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Why study Reactive Flows in porous media?

* Oil reservoir simulation (Enhanced Recovery Mechanisms)

* CO2 storage (Natural Gas Extraction)

* Geothermal energy extraction

* Underground coal gasification

* Stockage of Nuclear Wastes

* Ground water contaminant transport (Drinking and Irrigation)

* Soil Chemistry (Movement of moisture, nutrients, pollutants in soil)
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Unbounded periodic porous media

Let ε > 0 represents the microscale of the porous medium

Y = [0, 1]n

Y = Y 0 ∪ Σ0 s.t Y 0 ∩ Σ0 = ∅
Y 0 fluid part
Σ0 solid part

Y ε
i = [0, ε]n

Y ε
i = (Y 0

i )
ε ∪ (Σ0

i )
ε

(Y 0

i )
ε fluid part

(Σ0

i )
ε solid part

Ωε = R
n \ ∪i∈Z(Σ

0

i )
ε = R

n∩i∈Z(Y
0

i )
ε

Assumptions:
Σ0 smooth, connected set strictly included in Y or forms a connected set
in R

n by Y-periodicity.
Ωε smooth, connected set in R

n



2-D schematics
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2-D schematic of an unbounded porous media



Model Description

We intend to study the Diffusive Transort of the solute

particles transported by a stationary incompressible viscous

flow in presence of a reaction through a porous medium.



Model Description

We intend to study the Diffusive Transort of the solute

particles transported by a stationary incompressible viscous

flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered

surface convection and surface diffusion on the pore surfaces.



Model Description

We intend to study the Diffusive Transort of the solute

particles transported by a stationary incompressible viscous

flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered

surface convection and surface diffusion on the pore surfaces.

For simplicity, we study Reactive Transport of a single solute.



Model Description

We intend to study the Diffusive Transort of the solute

particles transported by a stationary incompressible viscous

flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered

surface convection and surface diffusion on the pore surfaces.

For simplicity, we study Reactive Transport of a single solute.

Also, we assume that the reactive interactions are present only on

the pore surfaces (Linear Adsorption).



Model Description contd.

The model is described as follows:










































































∂tuε +
1

ε
bε · ∇xuε − divx(Dε∇xuε) = 0 in (0, T )× Ωε

uε(0, x) = u0(x), x ∈ Ωε

∂tvε +
1

ε
bSε · ∇S

xvε − divSx (D
S
ε ∇

S
xvε) =

1

ε2
κ

(

uε −
1

K
vε

)

= −
1

ε
Dε∇xuε · γ on (0, T )× ∂Ωε

vε(0, x) = v0(x), x ∈ ∂Ωε

(1)

uε(t, x) respresents the concentration of the solute in the bulk.

vε(t, x) represents the concentration of the solute on the pore surfaces.
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model description

κ Rate constant
K Linear adsorption eq. const.

x Macroscopic variable y = x
ε

Microscopic variable

γ(y) outward normal
G(y) = Id− γ(y)⊗ γ(y) projection matrix
∇S

xv = G∇xv tangential gradient
divSxΨ = divx(GΨ) tangential divergence

Dε(x) = D(x
ε
) Periodic DS

ε (x) = DS(x
ε
) Periodic symmetric

symmetric coercive diffusion coercive surface diffusion

bε(x) = b
(

x
ε

)

Stationary bSε (x) = bS(x
ε
) Stationary

incompressible periodic flow incompressible periodic flow
divyb = 0 in Y 0 divSy b

S = 0 on ∂Σ0

b · γ = 0 on ∂Σ0



Main Result

Theorem 1 The solution (uε, vε) of (1) satisfies

uε(t, x) ≈ u0(t, x−
b∗

ε
t) and vε(t, x) ≈ Ku0(t, x−

b∗

ε
t)

with the effective drift

b∗ =

∫

Y 0

b(y) dy +K
∫

∂Σ0

bS(y) dσ(y)

|Y 0|+K|∂Σ0|n−1

and u0 the solution of the homogenized problem






Kd ∂tu0 = divx (A
∗∇xu0) in (0, T )× R

n

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|n−1v
0(x), x ∈ R

n

Where, Kd = |Y 0|+K|∂Σ0|n−1, the dispersion tensor A∗ will be
described later.



Two-scale Asymptotic Expansion

The usual Two-scale Expansion method suggests us to
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equations.

• solve those system of equations to arrive at the homogenized
equation.
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The usual Two-scale Expansion method suggests us to

• Take the ansatz for uε(t, x) and vε(t, x) in slow and fast variables as

uε =
∞
∑

i=0

εiui

(

t, x,
x

ε

)

and vε =
∞
∑

i=0

εivi

(

t, x,
x

ε

)

• Plug-in the two asymptotic expansions in (1).

• Identify the co-efficients of identical powers of ε and get a cascade of
equations.

• solve those system of equations to arrive at the homogenized
equation.

• Convection term in microscale results in strong convection term
dominating the diffusion. So, we cannot expect to prove the
convergence of uε(t, x) in a fixed spatial frame x but in a moving
frame x+ b∗t



Two-scale Asymptotic Expansion with DRIFT

uε =

∞
∑

i=0

εiui

(

t, x−
b∗t

ε
,
x

ε

)

(2)

vε =
∞
∑

i=0

εivi

(

t, x−
b∗t

ε
,
x

ε

)

(3)

Where b∗ is the drift which shall be computed along the process.
Consider y = x

ε
. Then we have:

∂

∂t

[

φ

(

t, x−
b∗t

ε
,
x

ε

)]

=





∂φ

∂t
−

n
∑

j=1

b∗j

ε

∂φ

∂xj





(

t, x−
b∗t

ε
,
x

ε

)

∂

∂xj

[

φ

(

t, x−
b∗t

ε
,
x

ε

)]

=

[

∂

∂xj
φ+

1

ε

∂

∂yj
φ

](

t, x−
b∗t

ε
,
x

ε

)

(4)

∀j ∈ {1, · · · , n}



Fredholm type result

Before listing the cascade of equations, we shall state a Fredholm type
result that helps us solve them.

Lemma 2 For f ∈ L2(Y 0), g ∈ L2(∂Σ0) and h ∈ L2(∂Σ0), the following
system of p.d.e.’s admit a solution (u, v) ∈ H1

per(Y
0)×H1(∂Σ0), unique up

to the addition of a constant multiple of (1,K),







































b(y) · ∇yu− divy(D(y)∇yu) = f in Y 0,

−D(y)∇yu · γ + g = k
(

u− 1

K
v
)

on ∂Σ0,

bS(y) · ∇S
y v0 −DSdivSy (D

S(y)∇S
y v0)− h = k

(

u− 1

K
v
)

on ∂Σ0,

y → (u(y), v(y)) Y − periodic,
(5)

if and only if
∫

Y0

f dy +

∫

∂Σ0

(g + h) dσ(y) = 0 (6)



Cascade of Systems

Co-efficients of ε−2































b(y) · ∇yu0 − divy(D(y)∇yu0) = 0 in Y 0,

−D∇yu0 · γ = bS(y) · ∇S
y v0 −DSdivSy (D

S(y)∇S
y v0)

= k
[

u0 −
1

K
v0
]

on ∂Σ0,

y → (u0(y), v0(y)) Y − periodic,
(7)

The compatibilty condition is trivially satisfied.

Hence the existence and uniqueness of (u0, v0).

Substituting the test functions by (u0, v0) in the variational formulation of
(7), we can deduce that

v0 = Ku0 and u0 = u0(t, x)



Cascade of Systems Contd.

Co-efficients of ε−1







































−b∗ · ∇xu0 + b(y) · (∇xu0 +∇yu1)− divy(D(y)(∇xu0 +∇yu1)) = 0 inY 0,

−b∗ · ∇xv0 + bS(y) · (∇S
xv0 +∇S

y v1)− divSy (D
S(y)(∇S

xv0 +∇S
y v1))

= −D(y)(∇xu0 +∇yu1) · γ = k
[

u1 −
v1
K

]

on∂Σ0,

y → (u1(y), v1(y)) Y − periodic,
(8)

The linearity helps us deduce that

u1(t, x, y) = χ(y) · ∇xu0

and
v1(t, x, y) = ω(y) · ∇xu0

The above representation of (u1, v1) results in the following coupled cell
problem, for i ∈ {1, · · · , n}



Cell Problem























































b(y) · ∇yχi − divy(D(y)(∇yχi + ei)) = (b∗ − b(y)) · ei in Y 0,

bS(y) · ∇S
yωi − divSy (D

S(y)(∇S
yωi +Kei))

= K(b∗ − bS(y)) · ei + κ
(

χi −
1

K
ωi

)

on ∂Σ0,

−D(y)(∇yχi + ei) · γ = κ
(

χi −
1

K
ωi

)

on ∂Σ0,

y → (χi(y), ωi(y)) Y − periodic,
(9)

Using the Fredholm result, we get the existence of (χi, ωi) provided

b∗ =

∫

Y 0

b(y) dy +K
∫

∂Σ0

bS(y) dσ(y)

|Y 0|+K|∂Σ0|n−1

(10)



Cascade of Systems contd.

Co-efficients of ε0











































































∂tu0 − b∗ · ∇xu1 + b(y) · (∇xu1 +∇yu2)

−divx(D(y)(∇xu0 +∇yu1))− divy(D(y)(∇xu1 +∇yu2)) = 0 in Y 0,

∂tv0 − b∗ · ∇xv1 + bS(y) · (∇S
xu1 +∇S

y u2)

−divx(GDS(y)(G∇xv0 +∇S
y v1))− divSy (D

S(y)(G∇xv1 +∇S
y v2))

= −D(y)(∇yu2 +∇xu1) · γ = κ
[

u2 −
1

K
v2
]

on ∂Σ0,

y → (u2(y), v2(y)) Y − periodic,
(11)



Homogenized equation

The compatibility condition for (u2, v2) yields the homogenized equation.






Kd ∂tu0 = divx (A
∗∇xu0) in (0, T )× R

n

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|n−1v
0(x), x ∈ R

n

(12)

Where, Kd = |Y 0|+K|∂Σ0|n−1, the dispersion tensor A∗ is given by

A∗

ij =

∫

Y 0

D (∇yχi + ei) · (∇yχj + ej) dy

+κ

∫

∂Σ0

(

χi −K−1ωi

) (

χj −K−1ωj

)

dσ(y)

+K

∫

∂Σ0

DS
(

Gei +K−1∇S
yωi

)

·
(

Gej +K−1∇S
yωj

)

dσ(y)

(13)
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The compatibility condition for (u2, v2) yields the homogenized equation.






Kd ∂tu0 = divx (A
∗∇xu0) in (0, T )× R

n

Kd u0(0, x) = |Y 0|u0(x) + |∂Σ0|n−1v
0(x), x ∈ R

n

(12)

Where, Kd = |Y 0|+K|∂Σ0|n−1, the dispersion tensor A∗ is given by

A∗

ij =

∫

Y 0

D (∇yχi + ei) · (∇yχj + ej) dy

+κ

∫

∂Σ0

(

χi −K−1ωi

) (

χj −K−1ωj

)

dσ(y)

+K

∫

∂Σ0

DS
(

Gei +K−1∇S
yωi

)

·
(

Gej +K−1∇S
yωj

)

dσ(y)
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It should be noted that we have used the information we know of (u1, v1)
in terms of (χ, ω). A∗ is symmetrized as anti-symmetric part doesn’t
contribute.



Equivalent homogenized equation

Define ũε(t, x) = u0(t, x− b∗

ε
t). Then, it is solution of







∂tũε +
1

ε
b∗ · ∇ũε = Kd

−1divx (A
∗∇xũε) in (0, T )× R

n

Kd ũε(0, x) = |Y 0|u0(x) + |∂Σ0|n−1v
0(x), x ∈ R

n

(14)



Numerical Study using FreeFem++

Numerical tests were done using FreeFem++.

Using Lagrange P1 finite elements.

Number of vertices = 23894.

The solid obstacles are isolated circular disks of radius 0.2

The velocity field b(y) is generated by solving the following filtration
problem in the fluid part Y 0 of the unit cell Y . For simplicity, we have taken
the surface convection bS to be zero.















∇yp−∆yb = ei in Y 0,

divyb = 0 in Y 0,

b = 0 on ∂Σ0,

p, b Y 0 − periodic

(15)

Calculations were done to see the effect of the variation in κ and DS on
the effective co-efficients. They are seen to show a stable asymptotic
behaviour.



Behavior of the cell solution

IsoValue
-0.118263
-0.101224
-0.0898652
-0.0785062
-0.0671471
-0.0557881
-0.0444291
-0.03307
-0.021711
-0.010352
0.00100706
0.0123661
0.0237251
0.0350842
0.0464432
0.0578022
0.0691612
0.0805203
0.0918793
0.120277

IsoValue
-0.0166337
-0.0141745
-0.0125351
-0.0108956
-0.00925613
-0.00761666
-0.0059772
-0.00433773
-0.00269826
-0.00105879
0.000580672
0.00222014
0.00385961
0.00549907
0.00713854
0.00877801
0.0104175
0.0120569
0.0136964
0.0177951

Figure 1: The cell solution χ1: Left, reference value κ = κ0; Right, κ = 5κ0



Behavior of the cell solution contd.

IsoValue
-0.00424724
-0.00367644
-0.0032959
-0.00291537
-0.00253483
-0.0021543
-0.00177377
-0.00139323
-0.0010127
-0.000632165
-0.000251632
0.000128902
0.000509436
0.00088997
0.0012705
0.00165104
0.00203157
0.0024121
0.00279264
0.00374397

IsoValue
-0.0181629
-0.0155051
-0.0137331
-0.0119612
-0.0101893
-0.0084174
-0.00664549
-0.00487357
-0.00310166
-0.00132975
0.000442167
0.00221408
0.00398599
0.00575791
0.00752982
0.00930173
0.0110736
0.0128456
0.0146175
0.0190473

Figure 2: The cell solution χ1: Left, κ = 6κ0; Right, κ = 8κ0



Behavior of logitudinal dispersion with variation in react ion rate
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Figure 3: The variation of effective longitudinal diffusion: Left, κ tending to
0; Right, κ increasing in magnitude



Behavior of transverse dispersion with variation in reacti on rate
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Figure 4: The variation of effective transverse diffusion: Left, κ tending to
0; Right, κ increasing in magnitude



Behavior of effective dispersion with variation in surface diffusion
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Figure 5: The variation of effective diffusion with DS increasing in magni-
tude: Left, longitudinal diffusion; Right, transverse diffusion
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Conclusions

• Study of the effective behaviour of the model with the variation in the
reaction rate κ. The ill-posedness of the cell problems result in the
blow-up of the effective tensor when κ → 0. When κ → ∞, the
transverse and longitudinal dispersion exhibit a stable asymptotic
behaviour with transverse dispersion remaining relatively less on
comparison with longitudinal dispersion.

• Study of the effective behaviour of the model with the variation in the
surface diffusion DS . The case DS = 0 exactly matches with the
previous results on effective dispersion with no surface diffusion.
When DS → ∞, the transverse and longitudinal dispersion exhibit a
stable asymptotic behaviour with transverse dispersion remaining
almost equal to longitudinal dispersion.

• The Mathematical justification of the upscaling using two-scale
convergence with drift upon introducing 2-scale convergence with
drift on surfaces.
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