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The inverse problem / Motivation
Radar, Sonar, Mine detection, Infrastructure imaging, Non destructive testing, · · ·

Known background

Sources/Receivers

Inverse problem: Determine the geometry of inclusions from the
knowledge of diffracted fields associated with several incident waves.

Physical properties of the inclusions are not known (a priori)

Spectrum of the incident waves in the resonant region

⇒ Sampling methods are good candidates



Examples of applications
Radar, Sonar, Mine detection, Infrastructure imaging, Non destructive testing, · · ·

Imaging of urbain infrastructures with GPR:

Visualise complex structures
(pipelines, deposits, mines, . . .)
buried in the ground (few meters),
from electromagnetic measure-
ments

GPR device of WTI-inc

Microwave biomedical imaging:
Use microwaves (moderate frequencies)
for diagnosis of malignancies or functional
monitoring.
Advantages: cheap cost, absense of side
effects.

Prototype of experimental measurements



Sampling methods

Examples of sampling methods: Linear Sampling Method (Colton-Kirsch,
1996), Factorization method (Kirsch, 1998), Probe Method (Potthast, 2001),
Reciprocity Gap Sampling Method (Colton-Haddar, 2005), . . .)

Principle: Associate with a sampling point z of the probed domain a criterion
G(z) that indicates whether z is in the interior or the exterior of the scatterer.

(+) Non-iterative, the computation of G does not require a forward solver.
(−) Require a large amount of multistatic-data (many transmitters-receivers).

Goal: Reduce the required number of sources/receivers by using multiple
frequencies, or even better: a time dependent data



Relevance of time dependent data

Use of realistic measurments: causal sources and short pulses (GPR
applications)

Provide naturel “multi-frequency” reconstruction criteria

Incorporate arrival time information in the reconstruction procedure

Naturel dependance of regularization parameters on the frequency



A model problem
Inverse scattering from a perfect conductor

Sources/Receivers

D

Γ

D

Total field utot(·, x0)

(∂tt −∆)utot(·, x0) = χ(t)δ|x−x0| (R3 \D)× R,
utot(·, x0) = 0 ∂D × R,
utot(·, x0) = 0 (R3 \D)× R−

χ: causal function with compact support.

x0 ∈ Γ: location of the sources/receivers

Inverse problem: Determine D from the knowledge of utot(x, t, x0) for all
t ∈ R and all x and x0 in Γ



A model problem
Inverse scattering from a perfect conductor

Incident field:

uinc(x, t, x0) :=
χ(t− |x− x0|)

4π|x− x0|
Scattered field:

usca := utot − uinc

Near-Field operator:

(Nφ)(x, t) :=
∫

R

∫
Γ

usca(x, t− t0, x0)φ(x0, t0)ds(x0)dt0 x ∈ Γ, t ∈ R

Principle of the Linear Sampling Method (LSM): characterize the inclusion

D using the range of this operator.



Factorization of the operator N

Linearity of the map: uinc 7→ usca

⇒ Nφ is the scattered field associated with the incident field

SLχΓ φ(x, t) :=
∫

R

∫
Γ

uinc(x, t− t0, x0)φ(x0, t0)ds(x0)dt0

Therefore:
Nφ = G(SLχΓ φ)

Where

Gf := u(x, t)|Γ×R (∂tt −∆)u = 0 (R3 \D)× R,
u = −f ∂D × R,
u = 0 (R3 \D)× R−



Factorization of the operator N

The solution u can be represented as a retarded potential

u(x, t) = (SL∂Dφ)(x, t) :=
∫
∂D

φ(x0, t− |x− x0|)
4π|x− x0|

ds(x0)

⇒ Boundary integral equation: S∂Dφ = −f on ∂D × R.

Analysis of retarded potentials via Laplace transform in Hs
σ(R, H−1/2(Γ)),

σ > 0 (Bamberger & Ha-Duong, 1986)

S∂D : Hp
σ(R, H−1/2(∂D))→ Hp−1

σ (R, H1/2(∂D))
S−1
∂D : Hp

σ(R, H1/2(∂D))→ Hp−2
σ (R, H−1/2(∂D))

Hence: G f = −SL∂D S−1
∂D f , and

N = −SL∂D S−1
∂D SLχΓ

Thm: N : H2
σ(R, H−1/2(Γ))→ H−2

σ (R, H1/2(Γ)) is bounded and injective
with dense range.



Time Domain Sampling

Idea: Test range of N with “point sources”

φz,τ (x, t) =
χ(t− τ − |x− z|)

4π|x− z|
, (x, t) ∈ R3 \ {z} × R

Thm 1: φz,τ |Γ×R is in the range of G if an only if z ∈ D

For z ∈ D: G(−φz,τ |∂D×R) = φz,τ |Γ×R

For z 6∈ D the function φz,τ |Γ×R cannot belong to the range of G:
point source is singular at z but solutions to the wave equation are
not (unique continuation argument is needed here)

Thm 2: SLχΓ : H2
σ(R, H−1/2(Γ))→ H1

σ(R, H1/2(∂D)) is injective
with dense range.

Recall that:
N = G ◦ SLχΓ



Theoretical Justification of LSM

Main Theorem: Let τ ∈ R.

(1) If z ∈ D then for all ε > 0 there exists gεz,τ ∈ H2
σ(R, H−1/2(Γ)) such that

‖N gεz,τ − φz,τ‖H−2
σ (R,H1/2(Γ)) ≤ ε,

lim
ε→0
‖SLχΓ g

ε
z,τ‖H1

σ(R,H1(D)) <∞.

Moreover, for fixed ε:

lim
z→∂D

‖gεz,τ‖H2
σ(R,H−1/2(Γ)) =∞, and

lim
z→∂D

‖SLχΓ g
ε
z,τ‖H1

σ(R,H1(D)) =∞.

(2) If z 6∈ (D ∪ Γ) then for any gεz,τ ∈ H2
σ(R, H−1/2(Γ)) such that

lim
ε→0
‖N gεz,τ − φz,τ‖H−2

σ (R,H1/2(Γ)) = 0

it holds that

lim
ε→0
‖gεz,τ‖H2

σ(R,H−1/2(Γ)) =∞, and

lim
ε→0
‖SLχΓ g

ε
z,τ‖H1

σ(R,H1(D)) =∞.



Algorithmic Aspects

A regularization is needed to solve the near field equation, e.g.

(ε+N ∗dN d)gεz,τ = N ∗d φz,τ

Dimension of discretized matrix is huge
Example: 10 sources/receivers, 100 time steps yield unknown gεz,τ of
dimension 10 ∗ 10 ∗ 100 = 104

Convolution structure of the kernel saves some memory
System matrix N d has a large kernel
Compute a sufficient number of the first singular values/vectors of
N d (only necessitates evaluation of matrix-vector products) to
approximate N d

The choice of τ in gεz,τ in the latter theorem seems arbitrary. For
numerical implementation it is not arbitrary since support in time of
the density gεz,τ has to be truncated.



Numerical Examples I

wave speed=1, source ∼ sin(4t)e−1.6(t−3)2 , λc = 2π/4 ≈ 1.6, full
aperture, 1% added random noise
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Numerical Examples II

wave speed=1, source ∼ sin(4t)e−1.6(t−3)2 , λc = 2π/4 ≈ 1.6, full
aperture, 1% added random noise
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Numerical Examples III

(a) wave speed=1, source ∼ sin(4t)e−1.6(t−3)2 , λc = 2π/4 ≈ 1.6, full
aperture, 1% added random noise. (b) Frequency domain reconstruction
at central wave number kc = 4 using standard frequency domain linear
sampling method
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Sampling Methods with Far Field data
Physical Setting – Radar, Sonar, Microwave applications

ξ : direction of observation

θ

Incident plane wave

D
D

Incident travelling wave front uinc(x, t; θ) := χ(t− θ · x)
The function χ has compact support and is zero for t ≤ T = supx∈D |x|.

Scattered field: usca(·, ·; θ) solves

∂ttusca −∆usca = 0 (Ω× R),
usca = −uinc (∂D × R),
usca = 0 (Ω× (−∞, 0))

Far field: u∞(ξ, t; θ) = lim
r→∞

usca(rξ, r + t; θ) for ξ ∈ S, t ∈ R

Thm: usca(rξ, t; θ) = u∞(ξ, t− r; θ)/r +O(1/r2) as r →∞



Mathematical Setting – Inverse problem

Measured Data: u∞(ξ, s, θ) for all ξ, θ ∈ S and all s ∈ R.

Far-field operator:

(Fg)(ξ, s) :=
∫

R

∫
S
u∞(ξ, s− s0, θ)g(θ, s0)ds0dθ

Fg is the farfield associated with

(Hχg)(x, t) :=
∫

R

∫
S
χ(t− s0 − θ · x)g(θ, s0)dθds0

Hχ is the time domain Herglotz operator.

Thm: For all a > 0, the operator

Hχ : H5/2
0 (0, a;L2(S))→ H3/2(−T, T + a;H1/2(∂D) is bounded

and injective.



Factorizing the Far Field Operator

For a single layer potential u = SL∂Dψ the far field is given by

u∞(ξ, t) = (Rψ)(ξ, t) =
1

4π

∫
∂D

ψ(x0, t+ ξ · x0)dx0

Thus, Fg = −R S−1
∂D Hχ g

Thm 1: Setting Fχ := −∂tχ ? F

Fχ = H∗χ ◦ ∂tS−1
∂D ◦ Hχ

Thm 2: ∂tS
−1
∂D possesses the following coercivity property: Let a > 0 then∫ a

0

∫
∂D

∂tS
−1
∂D(ψ)ψdxdt ≥ C‖ψ‖2H−3/2(0,a;H−1/2(Γ))

for all ψ ∈ H3/2(0, a;H1/2(∂D))



Range Inclusions

Thm: Fχ : H5/2
0 (0, a;L2(S))→ H−5/2(0, a;L2(S)) is a positive and

selfadjoint operator that has a “square root”

B : H5/2
0 (0, a;L2(S))→ L2(0, a;L2(S)) such that

Fχ = B∗B

Moreover the following inclusions hold:

Rg
(
H∗χ : H3/2

0 (−T, a+ T ;H−1/2(∂D))→ H−5/2(0, a;L2(S))
)

∩

Rg
(
B∗ : L2(0, a;L2(S))→ H−5/2(0, a;L2(S))

)
∩

Rg
(
H∗χ : H−3/2(−T, T + a;H−1/2(∂D))→ H−5/2(0, a;H1/2(∂D))

)



Characterization of D

Test functions: we use the far fields associated with the point sources

φz,τ (x, t) =
χ(t− τ − |x− z|)

4π|x− z|
, x ∈ R3 \ {z}, t ∈ R.

φ∞z,τ (ξ, t) := χ(t− τ + ξ · z)/(4π), ξ ∈ S, t ∈ R

Main Thm: Let τ > 0 et let a > 0 such that the far field φ∞z,τ is
supported in S× [0, a] for all sampling points z ∈ Ω ⊃ D. Then

φ∞z,τ ∈ Rg(B∗) ⇐⇒ z ∈ D.

Remark: Numerically B∗ ≡ (Fχ)1/2.



Conclusion and Outlook

Conclusion:

Inverse scattering in the time domain

Factorization of near field and far field operators

Linear sampling method in the time domain domain for near field
data

Factorization method in the time domain for far field data

Both methods use measurements of causal waves

Implementation difficult - huge dimension

Outlook:

Penetrable media, Electromagnetic problem

Exploit sampling in time with the parameter τ

Implementation of suitable data structures and faster SVD

Other regularizations


