Domain decomposition for convective acoustics in 3D

F. Casenave, N. Balin, G. Sylvand, I. Terrasse

13th October 2010

Outline

1 Introduction

2 Model equations

3 Domain decomposition

4 Some results

5 Conclusion

Outline

1 Introduction

2 Model equations

3 Domain decomposition

4 Some results

5 Conclusion

Noise generation on aircrafts

How to propagate the generated noise ?

The fluid flow around the jet engine

Test case model

Three levels of modelisation

- Zone 1: visquous complex flow \rightarrow not simulated
- Zone 2: potential flow
- Zone 3: uniform flow

Boundary Finite Element

Boundary Finite Element used to solve acoustic propagation in a fluid

- without flow
- with a uniform flow

Page \rightarrow problem near the objects
EADS

Coupling Boundary and Volumic Finite Elements

Method used to take into account a complex flow near the objects

Compute the acoustic propagation coupling

- 3D-FE in the potential flow
- BEM in the uniform flow

Background and context

Background

- ACTIPOLE software for propagation in the uniform flow
- Bibliography:
- 1991: V. Levillain, formulation S for coupling FE and IE methods
- 2005: S. Duprey, PhD on 2D axi-symetric aeroacoustic
- 2009: E. Peynaud, training student to rediscover Duprey's work
- 2010: F. Casenave, training student to extend to generic 3D

Context

- AEROSON project, financed by the ANR (French National Research Agency)
- Partners: CERFACS, POEMS (INRIA) and LAUM laboratories

Outline

1 Introduction

2 Model equations

3 Domain decomposition

4 Some results

5 Conclusion

Hypothesis and comportment equations

Euler equation for non viscous fluid

$$
\frac{d}{d t} \vec{v}(\vec{x}, t)+\frac{\vec{\nabla} p(\vec{x}, t)}{\rho(\vec{x}, t)}=0
$$

Mass conservation

$$
\frac{\partial \rho}{\partial t}(\vec{x}, t)+\operatorname{div}(\rho(\vec{x}, t) \vec{v}(\vec{x}, t))=0
$$

Perfect gas isentropy

$$
\frac{p(\vec{x}, t)}{\rho(\vec{x}, t)^{\gamma}}=K
$$

Fluid irrotationality

$$
\vec{v}(\vec{x}, t)=\vec{\nabla} \psi(\vec{x}, t)
$$

Some hypothesis and notations

Fluid and acoustic dissociation

■ $\underbrace{\psi(\vec{x}, t)}_{\text {total flow }}=\underbrace{\psi_{0}(\vec{x}, t)}_{\text {carrier flow }}+\underbrace{\psi_{a}(\vec{x}, t)}_{\text {a coustic contribution }}$

- acoustic is an order 1 perturbation of the fluid:

$$
\psi_{a} \ll \psi_{0}
$$

Some hypothesis

- harmonic acoustic perturbation

$$
\psi_{a}(\vec{x}, t)=\psi_{a}(\vec{x}) e^{-i \omega t}
$$

- stationary carrier flow

$$
\psi_{0}(\vec{x}, t)=\psi_{0}(\vec{x})
$$

Equations verified by the acoustic potential

 Euler equation linearisation
Zero flow (Helmholtz equation)

$$
\Delta \psi_{a}+k_{\infty}^{2} \psi_{a}=0
$$

Uniform flow

$$
\Delta \psi_{a}+k_{\infty}^{2} \psi_{a}+2 i k_{\infty} \vec{M}_{\infty} \cdot \vec{\nabla} \psi_{a}-\vec{M}_{\infty} \cdot \vec{\nabla}\left(\vec{M}_{\infty} \cdot \vec{\nabla} \psi_{a}\right)=0
$$

Potential flow

$$
\begin{aligned}
& \rho_{0}\left(k_{0}^{2} \psi_{a}+i k_{0} \vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right) \\
& \quad \quad+\operatorname{div}\left[\rho_{0}\left(\vec{\nabla} \psi_{a}-\left(\vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right) \vec{M}_{0}+i k_{0} \psi_{a} \vec{M}_{0}\right)\right]=0
\end{aligned}
$$

Outline

1 Introduction

2 Model equations

3 Domain decomposition

4 Some results

5 Conclusion

Description and notations

uniform flow

Equations

- Interior problem

$$
\left\{\begin{array}{l}
\rho_{0}\left(k_{0}^{2} \psi_{a}+i k_{0} \vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right) \\
\quad+\operatorname{div}\left[\rho_{0}\left(\vec{\nabla} \psi_{a}-\left(\vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right) \vec{M}_{0}+i k_{0} \psi_{a} \vec{M}_{0}\right)\right]=0 \\
C L \text { on } \Gamma_{\infty}
\end{array}\right.
$$

- Exterior problem

$$
\left\{\begin{array}{l}
\Delta \psi_{a}^{e}+k_{\infty}^{2} \psi_{a}^{e}+2 i k_{\infty} \vec{M}_{\infty} \cdot \vec{\nabla} \psi_{a}^{e}-\vec{M}_{\infty} \cdot \vec{\nabla}\left(\vec{M}_{\infty} \cdot \vec{\nabla} \psi_{a}^{e}\right)=0 \tag{e}\\
\lim _{r \rightarrow+\infty} r\left(\frac{\partial \psi_{a}^{e}}{\partial r}-i k_{\infty} \psi_{a}^{e}\right)=0 \\
C L \text { on } \Gamma_{\infty}
\end{array}\right.
$$

with

$$
C L= \begin{cases}\left.\psi_{a}\right|_{\Omega}(x)=\left.\psi_{a}\right|_{\Omega_{e}}(x) & \forall x \in \Gamma_{\infty} \\ \left.\frac{\partial \psi_{a}}{\partial n}\right|_{\Omega}(x)=\left.\frac{\partial \psi_{a}}{\partial n}\right|_{\Omega_{e}}(x) & \forall x \in \Gamma_{\infty}\end{cases}
$$

Need to transform the equations

Problem

No framework to use the integral representation theorem

Lorentz transformation

- Helmholtz equation in the exterior domain
- transformation of the boundary integral to be compatible with the coupling
- but complicate the equation in the interior domain

Lorentz Transformation

Coordinate change

$$
\overrightarrow{x^{\prime}}=L(\vec{x})=\frac{\left(\vec{x} \cdot \vec{M}_{\infty}\right) \vec{M}_{\infty}}{M_{\infty}^{2} \sqrt{1-M_{\infty}^{2}}}+\left[\vec{x}-\frac{\left(\vec{x} \cdot \vec{M}_{\infty}\right) \vec{M}_{\infty}}{M_{\infty}^{2}}\right]
$$

Phase difference: change of unknown function

$$
\psi_{a}(\vec{x})=f(L(\vec{x})) e^{-\frac{i k_{\infty} \infty \vec{M}_{\infty} \cdot L(\vec{x})}{\sqrt{1-M_{\infty}^{2}}}}=f\left(\vec{x}^{\prime}\right) e^{-\frac{i k_{\infty} \vec{M}_{\infty} \cdot \vec{x}^{\prime}}{\sqrt{1-M_{\infty}^{2}}}}
$$

\rightarrow new unknown f and new coordinate system x '

Exterior domain

Lorentz transformation on the potential equation \rightarrow Helmholtz equation

$$
k_{\infty}^{\prime 2} f+\Delta^{\prime} f=0 \quad \text { with } \quad k_{\infty}^{\prime}=\frac{k_{\infty}}{\sqrt{1-M_{\infty}^{2}}}
$$

Framework for integral representation theorem and Calderón formulas

Find $\left(f, \frac{\partial f}{\partial n}\right) \in H^{1}\left(\Omega^{\prime}\right) \times H^{-\frac{1}{2}}\left(\Gamma_{\infty}^{\prime}\right)$ s.t. $\forall\left(q^{t}, \lambda^{t}\right) \in H^{1}\left(\Omega^{\prime}\right) \times H^{-\frac{1}{2}}\left(\Gamma_{\infty}^{\prime}\right)$

$$
\left\{\begin{array}{l}
\int_{\Gamma^{\prime}} S^{\prime}\left(\frac{\partial f}{\partial n}\right) \lambda^{t}-\int_{\Gamma^{\prime}} D^{\prime}(f) \lambda^{t}+\frac{1}{2} \int_{\Gamma^{\prime}} f \lambda^{t}=\int_{\Gamma_{\infty}^{\prime}} f_{i n c}^{e} \lambda^{t} \\
\int_{\Gamma_{\infty}^{\prime}}^{\infty} D^{*}\left(\frac{\partial f}{\partial n}\right) q^{t}-\int_{\Gamma_{\infty}^{\prime}} N^{\prime}(f) q^{t}+\frac{1}{2} \int_{\Gamma_{\infty}^{\prime}} \frac{\partial f}{\partial n} q^{t}=\int_{\Gamma_{\infty}^{\prime}} \frac{\partial f_{i n c}^{e}}{\partial n} q^{t}
\end{array}\right.
$$

where S, D, D^{*} et N are integral operators defined with the Green fonction of the problem

Interior domain

Variational formulation before Lorentz transformation

Find $\psi_{a} \in H^{1}(\Omega)$ such that $\forall q^{t} \in H^{1}(\Omega)$

$$
\begin{aligned}
& \int_{\Omega} \rho_{0}\left[\vec{\nabla} \psi_{a} \cdot \vec{\nabla} q^{t}-k_{0}^{2} \psi_{a} q^{t}-i k_{0}\left(\left(\vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right) q^{t}-\left(\vec{M}_{0} \cdot \vec{\nabla} q^{t}\right) \psi_{a}\right)\right] \\
& \quad-\int_{\Omega} \rho_{0}\left(\vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right)\left(\vec{M}_{0} \cdot \vec{\nabla} q^{t}\right) \\
& \quad-\int_{\Gamma_{\infty}} \rho_{0}\left(\vec{\nabla} \psi_{a} \cdot \vec{n}-\left(-i k_{0} \psi_{a}+\vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right) \vec{M}_{0} \cdot \vec{n}\right) q^{t}=0
\end{aligned}
$$

Lorentz transformation

- Surface integral the coupling term will appear

■ Volume integral will be complexified

Surface integral transformation

Change of variable : jacobian of the surface-restrained tranformation

$$
\left|\operatorname{Jac}\left(\left.L\right|_{\partial \Omega} ^{-1}\right)\left(\left.L\right|_{\partial \Omega} ^{-1}\left(x^{\prime}\right)\right)\right|=\sqrt{\frac{L\left(\overrightarrow{t^{2}}\right)}{\frac{1-\left(\vec{n}\left(L^{-1}\left(x^{\prime}\right)\right) \cdot M_{\infty}\right)^{2}}{2}}}
$$

Surface integral transformation

Variational formulation becomes

$$
\begin{aligned}
& \int_{\Omega} \rho_{0}\left[\vec{\nabla} \psi_{a} \cdot \vec{\nabla} q^{t}-k_{0}^{2} \psi_{a} q^{t}-i k_{0}\left(\left(\vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right) q^{t}-\left(\vec{M}_{0} \cdot \vec{\nabla} q^{t}\right) \psi_{a}\right)\right] \\
& \quad-\int_{\Omega} \rho_{0}\left(\vec{M}_{0} \cdot \vec{\nabla} \psi_{a}\right)\left(\vec{M}_{0} \cdot \vec{\nabla} q^{t}\right) \\
& \quad-\rho_{\infty} \sqrt{1-M_{\infty}^{2}} \int_{\Gamma_{\infty}^{\prime}} \frac{\partial f}{\partial n^{\prime}} f^{t}=0
\end{aligned}
$$

Coupling term to identify in the Calderón system.

Volume term transformation

Gradients tranformation

$$
\left(\overrightarrow{\mathcal{L}_{ \pm}^{\prime}} f\right)=\vec{\nabla}^{\prime} f+\left[C\left(\vec{M}_{\infty} \cdot \vec{\nabla}^{\prime} f\right) \pm \frac{i k_{\infty}}{1-M_{\infty}^{2}} f\right] \vec{M}_{\infty}
$$

Transformed interior domain variational equation

Find $f \in H^{1}\left(\Omega^{\prime}\right)$ such that $\forall f^{t} \in H^{1}\left(\Omega^{\prime}\right)$

$$
\begin{aligned}
& \int_{\Omega^{\prime}} \frac{\rho_{0}}{\rho_{\infty}}\left[\left(\overrightarrow{\mathcal{L}_{-}^{\prime} f}\right) \cdot\left(\overrightarrow{\mathcal{L}_{+}^{\prime} f^{t}}\right)-{k_{0}}^{2} f f^{t}\right] \\
& -\int_{\Omega^{\prime}} \frac{\rho_{0}}{\rho_{\infty}} i k_{0}\left[\left(\vec{M}_{0} \cdot\left(\overrightarrow{\mathcal{L}_{-}^{\prime}} f\right)\right) f^{t}-\left(\vec{M}_{0} \cdot\left(\overrightarrow{\mathcal{L}_{+}^{\prime} f^{t}}\right)\right) f\right] \\
& -\int_{\Omega^{\prime}} \frac{\rho_{0}}{\rho_{\infty}}\left(\overrightarrow{M_{0}} \cdot\left(\overrightarrow{\mathcal{L}_{-}^{\prime} f}\right)\right)\left(\vec{M}_{0} \cdot\left({\mathcal{\mathcal { L } _ { + } ^ { \prime }}}^{\prime} f^{t}\right)\right) \\
& -\int_{\Gamma_{\infty}^{\prime}}^{\infty} \frac{\partial f}{\partial n^{\prime}} f^{t}=0
\end{aligned}
$$

Coupling the interior and the exterior problems

Global variational formulation

Find $(q, \lambda) \in H^{1}\left(\Omega^{\prime}\right) \times H^{-\frac{1}{2}}\left(\Gamma_{\infty}^{\prime}\right)$ s.t. $\forall\left(q^{t}, \lambda^{t}\right) \in H^{1}\left(\Omega^{\prime}\right) \times H^{-\frac{1}{2}}\left(\Gamma_{\infty}^{\prime}\right)$

$$
\left\{\begin{array}{l}
\frac{1}{i k_{\infty} \rho_{\infty}} \int_{1} \rho_{\Omega^{\prime}}\left[\mathcal{L}_{-}^{\prime} q \cdot \mathcal{L}_{+}^{\prime} q^{t}-k_{0}^{2} q q^{t}\right] \\
\quad-\frac{1}{k_{\infty} \rho_{\infty}} \int_{\Omega^{\prime}} \rho_{0} k_{0}\left[\left(\vec{M}_{0} \cdot \mathcal{L}_{-}^{\prime} q\right) q^{t}-\left(\vec{M}_{0} \cdot \mathcal{L}_{+}^{\prime} q^{t}\right) q\right] \\
\quad-\frac{1}{i k_{\infty} \rho_{\infty}} \int_{\Omega^{\prime}} \rho_{0}\left(\vec{M}_{0} \cdot \mathcal{L}_{-}^{\prime} q\right)\left(\vec{M}_{0} \cdot \mathcal{L}_{+}^{\prime} q^{t}\right) \\
\quad-\int_{\Gamma_{\infty}^{\prime}} D^{\prime *}(\lambda) q^{t}-\frac{1}{i k_{\infty}} \int_{\Gamma_{\infty}^{\prime}} N^{\prime}(q) q^{t}+\frac{1}{2} \int_{\Gamma_{\infty}^{\prime}} \lambda q^{t} \\
\quad=-\frac{1}{i k_{\infty}} \int_{\Gamma_{\infty}^{\prime}} \frac{\partial f_{i n c}^{e}}{\partial n} q^{t} \\
-i k_{\infty} \int_{\Gamma_{\infty}^{\prime}} S^{\prime}(\lambda) \lambda^{t}-\int_{\Gamma_{\infty}^{\prime}} D^{\prime}(q) \lambda^{t}+\frac{1}{2} \int_{\Gamma_{\infty}^{\prime}} q \lambda^{t}=-\int_{\Gamma_{\infty}^{\prime}} f_{i n c}^{e} \lambda^{t}
\end{array}\right.
$$

Outline

1 Introduction

2 Model equations

3 Domain decomposition

4 Some results

5 Conclusion

Test case : sphere_in_pave

 Uniform case without flow
$M_{0}=M_{\infty}=0$

$$
c_{0}=c_{\infty}=340 m \cdot s^{-1}
$$

$$
\rho_{0}=\rho_{\infty}=1.2 \mathrm{~kg} \cdot \mathrm{~m}^{-3}
$$

Difference (norm 2): 1.1\%

Test case : two cubes

Uniform flow

$$
\begin{aligned}
M_{0} & =M_{\infty}=0.5 \\
c_{0} & =c_{\infty}=340 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\rho_{0} & =\rho_{\infty}=1.2 \mathrm{~kg} \cdot \mathrm{~m}^{-3}
\end{aligned}
$$

Difference

 (norm 2): 3.5\%

Validation non-uniform test case

Formulation for a potential flow

Analytic solution by Mie series
Point de visualisation

\times

Source monopole

$$
M_{0}=M_{\infty}=0, c_{0}=2 c_{\infty}, \rho_{0}=\rho_{\infty}
$$

Validation non-uniform test case

Formulation for a potential flow

Figure: Real part of the pressure at a point in function of the frequency error: $<0.25 \%$ for $f<85 \mathrm{~Hz}$, and $<5 \%$ up to 500 Hz (infinite norm, mesh done for 85 Hz)

Test case : sphere in ball

A 'more' realistic potential flow

$$
M_{\infty}=0.4
$$

incompressible potential flow
$\mathrm{f}=1133.333 \mathrm{~Hz}$
1.5 M tetraedres

250 k dl vol, 100 k dl surf residual $<10^{-3}$

Test case : sphere in ball

Upper source : comparison with a uniform flow With uniform flow
top : diffracted potential bottom : total potential

Under-estimated diffraction phenomena with uniform flow

With potential flow

Test case : sphere in ball

Side source : comparison with a uniform flow

With uniform flow
top : diffracted potential bottom : total potential

Under-estimated diffraction and distortion with uniform flow

With potential flow

Tube shaped jet flow test case

	Exterior domain	Jet
celerity	$340.2 \mathrm{~m} / \mathrm{s}$	$545.4 \mathrm{~m} / \mathrm{s}$
rho	$1.23 \mathrm{~kg} / \mathrm{m}^{3}$	$0.48 \mathrm{~kg} / \mathrm{m}^{3}$
Mach	0	0.69

and linear interpolation in the thickness δ. Measures at 10 m for $0<\theta<120$ and $0<\phi<360$.

Tube shaped jet flow test case Results

Figure: Comparison of pressure intensity w.r.t. ψ and θ

Information on the computations

Some computations done

■ Volumic part: 1677767 elements, 258486 unknowns
■ Surfacic part: 343609 elements, 154895 unknowns
■ ≈ 3 hours on 64 processors

Solution method

- Schur complement on the volumic part (MUMPS)
- Direct or FMM solver, parallelized with MPI
- remark: same solver used for EM applications with several millions of volumic unknowns

■ (nb_unknowns/tetra) $)_{E M} \approx 10(n b \text { _unknowns/tetra })_{A C}$

Outline

1 Introduction

2 Model equations

3 Domain decomposition

4 Some results

5 Conclusion

Conclusion

What has been done

- first 3D code coupling LEE with BEM to our knowledge (integrated in ACTIPOLE software)
- validations have been conducted (with autotests data)

What we still have to do

- more realistic validation test cases (object, flow)
- implement direct coupling between modal sources and FE domain

