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I

Motivation : this work is motivated by the study of two-phase flows involved in
nuclear reactors in nominal, incidental or accidental conditions

Several models and approaches :

"Micro"-scale models : fine description of liquid/vapor interface topologies

"Macro"-scale models : two-phase flow described as a mixture at
thermodynamical equilibrium

"Middle"-scale models : the so-called bi-fluid approach, takes into account
desequilibrium between both phases

We are interested in the numerical approximation of one particular bi-fluid averaged
model, the so-called 7-equation or Baer-Nunziato like model
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T 7- 

In one space dimension, the model reads



























































































∂αk

∂t
+ uI
∂αk

∂x
= Θ(pk − pl),

∂

∂t
(αk̺k) +

∂

∂x
(αk̺kuk) = 0,

∂

∂t
(αk̺kuk) +

∂

∂x
(αk(̺ku

2
k + pk)) − pI

∂αk

∂x
= αk̺kg− Λ(uk − ul),

∂

∂t
(αk̺kek) +

∂

∂x
(αk(̺kek + pk)uk) − pI uI

∂αk

∂x
= αk̺kguk − pIΘ(pk − pl ) − uIΛ(uk − ul )

with α1 + α2 = 1

uI , pI : interfacial velocity and pressure (to be precised)

We note that the system isnonconservative, with short form

∂U
∂t
+
∂

∂x
F(U) + B(U)

∂U
∂x
= S(U)
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−→ As a first-step, we consider the following model



















∂t̺ + ∂x̺u = 0,
∂t̺u+ ∂x(̺u2 + p) = ̺g− ̺αu,
∂t(̺E) + ∂x(̺Eu+ pu) = ̺ug− ̺αu2

whereg is the gravity constant andα is the friction coefficient.

−→ In many codes, the very complex geometry of the core of a nuclear code is
modelled by means of a subgrid model

−→ Here we consider that the core is modelled as a porous medium,and thatα is
related to the friction between the fluid and the fuel rods zirconium-clads.

Then,α models the wall-friction influence of the channels upon the fluid

Remark on α and the source term stiffness.
In practice, the magnitude of the friction coefficientα lies between 0.5 and 1.0, which
is by no mean a large value, but...



5/45

L-P    -  R   L  S          P

T -      

−→ One may be interested in long-time stationnary or nearly-stationnary flow
profiles. In dimensionless form,α is then multiplied by a large characteristic timet :

α ≈
α

ǫ
, ǫ ≪ 1,

−→ The spatial discretization∆x may be very coarse. Since the productα∆x will
play an important role in the consistency errors, it amountsto consider here again

α ≈
α

ǫ
, ǫ ≪ 1,

−→ Other applications more naturally lead to large friction coefficients...
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We are thus interested in






























∂t̺ + ∂x̺u = 0,

∂t̺u+ ∂x(̺u
2 + p) = ̺g− ̺

α

ǫ
u,

∂t(̺E) + ∂x(̺Eu+ pu) = ̺ug− ̺
α

ǫ
u2

for a small parameterǫ ≪ 1 . Then we haveu = O(ǫ)

−→ The limit ǫ → 0 can be considered as a model worst-case scenario for testing the
accuracy of the method in the presence of friction source term

Asymptotic analysis.Setu = u0 + ǫu1 + O(ǫ2), ande= E− u2/2.
The model reads



































u0 = 0,
∂t̺ + ǫ∂x̺u1 = O(ǫ2)

̺u1 =
1
α

(

̺g− ∂xp
)

+ O(ǫ)

∂t(̺e) + ǫ∂x(̺eu1 + pu1) = ǫ̺u1(g− αu1) + O(ǫ2)
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We are thus interested in






























∂t̺ + ∂x̺u = 0,

∂t̺u+ ∂x(̺u
2 + p) = ̺g− ̺

α

ǫ
u,

∂t(̺E) + ∂x(̺Eu+ pu) = ̺ug− ̺
α

ǫ
u2

for a small parameterǫ ≪ 1 . Then we haveu = O(ǫ)

−→ The limit ǫ → 0 can be considered as a model worst-case scenario for testing the
accuracy of the method in the presence of friction source term

Asymptotic analysis.Setu = u0 + ǫu1 + O(ǫ2), t = s/ǫ ande= E− u2/2. The
long-time behaviour of the solutions is given by



































u0 = 0,
∂s̺ + ∂x̺u1 = O(ǫ),

̺u1 =
1
α

(

̺g− ∂xp
)

+ O(ǫ),

∂s(̺e) + ∂x(̺eu1 + pu1) = ̺u1(g− αu1) + O(ǫ)

See Hsiao-Liu, Nishihara, Junca-Rascle, Lin-Coulombel, Coulombel-Goudon,
Marcati-Milani... for rigorous proofs. See Formal derivation for formal derivation
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Let us briefly recall that :

Eigenvalues are given by
u− c u u+ c

wherec is the sound speed

Pressure laws may be strongly non linear, even tabulated, which makes difficult
the resolution

Time-step CFL restrictions are naturally based on acousticwaves in
Godunov-type schemes

max
u

(|u± c|, |u|)
∆t
∆x
≤

1
2

Acoustic waves are not expected to be predominant here (too bad !), since flows
aresubsonicand/or with low Mach numberin nuclear reactors
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O

Our objective is to propose anumerical scheme:

able to deal with any pressure lawp

stable under a more adapted time-step CFL restriction basedonu and that does
not depend onǫ

max
u

(|u|)
∆t
∆x
≤

1
2

andasymptotic-preserving
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D  -

Definition of asymptotic-preserving scheme.Let us denote

Mǫ the initial model

M0 the limit model

Sǫ
∆t,∆x the proposed numerical scheme

S0
∆t,∆x the limit numerical scheme

With little abuse in the notations, Sǫ is said to be asymptotic-preserving if

for all ǫ > 0, Sǫ
∆t,∆x is stable1 and consistent withMǫ : lim∆t,∆x→0 Sǫ

∆t,∆x = Mǫ

S0
∆t,∆x is stable and consistent withM0 : lim∆t,∆x→0 S0

∆t,∆x = M0

In other words, asymptotic-preserving property meansorder of limits interchange
property

lim
ǫ→0

lim
∆t,∆x→0

Sǫ∆t,∆x = lim
∆t,∆x→0

lim
ǫ→0

Sǫ∆t,∆x

1independently ofǫ > 0, in some sense to be precised...
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H     ?

How to get the expected CFL restriction ?
- implicit treatment of the acoustic wavesu± c
- explicit treatment of the transport wavesu (predominant, we want to keep accuracy)
→ Lagrange-Projection strategy
(seeCoquel, Nguyen, Postel, Tran, Math. Comp 2010)

How to deal with any (possibly strongly nonlinear) pressurelaw p?
- overcome the non linearities, "linearization"
→ Relaxation strategy
(seeChalons, Coquel, Numer. Math. 2005)

How to get the asymptotic-preserving (AP) property ?
- upwind and implicit treatment of the source
→ Notion of consistency with the integral form of the full model
(seeGallice, Numer. Math. 2003and
Chalons, Coquel, Godlewski, Raviart, Seguin, M3AS 2010)
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Let us first focus on


















∂t̺ + ∂x̺u = 0
∂t̺u+ ∂x(̺u

2 + p) = 0
∂t(̺E) + ∂x(̺Eu+ pu) = 0

Using chain rule arguments, we also have



















∂t̺ + u∂x̺ + ̺∂xu = 0
∂t̺u+ u∂x̺u+ ̺u∂xu+ ∂xp = 0
∂t̺E+ u∂x̺E + ̺E∂xu+ ∂xpu= 0

so that splitting the transport part leads to



















∂t̺ + ̺∂xu = 0
∂t̺u+ ̺u∂xu+ ∂xp = 0
∂t̺E + ̺E∂xu+ ∂xpu= 0



















∂t̺ + u∂x̺ = 0
∂t̺u+ u∂x̺u = 0
∂t̺E + u∂x̺E = 0

Lagrangian-step Transport-step
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L-P 

The Lagrangian-step


















∂t̺ + ̺∂xu = 0
∂t̺u+ ̺u∂xu+ ∂xp = 0
∂t̺E+ ̺E∂xu+ ∂xpu= 0

also writes


















∂tτ − ∂mu = 0
∂tu+ ∂mp = 0
∂tE+ ∂mpu= 0

with τ = 1/̺ andτ∂x = ∂m.

Eigenvalues are given by−ρc, 0, ρc

Usual CFL conditions for time-explicit schemes write

∆t
∆x

max(ρc) ≤
1
2

The idea is to propose a time-implicit scheme to avoid this time-step restriction
Question : How to do that in a very cheap way and for any pressure law ?
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L-P 

The Transport-step


















∂t̺ + u∂x̺ = 0
∂t̺u+ u∂x̺u = 0
∂t̺E+ u∂x̺E = 0

Eigenvalues are given byu

Usual CFL conditions for time-explicit schemes write

∆t
∆x

max(|u|) ≤
1
2

The idea is then to propose a standard time-explicit scheme to keep accuracy on the
(slow) contact waves
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G

The gas dynamics in Lagrangian coordinates :



















∂tτ − ∂mu = 0
∂tu+ ∂mp = 0
∂tE+ ∂mpu= 0

with p = p(τ, e) and

e= E−
1
2

u2

Due to the nonlinearities ofp, the Riemann problem is difficult to solve.

The relaxation strategy :

Idea : to deal with a larger but simpler system

Design principle : to understandp(τ, e) as a new unknown that we denoteΠ
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G

The gas dynamics in Lagrangian coordinates :


















∂tτ − ∂mu = 0
∂tu+ ∂mp = 0
∂tE+ ∂mpu= 0

The relaxation system :






























∂tτ − ∂mu = 0
∂tu+ ∂mΠ = 0
∂tE+ ∂mΠu = 0
∂tΠ + a2∂mu = λ(p− Π)

Recall that
∂tp+ ρ

2c2∂mu = 0

At least formally, observe that

lim
λ→+∞

Π = p (if a > ρc(τ,e))

(see e.g.Chalons, Coulombel, Analysis and Applications 2008for a rigorous proof )
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P

The relaxation system :






























∂tτ − ∂mu = 0
∂tu+ ∂mΠ = 0
∂tE+ ∂mΠu = 0
∂tΠ + a2∂mu = λ(p− Π)

This system isstrictly hyperbolic with the following eigenvalues

−a < 0 < a

The characteristic fields are alllinearly degenerate(the waves behave more or less
as linear waves)

The Riemann problem is explicitly solved
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R     

The intermediate states are simply found thanks to the Rankine-Hugoniot conditions
across each waves

x

t

U∗L
−a

0

U∗R
+a

UL UR

F.: Approximate Riemann solver - general structure
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T  

As a consequence, the numerical strategy for solving the equilibrium system



















∂tτ − ∂mu = 0
∂tu+ ∂mp = 0
∂tE+ ∂mpu= 0

consistsat each time stepin

the classical Godunov scheme for the relaxation system






























∂tτ − ∂mu = 0
∂tu+ ∂mΠ = 0
∂tE+ ∂mΠu = 0
∂tΠ + a2∂mu = 0

with initial data at equilibrium that is such thatΠ = p
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T - G     

The relaxation system writes






























∂tτ − ∂mu = 0
∂tu+ ∂mΠ = 0
∂tΠ + a2∂mu = 0
∂tE+ ∂mΠu = 0

⇔































∂tτ − ∂mu = 0
∂t(Π + au) + a∂m(Π + au) = 0
∂t(Π − au) − a∂m(Π + au) = 0
∂tE+ ∂mΠu = 0

or equivalently































∂tτ − ∂mu = 0
∂tw+ + a∂mw+ = 0
∂tw

− − a∂mw− = 0
∂tE+ ∂mΠu = 0

with

u =
w+ − w−

2a
, Π =

w+ + w−

2
, w± = Π ± au
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T - G     

The relaxation system writes






























∂tτ − ∂mu = 0
∂tw

+ + a∂mw+ = 0
∂tw− − a∂mw− = 0
∂tE+ ∂mΠu = 0

with

u =
w+ − w−

2a
, Π =

w+ + w−

2
, w± = Π ± au

The time-explicit Godunov scheme for the relaxation systemwrites






























w̄+j = w+j − a ∆t
∆m(w+j − w+j−1)

w̄−j = w−j + a ∆t
∆m(w−j+1 − w−j )

τ̄j = τj +
∆t
∆m(uj+1/2 − uj−1/2)

Ēj = Ej −
∆t
∆m(Πj+1/2uj+1/2 − Πj+1/2uj−1/2)

with

uj+1/2 =
w+j − w−j+1

2a
, Πj+1/2 =

w+j + w−j+1

2
, w±j = Πj ± auj
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T - G     
The time-explicit Godunov scheme for the relaxation systemwrites































w̄+j = w+j − a ∆t
∆m(w+j − w+j−1)

w̄−j = w−j − a ∆t
∆m(w−j+1 − w−j )

τ̄j = τj +
∆t
∆m(uj+1/2 − uj−1/2)

Ēj = Ej −
∆t
∆m(Πj+1/2uj+1/2 − Πj+1/2uj−1/2)

with

uj+1/2 =
w+j − w−j+1

2a
, Πj+1/2 =

w+j + w−j+1

2
, w±j = Πj ± auj

Remarks.

This scheme applies for any pressure law !

The CFL condition for this time-explicit schemes write

∆t
∆x

a ≤
1
2

that is, sincea ≡ max(ρc),
∆t
∆x

max(ρc) ≤
1
2
.

This scheme is stable and satisfies an entropy inequality provided thata > ρc

(seeChalons, Coquel, Numer. Math. 2005)
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T    L      

−→ Just for simplicity, we now focus on the barotropic case and drop the gravity
−→We propose to take into the source terms in the Lagrangian step















∂tτ − ∂mu = 0

∂tu+ ∂mp = −
α

ǫ
u

Continuous asymptotic analysis.u = 0+ ǫu1 + O(ǫ2), t = s/ǫ


















∂sτ − ∂mu1 = 0,

u1 = −
1
α
∂mp

Numerical asymptotic analysis.u = 0+ ǫu1 + O(ǫ2), t = s/ǫ

usual splitting techniques do not work !

the numerical fluxuj+1/2 should seeα

Idea : include the source term in the approximate Riemann solver based on the
previous relaxation system
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R    
We consider the relaxation system



























∂tτ − ∂mu = 0

∂tu+ ∂mΠ = −
α

ǫ
u

∂tΠ + a2∂mu = 0

and apply generalized (resp. classical) Rankine-Hugoniotrelations across the
stationary (resp. non stationary) waves

x

t

U∗L
−a

0

U∗R
+a

UL UR

F.: Approximate Riemann solver - general structure
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C  S A R S

Conservative system
∂U
∂t
+
∂

∂x
F(U) = 0

Consistency property with the integral form(Harten-Lax-Van Leer formalism)

∫ ∆x/2

−∆x/2
W(x/∆t; UL,UR)dx=

∆x
2

(UL + UR) − ∆t(F(UR) − F(UL))

Conservative system with sources

∂U
∂t
+
∂

∂x
F(U) = S(U)

Consistency property with the integral form(see also Gallice’s formalism)

∫ ∆x/2

−∆x/2
W(x/∆t; UL,UR)dx=

∆x
2

(UL + UR) − ∆t
(

F(UR) − F(UL)
)

+ ∆t∆x S(UL,UR)

with S(U,U) = S(U)
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E   



























∂tτ − ∂mu = 0

∂tu+ ∂mΠ = −
α

ǫ
u

∂tΠ + a2∂mu = 0

Consistency relations :3 equations


























−a(τ∗L − τL) + a(τR − τ
∗
R) = uL − uR

−a(u∗L − uL) + a(uR − u∗R) = ΠR − ΠL +
α

ǫ
∆mũ

−a(Π∗L − ΠL) + a(ΠR − Π
∗
R) = a2(uR − uL)

Mass conservation across each wave :2 equations


















uL − aτL = u∗L − aτ∗L
uR + aτR = u∗R + aτ∗R
u∗L = u∗R =: u∗

Generalized Rankine-Hugoniot relation at the interface :1 equation

Π∗R − Π
∗
L = −

α

ǫ
∆m u∗
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The time-explicit Godunov scheme writes























w̄+j = w+j − a ∆t
∆m(w+j − w+j−1) −

α
ǫ
a∆t u∗j−1/2

w̄−j = w−j − a ∆t
∆m(w−j+1 − w−j ) + α

ǫ
a∆t u∗j+1/2

τ̄j = τj +
∆t
∆m(u∗j+1/2 − u∗j−1/2)

with
u∗j+1/2

ǫ
=

(

w+j − w−j+1

)

2aǫ + α∆m
=

2a
2aǫ + α∆m

(uj + uj+1

2
−
Πj+1 − Πj

2a

)

Numerical asymptotic analysis.t = s/ǫ

Multiply the first two equations byǫ and letǫ → 0 : un
j = 0

ǫ → 0 in the last equation :


























τ̄j = τj +
∆s
∆m

(u1,j+1/2 − u1,j−1/2),

u1,j+1/2 = −
1
α

Πn
j+1 − Π

n
j

∆m

which is consistent with


















∂sτ − ∂mu1 = 0,

u1 = −
1
α
∂mp
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T  -   
The classical explicit-implicit splitting operator scheme























w̄+j = w+j − a ∆t
∆m(w+j − w+j−1) −

α

ǫ
a∆t ūj

w̄−j = w−j − a ∆t
∆m(w−j+1 − w−j ) + α

ǫ
a∆t ūj

τ̄j = τj +
∆t
∆m(u∗j+1/2 − u∗j−1/2)

with
u∗j+1/2

ǫ
=

(

w+j − w−j+1

)

2aǫ
=

1
ǫ

(uj + uj+1

2
− ∆m

Πj+1 − Πj

∆m2a

)

Numerical asymptotic analysis.uj = u(0)
j + ǫu

(1)
j + O(ǫ2), t = s/ǫ

Multiply the first two equations byǫ and letǫ → 0 : u(0)
j = 0

Make the difference of the first two equations and letǫ → 0 :

u(1)
j + u(1)

j+1

2
→ vj+1/2 ≈ −

1
α

Πn
j+1 − Π

n
j

∆m
Let thenǫ → 0 in the last equation :























τ̄j = τj +
∆s
∆m

(u1,j+1/2 − u1,j−1/2),

u1,j+1/2 = vj+1/2 −
Πj+1 − Πj

2aǫ
= vj+1/2 + O(

∆m
ǫ

)

which is clearly not consistent with



















∂sτ − ∂mu1 = 0,

u1 = −
1
α
∂mp
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T - G   

The time-explicit Godunov scheme writes






















w̄+j = w+j − a ∆t
∆m(w+j − w+j−1) −

α

ǫ
a∆t u∗j−1/2

w̄−j = w−j − a ∆t
∆m(w−j+1 − w−j ) + α

ǫ
a∆t u∗j+1/2

τ̄j = τj +
∆t
∆m(u∗j+1/2 − u∗j−1/2)

with
u∗j+1/2

ǫ
=

(

w+j − w−j+1

)

2aǫ + α∆m

About the CFL condition of such an explicit scheme.

The scheme is still based on the relaxation approximate Riemann solver, then

∆t
∆x

a ≤
1
2

The change of variablet = s/ǫ gives

∆s
∆x

a ≤
ǫ

2

In the limit ǫ → 0, we get∆s= 0 ! ! ! Not satisfying
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T - G   
The time-explicit Godunov scheme writes























w̄+j = w+j − a ∆t
∆m(w+j − w+j−1) −

α
ǫ
a∆t u∗j−1/2

w̄−j = w−j − a ∆t
∆m(w−j+1 − w−j ) + α

ǫ
a∆t u∗j+1/2

τ̄j = τj +
∆t
∆m(u∗j+1/2 − u∗j−1/2)

with
u∗j+1/2

ǫ
=

(

w+j − w−j+1

)

2aǫ + α∆m

About the CFL condition of such an explicit scheme.
A possible cure is to implicit the centered part of the sourceterm (see
Gosse-Toscani) in order to get a CFL condition of the following form

a
2aǫ + α∆x

∆s
∆x

a ≤
ǫ

2
,

which gives in the limitǫ → 0

a2

α

∆s
∆x2
≤
ǫ

2
.

Which is nothing but the classical parabolic time step restriction !
Here, recall however that our objective is to get rid of any CFL restriction
involving c. We then propose to implicit both the convective part and thesource
term as before (the rigorous proof of non linear stability isstill open at this
stage)
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T - G     

The time-implicit Godunov scheme for the relaxation systemwrites






















w̄+j = w+j − a ∆t
∆m(w̄+j − w̄+j−1) −

α
ǫ
a∆t ū∗j−1/2

w̄−j = w−j − a ∆t
∆m(w̄−j+1 − w̄−j ) + α

ǫ
a∆t ū∗j+1/2

τ̄j = τj +
∆t
∆m(ū∗j+1/2 − ū∗j−1/2)

with
ū∗j+1/2

ǫ
=

(

w̄+j − w̄−j+1

)

2aǫ + α∆m

Remarks.

This scheme still applies for any pressure law !

Updatingw+ andw− (now coupled) amounts to solve apentadiagonal and
diagonally dominant system, and updatingτ follows explicitly
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T - G     
The time-implicit Godunov scheme for the relaxation systemwrites























w̄+j = w+j − a ∆t
∆m(w̄+j − w̄+j−1) −

α

ǫ
a∆t ū∗j−1/2

w̄−j = w−j − a ∆t
∆m(w̄−j+1 − w̄−j ) + α

ǫ
a∆t ū∗j+1/2

τ̄j = τj +
∆t
∆m(ū∗j+1/2 − ū∗j−1/2)

with
ū∗j+1/2

ǫ
=

(

w̄+j − w̄−j+1

)

2aǫ + α∆m

Numerical asymptotic analysis.t = s/ǫ

Multiply the first two equations byǫ and letǫ → 0 : ūj = 0

ǫ → 0 in the last equation :


























τ̄j = τj +
∆s
∆m

(ū1,j+1/2 − ū1,j−1/2),

ū1,j+1/2 = −
1
α

Π̄n
j+1 − Π̄

n
j

∆m

which is consistent with


















∂sτ − ∂mu1 = 0,

u1 = −
1
α
∂mp
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Properties
Theexplicit or semi-implicit Lagrange-Projection scheme with sources

can be re-written as a conservative finite volume scheme

is Asymptotic-Preserving

can be extended to non linear friction terms with gravity, tothe non barotropic
case, and to the multi-fluid case

Theexplicit Lagrange-Projection scheme with sources

is entropy satisfying

Open question

Is thesemi-implicit Lagrange-Projection scheme with sources entropy
satisfying ?

Remark

The Lagrangian part of theexplicit scheme coincides with the one proposed in
Chalons C., Coquel F., Godlewski E., Raviart P.-A., Seguin N.
Godunov-type schemes for hyperbolic systems with parameter dependent
source. The case of Euler system with friction, M3AS (2010)
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D

−→ Perfect gas equation of statep = (γ − 1)ρe and

g = 9.81 m· s−2, α = 106 s−1, γ = 1.4.

−→ Initial condition














(ρ,u, p) = (1.0,0, 10000.0), if x ∈[0, 0.35]∩ [0.65,1],

(ρ,u, p) = (2.0,0, 26390.2), if x ∈[0.35, 0.65].

−→ Periodic boundary conditions
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S         

F.: Profile at timet = 0.01 s of the density obtained for a 100-cell, 1000-cell and 10 000-cell
grid with the LP-EXEX SP scheme and the reference solution.

F.: Profile at timet = 0.01 s of the density obtained for a 100-cell and 1000-cell gridwith the
LP-IMEX scheme and the reference solution.
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S         

T.: Comparison of the relative errors between the approximatedsolutions obtained with both
LP-EXEX SP and LP-IMEX schemes. The space domain is discretized with a 1 000-cell space
discretization and∆t = 1

α for both schemes.

numerical scheme err(ρ, t = 0.01) err(u, t = 0.01) err(P, t = 0.01)
LP-EXEX SP 1.686931× 10−2 6.858335× 10−1 2.539820× 10−2

LP-IMEX 3.959560× 10−4 1.195630× 10−2 5.635518× 10−4
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S      

F.: Profile at timet = 0.01 s of the density obtained for a 1000-cell grid with the LP-IMEX
scheme and the reference solution.
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S         

T.: Comparison of the relativeL1-errors obtained with the LP-IMEX scheme for a 1 000-cell
space discretization and two different∆t values.

numerical scheme ∆t err(ρ, t = 0.01) err(u, t = 0.01) err(P, t = 0.01)
LP-IMEX 1

α
3.959560× 10−4 1.195630× 10−2 5.635518× 10−4

LP-IMEX 1000
α

2.607495× 10−3 1.099137× 10−1 3.288768× 10−3
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Conclusions

- We have been interested in intermediate regimes (subsonicflows and coarse
meshes) and possible stationary or nearly stationary flows

- The limit ǫ → 0 is seen as a worst-case scenario "only"

- AP strategies turn out to be sufficient strategies in order to lessen the numerical
diffusion and get good numerical results even for coarse meshes(note that the proposed
numerical results show the benefit even ifu is not of orderǫ or the solution not stationary)

Future works

- 2D

- Low-Mach regimes

- Two-phase flow models
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T - G     
The transport step of the Lagrange-Projection strategy writes



















∂tρ + u∂xρ = 0
∂t(ρu) + u∂x(ρu) = 0
∂t(ρE) + u∂x(ρE) = 0

that is∂tX + u∂xX = 0, with X = ρ, ρu, ρE

The time-explicit Godunov scheme for this equation writes

either (fully explicit approach)

Xn+1
j =

∆t
∆x

u+j−1/2X̄j−1 +
∆t
∆x

(

1+
(

u−j+1/2 − u+j−1/2

)

)

X̄j −
∆t
∆x

u−j+1/2X̄j+1

with u+ = max(u, 0), u− = min(u,0) anduj+1/2 =
w+j − w−j+1

2a
or (semi-implicit approach)

Xn+1
j =

∆t
∆x

ū+j−1/2X̄j−1 +
∆t
∆x

(

1+
(

ū−j+1/2 − ū+j−1/2

)

)

X̄j −
∆t
∆x

ū−j+1/2X̄j+1

with u+ = max(u, 0), u− = min(u,0) andūj+1/2 =
w̄+j − w̄−j+1

2a
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In 1D and dimensionless form, the model reads


























































































∂αk

∂t
+ uI
∂αk

∂x
= Θ(pk − pl),

∂

∂t
(αk̺k) +

∂

∂x
(αk̺kuk) = 0,

∂

∂t
(αk̺kuk) +

∂

∂x
(αk(̺ku

2
k + pk)) − pI

∂αk

∂x
= αk̺kg− Λ(uk − ul),

∂

∂t
(αk̺kek) +

∂

∂x
(αk(̺kek + pk)uk) − pI uI

∂αk

∂x
= αk̺kukg− pIΘ(pk − pl ) − uIΛ(uk − ul )

We assume that the drag force and pressure relaxation coefficients are given by

Θ =
θ(U)
ǫ2

Λ =
λ(U)
ǫ2
|u1 − u2|

for a small parameter ǫ . Then we have

p2 − p1 = O(ǫ2), u2 − u1 = O(ǫ)
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Following the Chapman-Enskog method, assume that

{

pr = p1 − p2 = 0+ ǫp1
r + O(ǫ2)

ur = u1 − u2 = 0+ ǫu1
r + O(ǫ2)

and set






























ρ = α1ρ1 + α2ρ2

ρu = α1ρ1u1 + α2ρ2u2

ρe= α1ρ1e1 + α2ρ2e2

ρY = α2ρ2

Theorem.A first-order approximation w.r.t.ǫ of the 7-equation model is given by the
following differential drift-flux model































∂tρ + ∂xρu = 0
∂tρY+ ∂x(ρYu+ ρY(1− Y)ur) = 0
∂tρu+ ∂x(ρu2 + p+ ρY(1− Y)u2

r ) = ρg
∂tρe+ ∂x(ρeu+ pu+ ρY(1− Y)u2

r u) = ρgu

with ur given by the (Darcy-like) differential closure relation

|ur |ur =
ρY(ρ − ρY)
Λ

(
1
ρ1
−

1
ρ2

)
∂xp
ρ

SeeAmbroso-Chalons-Coquel-Galié-Godlewski-Raviart-Seguin, CMS 2008



43/45

L-P    -  R   L  S          P

M 

Eigenvalues of the Jacobian matrixF′(U) + B(U) arealways realand given by

uI uk uk ± ck k = 1, 2

whereck is the sound speed of phasek

x

t

uk − ck

uIu1 u2

uk + ck

UL UR

Riemann solutions are not known and difficult to calculate/approximate

Pressure laws may be strongly non linear, even tabulated

Resonance occurs ifuI = uk ± ck

The model is not conservative...
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Note that :

Time-step CFL restrictions are naturally based on acousticwaves
(that are not predominant here, too bad !)

max
k,u

(|uk ± ck|, |uk|, |uI |)
∆t
∆x
≤

1
2

Flows aresubsonicand/or with low Mach numberin nuclear reactors

Our objective is to propose anumerical scheme:

able to deal with any equation of state and any choice (uI ,pI )

stable under a more adapted time-step CFL restriction basedon transport waves
(that are predominant here so that accuracy is required)

max
k,u

(|uk|, |uI |)
∆t
∆x
≤

1
2

andasymptotic-preserving
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−→ Usingt = s/ǫ we first have































ǫ∂s̺ + ∂x̺u = 0,

ǫ∂s̺u+ ∂x(̺u
2 + p) = ̺g− ̺

α

ǫ
u,

ǫ∂s(̺E) + ∂x(̺Eu+ pu) = ̺ug− ̺
α

ǫ
u2

−→ Multiplying the second equation byǫ and lettingǫ go to 0 gives

u0 = 0

−→ Then insertingu = ǫu1 +O(ǫ2) in the first equation, dividing byǫ and lettingǫ go
to 0 gives

∂s̺ + ∂x̺u1 = 0

−→ Then insertingu = ǫu1 + O(ǫ2) in the second equation and lettingǫ go to 0 gives

∂xp = ̺g− ̺αu1

−→ At last insertingu = ǫu1 + O(ǫ2) in the third equation, dividing byǫ and lettingǫ
go to 0 gives

∂s(̺e) + ∂x(̺eu1 + pu1) = ̺u1g− ̺αu2
1

which concludes the proof. Back
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