Journée

Mathematical Modelling and Numerical Simulation October 9, 2012

Multiscale Modelling for Interfaces in Fluids

Christian Rohde Universität Stuttgart

Sharp Interface Model

Find $U: D \times [0, T] \rightarrow \mathbb{R}^m$ and $\Gamma = \Gamma(t)$ with $U(\mathbf{x},t) = \begin{cases} U_{-}(\mathbf{x},t) : \mathbf{x} \in D_{-}(t) \\ U_{+}(\mathbf{x},t) : \mathbf{x} \in D_{+}(t) \end{cases}$ and $U_{\pm,t} + \sum_{i=1}^{d} f_i (U_{\pm})_{x_i} = 0 \text{ in } D_{\pm}(t)$ $\mathcal{K}[U_-, U_+] = 0 \text{ at } \Gamma(t)$ +IC/BC

Sharp Interface $\Gamma(t)$ separating the domain $D = D_{-}(t) \cup \Gamma(t) \cup D_{+}(t).$

Multiscale Approach I

Multiscale Approach I

Macroscale Model

Find $U: D \times [0, T] \rightarrow \mathbb{R}^m$ and $\Gamma = \Gamma(t)$ with

$$U(\mathbf{x},t) = \left\{ egin{array}{l} U_-(\mathbf{x},t) : \mathbf{x} \in D_-(t) \ U_+(\mathbf{x},t) : \mathbf{x} \in D_+(t) \end{array}
ight.$$

and

$$U_{\pm,t} + \sum_{i=1}^{d} f_i (U_{\pm})_{x_i} = 0.$$

Microscale Model

For each $t \in [0, T]$ and $\mathbf{x} \in \Gamma(t)$ find $u : \mathbb{R} \times [0, \infty) \to \mathbb{R}^m$ with

$$u_t + \left(\sum_{i=1}^d f_i(u)n_i(\mathbf{x})\right)_{\xi} = 0$$

$$u(\xi, 0) = \begin{cases} U_L & : & \xi < 0, \\ U_R & : & \xi > 0, \end{cases}$$

such that the solution contains a shock wave connecting states $u_{-} \xrightarrow{s} u_{+}$ with

$$\mathcal{K}[u_-, u_+] = 0, \, \dot{\Gamma}(t) = s.$$

Find $U^{\epsilon}: D \times [0, T] \to \mathbb{R}^{m}$ with $U_{t}^{\epsilon} + \sum_{i=1}^{d} f_{i}(U^{\epsilon})_{x_{i}} = \mathbb{R}^{\epsilon}[U^{\epsilon}]$ in $D \times (0, T)$ + IC/BC

e.g. $R^{\epsilon}[U] = \epsilon \Delta U$.

Diffuse interface in D.

Multiscale Approach II

Multiscale Approach II

Macroscale Model

Find
$$U: D \times [0, T] \rightarrow \mathbb{R}^m$$
 and $\Gamma = \Gamma(t)$ with

$$U(\mathbf{x},t) = \begin{cases} U_{-}(\mathbf{x},t) : \mathbf{x} \in D_{-}(t) \\ U_{+}(\mathbf{x},t) : \mathbf{x} \in D_{+}(t) \end{cases}$$

and

$$U_{\pm,t} + \sum_{i=1}^{d} f_i (U_{\pm})_{x_i} = 0.$$

Microscale Model

For some $\varepsilon > 0$ and each $t \in [0, T]$ and $\mathbf{x} \in \Gamma(t)$ find $u^{\varepsilon} : \mathbb{R} \times [0, \infty) \to \mathbb{R}^m$ with

$$u_t^{\varepsilon} + \left(\sum_{i=1}^d f_i(u^{\varepsilon})n_i(\mathbf{x})\right)_{\xi} = R^{\varepsilon}[u^{\varepsilon}]$$
$$u^{\varepsilon}(\xi, 0) = \begin{cases} U_L & : \xi < 0, \\ U_R & : \xi > 0. \end{cases}$$

Plan of the Talk

- 1) Interfaces in Porous Media
- 2) Interfaces in Compressible Liquid-Vapour Flow
- 3) Summary and Outlook

1) Interfaces in Porous Media

Interfaces in Porous Media

Overshoot Waves in Porous Media

Viscous fingering (Neuweiler&Schütz '10)

Saturation front with overshoot (DiCarlo '04)

Interfaces in Porous Media

Macroscale Mathematical Model:

$$S_t + \operatorname{div} (\mathbf{V}f(S)) = 0$$

$$\operatorname{div} \mathbf{V} = 0, \ \mathbf{V} = \mathbf{K}\lambda\nabla P \qquad (P_0)$$

Unknowns:

 $S = S(\mathbf{x}, t) \in [0, 1]$: saturation $P = P(\mathbf{x}, t)$: pressure $\mathbf{V} = \mathbf{V}(\mathbf{x}, t) \in \mathbb{R}^d$: velocity

Microscale Mathematical Model:

$$egin{aligned} &s^{\epsilon}_t + ext{div}\left(\mathbf{v}^{arepsilon}f(s^{\epsilon})
ight) = \epsilon ext{div}\left(\mathbf{K}\overline{\lambda}
abla s^{\epsilon}
ight), \ & ext{div}\,\mathbf{v}^{arepsilon} = \mathbf{0}, \,\,\mathbf{v}^{arepsilon} = \mathbf{K}\lambda
abla p^{arepsilon} \end{aligned}$$

Theorem

Let $\{s^{\varepsilon}\}_{\varepsilon>0}$ be a family of regular solutions to an initial value problem for (P_{ε}) with $S_0 \in (L^1 \cap L^{\infty})(\mathbb{R}^d)$ and $\mathbf{v}^{\varepsilon} = \mathbf{v}$ given. Then, there exist a function $S = S(t) \in (L^{\infty} \cap L^1)(\mathbb{R}^d)$ and a subsequence of $\{s^{\varepsilon}\}_{\varepsilon>0}$ such that

(i)
$$\lim_{\varepsilon \to 0} \|S - s^{\varepsilon}\|_{L^1} = 0.$$

(ii) S is a weak solution of (P_0) with essinf $\{S_0\} \le S \le \text{esssup}\{S_0\}$ a.e.

Monotone rarefaction-shock solution.

Interfaces in Porous Media

Macroscale Mathematical Model:

$$S_t + \operatorname{div} (\mathbf{V}f(S)) = 0$$

$$\operatorname{div} \mathbf{V} = 0, \ \mathbf{V} = \mathbf{K}\lambda\nabla P \qquad (P_0)$$

Unknowns:

 $S = S(\mathbf{x}, t) \in [0, 1]$: saturation $P = P(\mathbf{x}, t)$: pressure $\mathbf{V} = \mathbf{V}(\mathbf{x}, t) \in \mathbb{R}^d$: velocity

Microscale Mathematical Model:

(Stauffer '78, Hassanizadeh&Gray '93, Van Duijn&Peletier&Pop '07,...)

$$\begin{split} s_t^{\epsilon} + \operatorname{div}\left(\mathbf{v}^{\varepsilon} f(s^{\epsilon})\right) &= \epsilon \operatorname{div}\left(\mathbf{K}\overline{\lambda}\nabla\left(s^{\epsilon} + \epsilon\gamma s_t^{\epsilon}\right)\right) \\ \operatorname{div}\mathbf{v}^{\varepsilon} &= 0, \ \mathbf{v}^{\varepsilon} = \mathbf{K}\lambda\nabla p^{\varepsilon}, \end{split} \tag{P_{ε}}$$

Theorem

Let $\{s^{\varepsilon}\}_{\varepsilon>0}$ be a family of regular solutions to an initial value problem for (P_{ε}) with $S_0 \in (L^1 \cap L^{\infty})(\mathbb{R}^d)$ and $\mathbf{v}^{\varepsilon} = \mathbf{v}$ given. Then, there is a function $S = S(t) \in L^p(\mathbb{R}^d)$, $p \in [1, 2]$, and a subsequence of $\{s^{\varepsilon}\}_{\varepsilon>0}$ such that

(i)
$$\lim_{\varepsilon \to 0} \|S - s^{\varepsilon}\|_{L^2} = 0,$$

(ii) S is a weak solution of (P_0) .

Numerical convergence to sharp overshoot front.

Overshoots as Shock Waves for (P_0) :

The limit $S := \lim_{\varepsilon \to 0} s^{\varepsilon}$ is **not** a (standard) Kruzkov solution of (P_0).

Failure of Standard Approach for Planar Front:

$$S_t + \operatorname{div}(\mathbf{v}f(S)) = 0, \ \mathbf{v} = (1,0)^T, \qquad S(\mathbf{x},0) = \begin{cases} 0.8 : x_1 < 0 \\ 0 : x_1 > 0 \end{cases}$$

Overshoot Solution:
$$S(\mathbf{x}, t) = \begin{cases} 0.8 : x_1 < st \\ S^* > 0.8 : st < x_1 < st \\ 0.0 : x_1 > st \end{cases}$$

Monotone Finite-Volume Scheme:

$$S_r^0 = \frac{1}{|T_r|} \int_{T_r} S(\mathbf{x}, 0) \, d\mathbf{x},$$

$$S_r^{n+1} = S_r^n - \frac{\Delta t^n}{|T_r|} \sum_{l \in N(r)} g_{rl} \left(S_r^n, S_l^n\right) \quad (r \in \mathcal{I})$$

Failure of Standard Approach for Planar Front:

$$S_t + \operatorname{div}(\mathbf{v}f(S)) = 0, \ \mathbf{v} = (1,0)^T, \qquad S(\mathbf{x},0) = \begin{cases} 0.8 : x_1 < 0 \\ 0 : x_1 > 0 \end{cases}$$

Vertical Sampling.

Note: Convergence towards Kruzkov solution is proven.

A Heterogeneous Multiscale Method (Engel&Kissling&R. 10/11)

Front position at $t = t^n$.

A Heterogeneous Multiscale Method (Engel&Kissling&R. 10/11)

Front position at $t = t^n$.

Step 1: For $\varepsilon > 0$ solve (P_{ε}) in **1D** and in micro-scale interval $(t^n, t^n + \delta t)$ for

Determine (only) \bar{S}_{lr}^n from solution.

Front position at $t = t^n$.

Step 2: Flux balance for T_r (using a numerical flux $g = g_{rl}$)

$$|T_r|\tilde{S}_r := |T_r|S_r^n - \Delta t(g(S_r^n, S_1^n) + g(S_r^n, S_2^n) + g(\bar{S}_{lr}^n, S_l^n)) + d_r^n$$

Front position at $t = t^n$.

Front position at $t = t^{n+1}$ for case (A).

Step 2: Flux balance for T_r (using a numerical flux $g = g_{rl}$)

$$T_r|\tilde{S}_r := |T_r|S_r^n - \Delta t(g(S_r^n, S_1^n) + g(S_r^n, S_2^n) + g(\bar{S}_{lr}^n, S_l^n)) + d_r^n$$

Step 3: Update and front propagation for case (A): $\tilde{S}_r \geq \bar{S}_{lr}^n$

$$S_r^{n+1} = \tilde{S}_r, \quad d_r^{n+1} = 0$$

Front position at $t = t^n$.

Front position at $t = t^{n+1}$ for case (B).

Step 2: Flux balance for T_r (using a numerical flux $g = g_{rl}$)

$$|T_r|\tilde{S}_r := |T_r|S_r^n - \Delta t(g(S_r^n, S_1^n) + g(S_r^n, S_2^n) + g(\bar{S}_{lr}^n, S_l^n)) + d_r^n$$

Step 3: Update and front propagation for case (B): $\tilde{S}_r < \bar{S}_{lr}^n$

$$|T_r|S_r^{n+1} = |T_r|S_r^n - \Delta t(g(S_r^n, S_1^n) + g(S_r^n, S_2^n) + g(S_r^n, S_r^n))$$

$$d_r^{n+1} = d_r^n + \Delta t(g(\bar{S}_{lr}^n, S_l^n) - g(S_r^n, S_r^n))$$

Planar Front with HMM:

$$S_t + \operatorname{div} (\mathbf{V}f(S)) = 0, \, \mathbf{V} = (1,0)^T, \quad S(\mathbf{x},0) = \begin{cases} 0.8 : x_1 < 0 \\ 0 : x_1 > 0 \end{cases}$$

Nonclassical Overshoot Solution: S

$$({f x},t) = \left\{ egin{array}{c} 0.8: x_1 < st \ S^* > 0.8: st < x_1 < st \ 0.0: x_1 > st \end{array}
ight.$$

Saturation at t = 0.5

Saturation at t = 0.7

Planar Front Grid Convergence: $(\mathbf{V} = (1, 0)^T)$

Five-Spot Waterflood: (with Darcy)

Performance-Comparison:

Two-Phase Flow in 2D (Viscous Fingering with Darcy)

 \rightsquigarrow 3D implementation within open source solver DuMuX

Performance-Comparison:

Two-Phase Flow in 2D (Viscous Fingering with Darcy)

		CPU-time	T = 0.3
2 <i>D</i>	monotone FV- IMPES HMM (solving microscale	165 min 1300 min	0.8 v
	problem on the fly) HMM (solving microscale problem by kernel method)	215 min	0.4 0.2 0 0.2 0.4 0.6 0.8 1 T = 0.8 0.95
1 <i>D</i>	microscale problem over one edge	0.1 <i>s</i>	0.8 0.6 x ² 0.4 0.4 0.4
1 <i>D</i>	microscale problem one edge (kernel method)	$1.2 \cdot 10^{-4}s$	0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 x ₁

 \rightsquigarrow 3D implementation within open source solver DuMuX

3) Interfaces in Liquid-Vapour Flow

 $\tau =$ v =

Macroscale Model: Euler Equations

$$\rho_{t} + \operatorname{div}(\rho \mathbf{v}) = 0$$

$$(\rho \mathbf{v})_{t} + \operatorname{div}(\rho \mathbf{v} \otimes \mathbf{v} + p(\rho)\mathcal{I}) = 0$$
Unknowns:
$$\rho = \rho(\mathbf{x}, t) \in (0, \alpha) \cup (\beta, b) \quad : \text{ density}$$

$$\mathbf{v} = \mathbf{v}(\mathbf{x}, t) \in \mathbb{R}^{d} \quad : \text{ velocity}$$
Van-der-Waals pressure

Microscale Model: (in Lagrangian coordinates)

$$\begin{array}{rcl} \tau_t & - & v_{\xi} & = & 0 \\ v_t & + & \tilde{p}(\tau)_{\xi} & = & 0 \end{array} & \mbox{Jump conditions at phase boundary:} \\ v_t & + & \tilde{p}(\tau)_{\xi} & = & 0 \\ \mbox{Unknowns:} & & & & & & & \\ \tau & = \tau(\xi, t) & : & \mbox{specific volume} \\ v & = v(\xi, t) & : & \mbox{longitudinal velocity} \end{array} & \begin{array}{l} \mbox{Jump conditions at phase boundary:} \\ \mbox{[} \tilde{s}\tau + v \mbox{]} & = & 0, \\ \mbox{[} \tilde{s}\tau + v \mbox{]} & = & 0, \\ \mbox{[} \tilde{s}\tau + v \mbox{]} & = & 0, \\ \mbox{[} \tilde{s}\tau + v \mbox{]} & = & (d-1)\gamma\kappa, \\ & & & + & \mbox{entropy criterion.} \end{array}$$

The Riemann Problem for a modified system: (d = 2)

$$\begin{array}{rcl} \tau_t & - & v_{\xi} & = & 0 \\ v_t & + & \widetilde{p}(\tau)_{\xi} & = & 0 \end{array}$$

The pressure \tilde{p} satisfies

$$\tilde{p}(\tau) = -\tilde{\psi}'(\tau).$$

Define the pressure \tilde{p}^{κ} as the derivative of the convex hull of $\tilde{\psi}^{\kappa}_{aux}$!

The Riemann Problem for the Final Microscale Model:

The Riemann Problem for the Final Microscale Model:

Riemann solutions: (Müller&Voss, Godlewski&Seguin '06)

Numerics (Engel, Jaegle, Zeiler)

Relaxation to spherical equilibrium: (density (upper line) and pressure)

Unsteady bubble in 3D:

(Spectral DG-code with pprox 100000 elements and polynomial degree 3)

Initial radius	Surface tension	Inner state	Outer state
<i>r</i> _{ini} = 0.42	$\gamma = 0.0025$	$ ho = 0.3, \; {f v} = 0.0$	$ ho=1.83$, $ \mathbf{v} =0.0$

Pressure field and level set at t = 0.2, comparison with 1D reference solution

Droplets in Rotational-Symmetric Geometry:

Initial Density, Volume-Weighted Total Mass in Vapour Phase

Initial Density, Volume-Weighted Total mass in Elliptic Region.

3) Summary and Outlook:

- Construction of MultiD algorithms for flow problems with interfaces
- Increase of efficiency is a key issue for HMM...
- (Almost) no convergence analysis due to lack of theory

