname{Graph}(\xi) \in \mathcal{V}$$

state-local optimality

there exists a neighbourhood \mathcal{U} of the range $\widehat{\xi}([0, \widehat{\tau}])$ of $\widehat{\xi}$ such that the triplet is optimal among all the triplets (\mathcal{T}, ξ, u) such that

•
$$\xi([0, T]) \in \mathcal{U}$$

Addressed cases: 1/2

 \mathcal{N}_{f}^{r} is an integral line of f_{1}^{r} & \widehat{u} is bang-singular

$$\widehat{u}(t) \equiv u_{1} \in \{-1, 1\} \qquad t \in [0, \widehat{\tau})$$

$$\widehat{u}(t) \in (-1, 1) \qquad t \in (\widehat{\tau}, \widehat{T}]$$

$$u$$

$$\widehat{\tau} \qquad \widehat{T} \qquad t$$

• $\mathcal{N}_{f}^{r} = \{\exp sf_{1}^{r}(y^{r}): s \in \mathbb{R}\}$ W.I.o.g choose $y^{0} = \widehat{x}_{f} := \widehat{\xi}(\widehat{T})$

Addressed cases: 2/2

 $\mathcal{N}_{f}^{r} = \{y^{r}\} \& \widehat{u} \text{ is bang-singular-bang}$

- $\bullet \ \widehat{u}(t) \equiv u_1 \in \{-1,1\} \qquad t \in [0,\widehat{\tau}_1)$
- $\hat{u}(t) \in (-1, 1)$ $t \in (\hat{\tau}_1, \hat{\tau}_2)$
- $\blacktriangleright \ \widehat{u}(t) \equiv u_2 \in \{-1,1\} \qquad t \in (\widehat{\tau}_2,\widehat{T})$

Some quantities

- Reference vector field $\hat{f}_t(x) := f_0(x) + \hat{u}(t)f_1(x)$
- Reference Hamiltonian $\widehat{F}_t(\ell) := \langle \ell, \widehat{f}_t(\pi \ell) \rangle$
- $\blacktriangleright \ F_i(\ell) := \langle \ell \ , \ f_i(\pi \ell) \rangle \qquad i = 0, 1$
- ► Maximised Hamiltonian $F^{\max}(\ell) := \max_{u \in [-1,1]} (F_0(\ell) + uF_1(\ell))$

$$\blacktriangleright \Sigma := \{\ell \in T^*M \colon F_1(\ell) = 0\}$$

Remark. |u(t)| < 1, $\forall t$ in the singular interval

 $\implies \widehat{\lambda}(t) \in \Sigma \quad \forall t \text{ in the singular interval}$

Hamiltonian approach to (time, state)-local optimality

a suitable Hamiltonian (possibly time-dependent)

$$\begin{split} H\colon (t,\ell)\in [0,\widehat{T}]\times T^*\mathbb{R}^n &\mapsto H_t(\ell)\in \mathbb{R}\\ \mathcal{H}_t(\Sigma)\subset \Sigma \quad \forall t\in [\widehat{\tau},\widehat{T}]\\ H_t\geq F^{\max}, \quad H_t\circ\widehat{\lambda}(t)=\widehat{F}_t\circ\widehat{\lambda}(t), \quad \frac{\mathsf{d}}{\mathsf{d}t}\widehat{\lambda}(t)=\overrightarrow{H}_t\circ\widehat{\lambda}(t) \end{split}$$

▶ Let $\widehat{x}_1 := \widehat{\xi}(\widehat{\tau})$: find a smooth function $\alpha : \mathbb{R}^n \to \mathbb{R}$ such that

•
$$d\alpha(\widehat{x}_1) = \widehat{\lambda}(\widehat{\tau})$$

•
$$\Lambda := \{(d\alpha(x), x)\} \subset \Sigma$$

- Λ has some nice properties with respect to the flow ${\cal H}$

Hamiltonian approach to (time, state)-local optimality 2

Property $\mathcal{H}^*(p \, dq - H_t \, dt)$ is exact on $[0, \hat{T}] \times \Lambda$

Lifting trajectories

 $\mathcal{H}^*(p \, \mathrm{d} q - H_t \, \mathrm{d} t)$ is exact \Longrightarrow

$$0 = \oint \mathcal{H}^*(p \, \mathrm{d}q - H_t \, \mathrm{d}t) = \int_{(\mathrm{id} \times \pi \mathcal{H})^{-1}(\widehat{\Xi})}^{\mathcal{H}^*(p \, \mathrm{d}q - H_t \, \mathrm{d}t)} - \int_{(\mathrm{id} \times \pi \mathcal{H})^{-1}(\Gamma)}^{\mathcal{H}^*(p \, \mathrm{d}q - H_t \, \mathrm{d}t)} - \int_{(\mathrm{id} \times \pi \mathcal{H})^{-1}(\Xi)}^{\mathcal{H}^*(p \, \mathrm{d}q - H_t \, \mathrm{d}t)} 0 \le - \int_{(\mathrm{id} \times \pi \mathcal{H})^{-1}(\Gamma)}^{\mathcal{H}^*(p \, \mathrm{d}q - H_t \, \mathrm{d}t)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

 $\mathcal{H}^*(p \, \mathrm{d}q - H_t \, \mathrm{d}t)$ is exact \Longrightarrow

$$0 \leq \int_{0}^{1} \left(-F_{1}\left(\overbrace{\mathcal{H}_{t(a)}\left(\left(\pi\mathcal{H}_{t(a)}\right)^{-1}(\gamma(a))\right)}^{\in \Sigma} \right) +H_{t(a)}\left(\mathcal{H}_{t(a)}\left(\left(\pi\mathcal{H}_{t(a)}\right)^{-1}(\gamma(a))\right)\right)\left(T-\widehat{T}\right)\right) da$$
$$= \int_{0}^{1} \left(1+O\left(T-\widehat{T}\right)\right)\left(T-\widehat{T}\right) da$$

which implies $T \geq \hat{T}$.

Hamiltonian approach to state-local optimality

a suitable Hamiltonian

$$\begin{split} H \colon \ell \in T^* \mathbb{R}^n \mapsto H(\ell) \in \mathbb{R} \\ \mathcal{H}_t(\Sigma) \subset \Sigma \quad t \in [\widehat{\tau}, \widehat{T}] \\ H \geq F^{\max}, \quad H \circ \widehat{\lambda}(t) = \widehat{F}_t \circ \widehat{\lambda}(t), \quad \frac{\mathsf{d}}{\mathsf{d}t} \widehat{\lambda}(t) = \overrightarrow{H} \circ \widehat{\lambda}(t) \end{split}$$

Let x
₁ := ξ(τ): find a smooth function α: ℝⁿ → ℝ such that
 dα(ξ(τ)) = λ(τ)

- $\Lambda = \{(d\alpha(x), x)\} \subset \Sigma$
- A transverse to $\{H = 1\}$ in $\widehat{\lambda}(\tau)$

• $\Lambda_0 := \Lambda \cap \{H = 1\} \subset \Sigma$ is a (n-1)-dim manifold of $T^* \mathbb{R}^n$

Hamiltonian approach to state-local optimality 2

$$I := [-\delta, \widehat{T} + \delta]$$

Property

 $\begin{array}{l} H \text{ does not depend on time} \\ \implies \mathcal{H}^*(p \ dq) \text{ is exact on } [-\delta, \widehat{T} + \delta] \times \Lambda_0 \end{array}$

Lifting trajectories

 $\mathcal{H}^*(p \, \mathrm{d} q)$ is exact \implies

$$0 = \oint \mathcal{H}^*(p \, \mathrm{d} q) = \int_{(\pi \mathcal{H})^{-1}(\widehat{\xi})} \mathcal{H}^*(p \, \mathrm{d} q) - \int_{(\pi \mathcal{H})^{-1}(\gamma)} \mathcal{H}^*(p \, \mathrm{d} q) - \int_{(\pi \mathcal{H})^{-1}(\xi)} \mathcal{H}^*(p \, \mathrm{d} q)$$

$$= \int_{0}^{\widehat{T}} 1 \, \mathrm{d}t - \int_{0}^{s} F_{1} \circ \underbrace{\mathcal{H} \circ (\pi \mathcal{H})^{-1} \circ \gamma(a)}_{= 0} \, \mathrm{d}a$$
$$- \int_{0}^{T} \langle \mathcal{H} \circ (\pi \mathcal{H})^{-1}(\xi(t)), \ \dot{\xi}(t) \rangle \, \mathrm{d}t$$

$$\geq \widehat{T} - \int_0^T H(\mathcal{H} \circ (\pi \mathcal{H})^{-1}(\xi(t)) \, \mathrm{d}t = \widehat{T} - T.$$

which implies $T \geq \hat{T}$.

Necessary conditions

$$\begin{split} u_1 F_1(\widehat{\lambda}(t)) &\geq 0 & t \in [0, \widehat{\tau}) \\ F_1(\widehat{\lambda}(t)) &= 0 & F_0(\widehat{\lambda}(t)) = 1 & t \in [\widehat{\tau}, \widehat{T}] \\ F_{101}(\widehat{\lambda}(t)) &:= \langle \widehat{\lambda}(t), \ [f_1, [f_0, f_1]](\widehat{\xi}(t)) \rangle \geq 0 & t \in [\widehat{\tau}, \widehat{T}] \end{split}$$

By differentiation

$$\begin{split} F_{01}(\widehat{\lambda}(t)) &:= \langle \widehat{\lambda}(t), \ [f_0, f_1](\widehat{\xi}(t)) \rangle = 0 \qquad t \in [\widehat{\tau}, \widehat{T}] \\ (F_{001} + \widehat{u}(t)F_{101})(\widehat{\lambda}(t)) &= 0 \qquad t \in (\widehat{\tau}, \widehat{T}) \end{split}$$

where $F_{ijk}(p,q) := \langle p, [f_i, [f_j, f_k]](q) \rangle$

Assumption: regularity along the bang arc

$$u_1F_1(\widehat{\lambda}(t)) > 0$$
 $t \in [0, \widehat{\tau})$

The singular arc

Strong generalised Legendre condition

$$F_{101}(\widehat{\lambda}(t)) > 0 \qquad t \in [\widehat{\tau}, \widehat{T}]$$

$$\downarrow$$

$$\widehat{u}(t) = \frac{-F_{001}}{F_{101}}(\widehat{\lambda}(t)) \qquad t \in (\widehat{\tau}, \widehat{T})$$

 $F^{S} := F_0 - \frac{F_{001}}{F_{101}}F_1$ Hamiltonian of singular extremals

 $F_{ijk}(p,q) := \langle p, [f_i, [f_j, f_k]](q) \rangle$

PMP consequences at the junction point

The junction point

Regularity at the junction point

$$(u_1F_{001}+F_{101})(\widehat{\lambda}(\widehat{\tau}))>0$$

Equivalently \hat{u} is discontinuous at $\hat{\tau}$.

Geometric picture near the adjoint covector

$$F^{\max} = F_0 - u_1 F_1$$

Naive attempt

Choose $H_t = \begin{cases} H_1 := F_0 + u_1 F_1 & t \in [0, \hat{\tau}) \\ F_0 + a(t, \ell) F_1 & t \in [\hat{\tau}, \hat{\tau}] \end{cases}$ for example: $a(t, \ell) = \widehat{u}(t), \ a(t, \ell) = \frac{-F_{001}(\ell)}{F_{001}(\ell)}$... and start at time t = 0 from points ℓ in a neighbourhood of $\widehat{\lambda}(0)$ with the flow of \vec{H}_t : at some time $t(\ell)$ the flow crosses ΣBUT $u_1 F_{01}(\exp t(\ell)(\overrightarrow{F_0} + u_1\overrightarrow{F_1})(\ell)) < 0 \implies$ $u_1F_1(\exp(t-t(\ell))(\overrightarrow{F_0}+\overrightarrow{aF_1})\circ\exp t(\ell)(\overrightarrow{F_0}+u_1\overrightarrow{F_1})(\ell))<0$ for $t > t(\ell)$ Does not work: H_t is not the maximised Hamiltonian along the flow of \vec{H}_{t}

Changing from $F_0 + u_1F_1$ to $F_0 + |F_1|$ causes loss of invertibility

Change approach

$$t \in [\widehat{\tau}, \widehat{T}] \implies \widehat{\lambda}(t) \in \mathcal{S} := \{\ell \in T^* \mathbb{R}^n \colon F_1(\ell) = F_{01}(\ell) = 0\}$$

A new Hamiltonian (Stefani, 2004)

Regularity Assumptions \implies $\exists \chi: T^* \mathbb{R}^n \to [0, +\infty)$ smooth such that

•
$$\chi(\ell) = 0 \iff \ell \in S$$

•
$$\overrightarrow{\chi}(\ell) = 0$$
 for any $\ell \in \mathcal{S}$

• for any $\nu : (t, \ell) \in [0, \widehat{T}] \times T^* \mathbb{R}^n \mapsto \nu_t(\ell) \in \mathbb{R}$, the vector field $\overrightarrow{F_0 + \nu_t F_1 + \chi}$ is tangent to Σ The over-maximised Hamiltonian

$$H_{t}(\ell) = \begin{cases} F_{0}(\ell) + u_{1}F_{1}(\ell) & u_{1}F_{01}(\ell) \leq 0, \ t \in [0,\widehat{\tau}) \\ F_{0}(\ell) + u_{1}F_{1}(\ell) + \chi(\ell) & u_{1}F_{01}(\ell) > 0, \ t \in [0,\widehat{\tau}) \\ F_{0}(\ell) - \frac{F_{001}(\ell)}{F_{101}(\ell)}F_{1}(\ell) + \chi(\ell) & t \in [\widehat{\tau},\widehat{\tau}] \end{cases}$$

The Hamiltonian

$$\overbrace{F_0+u_1F_1+\chi}^{\uparrow}$$

 $F^{\mathcal{S}} := F_0 - \tfrac{F_{001}}{F_{101}}F_1$

The second variation

The dynamics is affine with respect to the control, so the classical second variation is completely degenerate \implies Proceed by perturbing:

- the switching time $\hat{\tau}$;
- the final time \hat{T} ;
- the singular control $\hat{u}|_{(\hat{\tau},\hat{T})}$

With the constraints $\xi(0) = \widehat{x}_0, \quad \xi(T) \in \mathcal{N}_f$

The second variation

Transform the problem into a Mayer one on the fixed time interval $[0, \hat{T}]$ by reparametrising time

$$\begin{array}{ll} \text{minimise} \quad t(\widehat{T}) \quad \text{subject to} \\ \dot{t}(s) = u_0(s), & t(0) = 0, \quad t(\widehat{T}) \in \mathbb{R} \\ \dot{\xi}(s) = u_0(s) \left(f_0 + u(s) f_1 \right) \left(\xi(s) \right) \quad \xi(0) = \widehat{x}_0, \quad \xi(\widehat{T}) \in \mathcal{N}_f \\ u_0(s) > 0, \quad u(s) \in [-1, 1] \end{array}$$

reference extended controls: $u_0 \equiv 1, \ u \equiv \hat{u}$ reference extended trajectory: $s \mapsto (s, \hat{\xi}(s))$ After a Goh's transformation the quadratic form is given by

$$\begin{split} J_{\text{ext}}''[(\gamma_0,\gamma_1,\varepsilon_0,\varepsilon_1,w)]^2 \\ &= \frac{1}{2} (\varepsilon_0(g_{\widehat{\tau}}^0+u_1g_{\widehat{\tau}}^1)+\varepsilon_1(g_{\widehat{\tau}}^0+\widehat{u}|_{\widehat{\tau}+}g_{\widehat{\tau}}^1)+\gamma_0g_{\widehat{\tau}}^1)^2 \cdot \beta_0(\widehat{x}_0) + \\ &+ \frac{1}{2} \int_{\widehat{\tau}}^{\widehat{\tau}} (w^2(s)[\dot{g}_s^1,g_s^1]+2w(s)\zeta(s)\cdot\dot{g}_s^1)\cdot\beta_0(\widehat{x}_0) \, \mathrm{d}s \end{split}$$

which is required to be coercive on the 5-tuplets $(\gamma_0, \gamma_1, \varepsilon_0, \varepsilon_1, w) \in \mathbb{R}^4 \times L^2([\hat{\tau}, \hat{T}])$ such that

$$\begin{split} \dot{\zeta}(s) &= \mathsf{w}(s) \dot{g}_{\mathfrak{s}}^{1}(\widehat{x}_{0}) \\ \zeta(\widehat{\tau}) &= \varepsilon_{0}(g_{\widehat{\tau}}^{0} + u_{1}g_{\widehat{\tau}}^{1})(\widehat{x}_{0}) + \varepsilon_{1} \left(g_{\widehat{\tau}}^{0} + \widehat{u}|_{\widehat{\tau}+} g_{\widehat{\tau}}^{1})(\widehat{x}_{0}) + \gamma_{0}g_{\widehat{\tau}}^{1}(\widehat{x}_{0}) \\ \zeta(\widehat{\tau}) &= \gamma_{1}g_{\widehat{\tau}}^{1}(\widehat{x}_{0}) \end{split}$$

admits a solution ζ .

The extended second variation cannot possibly be coercive: just choose the non null variation

$$arepsilon_0 = 1, \ arepsilon_1 = -1, \ \gamma_0 = \widehat{u}|_{\widehat{\tau}+} - u_1, \ \gamma_1 = 0, \ w \equiv 0$$

 $\implies J''_{\text{ext}} = 0$

The second variation

In order to obtain a possibly coercive extended second variation,

- renounce to perturbing the switching time $\hat{\tau}$;
- impose a stronger constraint on the final point:

$$\xi(T) = \widehat{\xi}(\widehat{T}) := \widehat{x}_f$$

The second variation

Transform the sub-problem into a Mayer one on the fixed time interval $[\hat{\tau}, \hat{T}]$ by reparametrising time

 $\begin{array}{ll} \text{minimise} \quad t(\widehat{T}) \quad \text{subject to} \\ \dot{t}(s) = u_0(s), \quad t(\widehat{\tau}) = \widehat{\tau}, \quad t(\widehat{T}) \in \mathbb{R} \\ \dot{\xi}(s) = u_0(s) \left(f_0 + u(s) f_1 \right) \left(\xi(s) \right) \quad \xi(\widehat{\tau}) = \widehat{x}_1 \quad \xi(\widehat{T}) = \widehat{x}_f \\ u_0(s) > 0, \quad u(s) \in [-1, 1] \end{array}$

 $\begin{aligned} \widehat{x}_1 &:= \widehat{\xi}(\widehat{\tau}), \qquad \widehat{\xi}(\widehat{T}) := \widehat{x}_f \\ \text{reference extended controls: } u_0 &\equiv 1, \ u \equiv \widehat{u} \\ \text{reference extended trajectory: } s \mapsto \left(s, \widehat{\xi}(s)\right) \end{aligned}$

Pull-back system

$$g_{s}^{i} := \widehat{S}_{t*}^{-1} f_{i} \circ \widehat{S}_{s}, \quad i = 0, 1$$

$$\widehat{g}_{s} := \widehat{S}_{s*}^{-1} \widehat{f}_{s} \circ \widehat{S}_{s} = g_{s}^{0} + \widehat{u}(s) g_{s}^{1}$$
minimise $\tau(\widehat{T})$ subject to
$$\dot{\tau}(s) = u_{0}(s) - 1,$$

$$\dot{\eta}(s) = \left((u_{0}(s) - 1) \widehat{g}_{s} + u_{0}(s) (u(s) - \widehat{u}(s)) g_{s}^{1} \right) (\eta(s))$$

$$\tau(\widehat{\tau}) = \widehat{\tau}, \quad \tau(\widehat{T}) \in \mathbb{R}, \quad \eta(\widehat{\tau}) = \widehat{x}_{1}, \quad \eta(\widehat{T}) = \widehat{x}_{1}$$

 $au(\widehat{ au}) = \widehat{ au}, \quad au(T) \in \mathbb{R}, \quad \eta(\widehat{ au}) = \widehat{ au}_1, \quad \eta(T) = \widehat{ au}_1$ $u_0(s) > 0, \quad |u(s)| \le 1$

constant reference trajectory $s \mapsto (\hat{\tau}, \hat{x}_1)$

(Agrachev-Stefani-Zezza 1998)

Let $\beta \colon \mathbb{R}^n \to \mathbb{R}$ such that $d\beta(\widehat{x}_1) = -\widehat{\lambda}(\widehat{\tau}) \in T^*_{\widehat{x}_1}\mathbb{R}^n$

$$J''[\delta u_0, \delta u]^2 = \frac{1}{2} \int_{\widehat{\tau}}^{\widehat{\tau}} \delta \eta(s) \cdot \left(\delta u_0(s) \, \widehat{g}_s + \delta u(s) \, g_s^1 \right) \cdot \beta(\widehat{x}_1) \, \mathrm{d}s$$

where δu_0 , δu , $\delta \eta$ satisfy

2nd variation associated to $\widehat{\lambda}\Big|_{[\widehat{\tau},\widehat{\tau}]}$

$$\begin{split} \dot{\delta\eta}_0(s) &= \delta u_0(s) & \delta\eta_0(\hat{\tau}) = 0 & \delta\eta_0(\hat{\tau}) \in \mathbb{R} \\ \dot{\delta\eta}(s) &= \delta u_0(s) \hat{g}_s(\hat{x}_1) + \delta u(s) g_s^1(\hat{x}_1) & \delta\eta(\hat{\tau}) = 0 & \delta\eta(\hat{\tau}) = 0 \\ (\delta u_0, \delta u) &\in L^2((\hat{\tau}, \hat{\tau}), \mathbb{R}^2). \end{split}$$

After a Goh's transformation the quadratic form is given by

$$\begin{aligned} J_{\text{ext}}''[(\varepsilon_0, \varepsilon_1, w)]^2 &= \frac{1}{2} (\varepsilon_0 f_0 + \varepsilon_1 f_1)^2 \cdot \beta(\widehat{x}_1) + \\ &+ \frac{1}{2} \int_{\widehat{\tau}}^{\widehat{\tau}} (w^2(s)[\dot{g}_s^1, g_s^1] \cdot \beta(\widehat{x}_1) + 2w(s)\zeta(s) \cdot \dot{g}_s^1 \cdot \beta(\widehat{x}_1)) \, \mathrm{d}s \end{aligned}$$

which is required to be coercive on the triplets $(\varepsilon_0, \varepsilon_1, w) \in \mathbb{R}^2 \times L^2([\hat{\tau}, \hat{T}])$ such that

$$\begin{aligned} \dot{\zeta}(s) &= w(s)\dot{g}_s^1(\widehat{x}_1) \\ \zeta(\widehat{\tau}) &= \varepsilon_0 f_0(\widehat{x}_1) + \varepsilon_1 f_1(\widehat{x}_1) \qquad \zeta(\widehat{T}) = 0 \end{aligned}$$

admits a solution ζ .

With a more appropriate choice of β the discrete part of $J''_{\rm ext}$ can be assumed to be null

Invertibility

The extended second variation $J_{\text{ext}}''[(\varepsilon_0, \varepsilon_1, w)]^2 = \frac{1}{2} \int_{\widehat{\tau}}^{\widehat{\tau}} (w^2(s)[\dot{g}_s^1, g_s^1] + 2w(s)\zeta(s) \cdot \dot{g}_s^1) \cdot \beta(\widehat{x}_1) \, \mathrm{d}s$

on the triplets $(\varepsilon_0, \varepsilon_1, w) \in \mathbb{R}^2 imes L^2([\widehat{\tau}, \widehat{T}])$ such that

$$\dot{\zeta}(s) = \mathbf{w}(s)\dot{g}_s^1(\widehat{x}_1) \quad \zeta(\widehat{\tau}) = \varepsilon_0 f_0(\widehat{x}_1) + \varepsilon_1 f_1(\widehat{x}_1) \quad \zeta(\widehat{T}) = 0$$

admits a solution ζ .

Assumption

- for (time, state)–local optimality
 - The extended second variation restricted to $\varepsilon_0 = 0$ is coercive.
- for state–local optimality
 - The extended second variation is coercive.
 - The reference trajectory is not self-intersecting.

Consequences ((time, state)-local optimality)

- $f_1(\widehat{x}_1) \neq 0$
- $\exists \alpha \colon \mathbb{R}^n \to \mathbb{R}$ such that

$$\Lambda := \left\{ \ell \in T^* \mathbb{R} \colon \ell = \mathsf{d} \alpha(x), \quad x \in \mathcal{O}(\widehat{x}_1) \right\}$$

is a *n*-dimensional sub-manifold of Σ

 \implies apply Hamiltonian methods

Consequences (state-local optimality)

- f_0 and f_1 are linearly independent at \widehat{x}_1
- $\exists \alpha_1 \colon \mathbb{R}^n \to \mathbb{R}$ such that

$$egin{aligned} \Lambda^{\mathsf{s}} &:= \left\{ \ell \in \mathcal{T}^* \mathbb{R}^n \colon \ell = \, \mathsf{d} lpha_1(x), \quad x \in \mathcal{O}(\widehat{x}_1), \ & \left(F_0 - rac{F_{001}}{F_{101}} F_1 + \chi
ight)(\ell) = 1
ight\} \end{aligned}$$

is a (n-1)-dimensional sub-manifold of Σ

Adjusting for exactness: $t < \hat{\tau}$

Replace part of Λ^s

 $f_1 \parallel \pi \Lambda^{\mathsf{s}}, f_0(\widehat{x}_1)$ transverse to $\pi \Lambda^{\mathsf{s}} \Longrightarrow$

$$\begin{cases} (F_0 + u_1 F_1)(d\gamma(x)) = \langle d\gamma, f_0 + u_1 f_1 \rangle(x) = 1 \quad x \in \mathbb{R}^n \\ \gamma|_{\pi\Lambda^s} = \alpha_1|_{\pi\Lambda^s} \end{cases}$$

admits one and only one smooth solution

$$\gamma\colon x\in \mathcal{O}(\widehat{x}_1)\mapsto \gamma(x)\in\mathbb{R}$$

$$\begin{split} \Lambda^{\mathsf{b}} &= \Big\{ \ell \in T^* \mathbb{R}^n \colon u_1 F_{01}(\ell) > 0, \quad \ell \in \Lambda^{\mathsf{s}} \Big\} \cup \\ &\cup \Big\{ \ell \in T^* \mathbb{R}^n \colon u_1 F_{01}(\ell) \le 0, \quad \ell = \mathsf{d}\gamma(x), \; x \in \pi \Lambda^{\mathsf{s}} \Big\} \subset \Sigma \end{split}$$

Lifting trajectories

The result

(time, state)-local optimality

Theorem Assume $(\hat{T}, \hat{\xi}, \hat{u})$ is an admissible triplet for the given minimum time problem satisfying PMP in normal form and that \hat{u} has a bang-singular structure. If

- the regularity assumptions are satisfied
- the restricted extended second variation for the minimum time problem between the extrema of the singular arc is positive definite

then the triplet is a (time, state)-local optimiser.

The result

state-local optimality

Theorem Assume $(\hat{T}, \hat{\xi}, \hat{u})$ is an admissible triplet for the given minimum time problem satisfying PMP in normal form and that \hat{u} has a bang–singular–bang structure. If

- the regularity assumptions are satisfied
- the extended second variation for the minimum time problem between the extrema of the singular arc is positive definite
- $\hat{\xi}$ has no self-intersection

then the triplet is a state-local optimiser.

Perturbed problem

minimise
$$\mathcal{T}$$
 subject to
 $\dot{\xi}(t) = f_0^r(\xi(t)) + u(t)f_1^r(\xi(t)) \qquad t \in [0, T]$
 $\xi(0) = x_0^r, \quad \xi(\mathcal{T}) \in \mathcal{N}_f^r := \exp \mathbb{R}f_1^r(x_f^r), \quad u(t) \in [-1, 1]$

The geometric picture

Under the smoothness assumption with respect to r and the regularity assumptions, the geometric picture in a neighbourhood of $\hat{\lambda}$ remains the same:

- ▶ the level set $\Sigma_r := \{F_1^r = 0\}$ is an hypersurface in $T^* \mathbb{R}^n$
- any singular extremal of the perturbed system evolves on

$$\mathcal{S}^{r} := \{F_{1}^{r} = F_{01}^{r} = 0\}$$

• $F_{101}^r > 0$ in a neighbourhood of $\hat{\lambda}\Big|_{[\hat{\tau}, \hat{\tau}]}$, so we may define the Hamiltonian of singular extremals

$$F^{S,r} := \frac{-F_{001}^{r}}{F_{101}^{r}}$$

Find the times and the adjoint covector

$$\Phi: (r, \omega, \tau, T, s) \in (-R, R) \times (\mathbb{R}^n)^* \times \mathbb{R}^3 \mapsto \exp(-sf_1^r)\pi \exp(T-\tau)\overrightarrow{F^{S,r}} \exp\tau(\overrightarrow{F_0^r}+u_1\overrightarrow{F_1^r})(\omega, x_0^r) - x_f^r \in \mathbb{R}^n$$

$$\Psi(\mathbf{r}, \omega, \tau, \mathbf{T}, \mathbf{s}) = \left(\Phi(\mathbf{r}, \omega, \tau, \mathbf{T}, \mathbf{s}), \\ F_1^r \circ \exp \tau(\overline{F_0^t} + u_1 \overline{F_1^t})(\omega, x_0^r), \\ F_{01}^r \circ \exp \tau\left(\overline{F_0^t} + u_1 \overline{F_1^t}\right)(\omega, x_0^r), \\ F_0^r \circ \exp \tau\left(\overline{F_0^t} + u_1 \overline{F_1^t}\right)(\omega, x_0^r) - 1 \right)$$

$$\begin{split} \widehat{\omega}_{0} &:= \widehat{\lambda}(0) \Longrightarrow \\ \Psi(0, \widehat{\omega}_{0}, \widehat{\tau}, \widehat{T}, 0) &= (0, 0, 0, 0) \\ & \ker \left. \frac{\partial \Psi}{\partial(\omega, \tau, T, s)} \right|_{(0, \widehat{\omega}_{0}, \widehat{\tau}, \widehat{T}, 0)} = ??? \end{split}$$

Assumption: controllability along $\widehat{\lambda}\Big|_{[\widehat{\tau},\widehat{\tau}]}$

- $\widehat{\lambda}\Big|_{[\widehat{\tau},\widehat{\tau}]}$ is the unique extremal associated to $\widehat{\xi}\Big|_{[\widehat{\tau},\widehat{\tau}]}$
- equivalently:

$$\mathsf{span}\left\{f_0(\widehat{x}_1), f_1(\widehat{x}_1), \dot{g}_t^1(\widehat{x}_1), \ t \in [\widehat{\tau}, \widehat{T}]\right\} = \mathbb{R}^n$$

Under the regularity assumptions, the coercivity assumption and the controllability assumption

$$\ker \left. \frac{\partial \Psi}{\partial(\omega, \tau, T, s)} \right|_{(0,\widehat{\omega}_0,\widehat{\tau}, \widehat{T}, 0)} = 0$$

 \implies there exists an extremal $\lambda^{r}(t) := (\mu^{r}(t), \xi^{r}(t))$ such that

- λ^r is bang–singular
- ► the switching time τ^r and the final time T^r are near the switching time τ̂ and the final time T̂ of λ̂
- the graph of λ^r is *near* the graph of $\widehat{\lambda}$ in $\mathbb{R} \times T^* \mathbb{R}^n$

Theorem

There exist R > 0, $\varepsilon > 0$ and a neighbourhood \mathcal{V} of the graph of $\widehat{\lambda}$ in $\mathbb{R} \times \mathcal{T}^* \mathbb{R}^n$ such that for any r, ||r|| < R, the extremal λ^r defined via the implicit function theorem is the only extremal of the perturbed problem whose graph is in \mathcal{V} and whose final time is in $[\widehat{T} - \varepsilon, \widehat{T} + \varepsilon]$.

Is it a strong local minimiser?

The extended second variation along $\lambda^{r}|_{[\tau^{r}, T^{r}]}$ is coercive

- $\xi^r := \pi \lambda^r$ is a (time, state)–local optimiser
- if ξ̂ is simple, then also ξ^r := πλ^r is simple and it is a state–local optimiser

The (badly perturbed) Dodgem car problem

$$T \to \min \dot{x}_1(t) = \cos(x_3) + ur \qquad x_1(0) = h \qquad x_1(T) = 0 \dot{x}_2(t) = \sin(x_3) \qquad x_2(0) = 0 \qquad x_2(T) = 0 \qquad u \in [-1, 1] \dot{x}_3(t) = u \qquad x_3(0) = \frac{\pi}{2} \qquad x_3(T) \in \mathbb{R}$$

$$f_0^r(x) = f_0(x) \begin{pmatrix} \cos(x_3)\\ \sin(x_3)\\ 0 \end{pmatrix} \qquad f_1^r(x) = \begin{pmatrix} r\\0\\1 \end{pmatrix} = f_1(x) + \begin{pmatrix} r\\0\\0 \end{pmatrix}$$
$$\dot{x} = f_0(x) + uf_1(x) \qquad x(0) = \begin{pmatrix} h\\0\\\frac{\pi}{2} \end{pmatrix} \qquad x(T) \in \exp \mathbb{R}f_1(0)$$

 $\implies \text{ the extremal is b-s-b with the length of the second bang interval of order <math>\sqrt{r}$ (Felgenhauer 2011)