# Homogenization of reactive flows in porous media 

G. Allaire *, H. Hutridurga *

13-October-2010

[^0]
## Outline

* Why study Reactive Flows in porous media?
* Periodic porous media and Model description
* Two-scale Expansion with Drift Method
* Numerical Study with FreeFem++
* Conclusions


## Why study Reactive Flows in porous media?

* Oil reservoir simulation (Enhanced Recovery Mechanisms)
* $\mathrm{CO}_{2}$ storage (Natural Gas Extraction)
* Geothermal energy extraction
* Underground coal gasification
* Stockage of Nuclear Wastes
* Ground water contaminant transport (Drinking and Irrigation)
* Soil Chemistry (Movement of moisture, nutrients, pollutants in soil)


## Unbounded periodic porous media

Let $\varepsilon>0$ represents the microscale of the porous medium

## Unbounded periodic porous media

Let $\varepsilon>0$ represents the microscale of the porous medium

$$
\begin{aligned}
& Y=[0,1]^{n} \\
& Y=Y^{0} \cup \Sigma^{0} \text { s.t } Y^{0} \cap \Sigma^{0}=\emptyset \\
& Y^{0} \text { fluid part } \\
& \Sigma^{0} \text { solid part }
\end{aligned}
$$

## Unbounded periodic porous media

Let $\varepsilon>0$ represents the microscale of the porous medium
$Y=[0,1]^{n}$
$Y=Y^{0} \cup \Sigma^{0}$ s.t $Y^{0} \cap \Sigma^{0}=\emptyset$
$Y^{0}$ fluid part
$\Sigma^{0}$ solid part

$$
\begin{aligned}
& Y_{i}^{\varepsilon}=[0, \varepsilon]^{n} \\
& Y_{i}^{\varepsilon}=\left(Y_{i}^{0}\right)^{\varepsilon} \cup\left(\Sigma_{i}^{0}\right)^{\varepsilon} \\
& \left(Y_{i}^{0}\right)^{\varepsilon} \text { fluid part } \\
& \left(\Sigma_{i}^{0}\right)^{\varepsilon} \text { solid part }
\end{aligned}
$$

## Unbounded periodic porous media

Let $\varepsilon>0$ represents the microscale of the porous medium

$$
\begin{aligned}
& Y=[0,1]^{n} \\
& Y=Y^{0} \cup \Sigma^{0} \text { s.t } Y^{0} \cap \Sigma^{0}=\emptyset \\
& Y^{0} \text { fluid part } \\
& \Sigma^{0} \text { solid part } \\
& Y_{i}^{\varepsilon}=[0, \varepsilon]^{n} \\
& Y_{i}^{\varepsilon}=\left(Y_{i}^{0}\right)^{\varepsilon} \cup\left(\Sigma_{i}^{0}\right)^{\varepsilon} \\
& \left(Y_{i}^{0}\right)^{\varepsilon} \text { fluid part } \\
& \left(\Sigma_{i}^{0}\right)^{\varepsilon} \text { solid part } \\
& \Omega_{\varepsilon}=\mathbb{R}^{n} \backslash \cup_{i \in \mathbb{Z}}\left(\Sigma_{i}^{0}\right)^{\varepsilon}=\mathbb{R}^{n} \cap_{i \in \mathbb{Z}}\left(Y_{i}^{0}\right)^{\varepsilon}
\end{aligned}
$$

## Unbounded periodic porous media

Let $\varepsilon>0$ represents the microscale of the porous medium

$$
\begin{aligned}
& Y=[0,1]^{n} \\
& Y=Y^{0} \cup \Sigma^{0} \text { s.t } Y^{0} \cap \Sigma^{0}=\emptyset \\
& Y^{0} \text { fluid part } \\
& \Sigma^{0} \text { solid part }
\end{aligned}
$$

$$
\begin{aligned}
& Y_{i}^{\varepsilon}=[0, \varepsilon]^{n} \\
& Y_{i}^{\varepsilon}=\left(Y_{i}^{0}\right)^{\varepsilon} \cup\left(\Sigma_{i}^{0}\right)^{\varepsilon} \\
& \left(Y_{i}^{0}\right)^{\varepsilon} \text { fluid part } \\
& \left(\Sigma_{i}^{0}\right)^{\varepsilon} \text { solid part }
\end{aligned}
$$

$$
\Omega_{\varepsilon}=\mathbb{R}^{n} \backslash \cup_{i \in \mathbb{Z}}\left(\Sigma_{i}^{0}\right)^{\varepsilon}=\mathbb{R}^{n} \cap_{i \in \mathbb{Z}}\left(Y_{i}^{0}\right)^{\varepsilon}
$$

Assumptions:
$\Sigma^{0}$ smooth, connected set strictly included in $Y$ or forms a connected set in $\mathbb{R}^{n}$ by $Y$-periodicity.
$\Omega_{\varepsilon}$ smooth, connected set in $\mathbb{R}^{n}$

## 2-D schematics



2-D schematic of an unbounded porous media

## Model Description

We intend to study the Diffusive Transort of the solute particles transported by a stationary incompressible viscous flow in presence of a reaction through a porous medium.

## Model Description

We intend to study the Diffusive Transort of the solute particles transported by a stationary incompressible viscous flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered surface convection and surface diffusion on the pore surfaces.

## Model Description

We intend to study the Diffusive Transort of the solute particles transported by a stationary incompressible viscous flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered surface convection and surface diffusion on the pore surfaces.

For simplicity, we study Reactive Transport of a single solute.

## Model Description

We intend to study the Diffusive Transort of the solute particles transported by a stationary incompressible viscous flow in presence of a reaction through a porous medium.

Apart from the convection and diffusion in the bulk, we have considered surface convection and surface diffusion on the pore surfaces.

For simplicity, we study Reactive Transport of a single solute.
Also, we assume that the reactive interactions are present only on the pore surfaces (Linear Adsorption).

## Model Description contd.

The model is described as follows:

$$
\left\{\begin{array}{l}
\partial_{t} u_{\varepsilon}+\frac{1}{\varepsilon} b_{\varepsilon} \cdot \nabla_{x} u_{\varepsilon}-\operatorname{di} v_{x}\left(D_{\varepsilon} \nabla_{x} u_{\varepsilon}\right)=0 \text { in }(0, T) \times \Omega_{\varepsilon} \\
u_{\varepsilon}(0, x)=u^{0}(x), x \in \Omega_{\varepsilon} \\
\partial_{t} v_{\varepsilon}+\frac{1}{\varepsilon} b_{\varepsilon}^{S} \cdot \nabla_{x}^{S} v_{\varepsilon}-\operatorname{div} v_{x}^{S}\left(D_{\varepsilon}^{S} \nabla_{x}^{S} v_{\varepsilon}\right)=\frac{1}{\varepsilon^{2}} \kappa\left(u_{\varepsilon}-\frac{1}{K} v_{\varepsilon}\right)  \tag{1}\\
=-\frac{1}{\varepsilon} D_{\varepsilon} \nabla_{x} u_{\varepsilon} \cdot \gamma \text { on }(0, T) \times \partial \Omega_{\varepsilon} \\
v_{\varepsilon}(0, x)=v^{0}(x), x \in \partial \Omega_{\varepsilon}
\end{array}\right.
$$

$u_{\varepsilon}(t, x)$ respresents the concentration of the solute in the bulk.
$v_{\varepsilon}(t, x)$ represents the concentration of the solute on the pore surfaces.

## model description

$\kappa$ Rate constant
$K$ Linear adsorption eq. const.
$x$ Macroscopic variable

## model description

$\kappa$ Rate constant
$K$ Linear adsorption eq. const.
$x$ Macroscopic variable
$y=\frac{x}{\varepsilon}$ Microscopic variable
$\gamma(y)$ outward normal
$G(y)=I d-\gamma(y) \otimes \gamma(y)$ projection matrix
$\nabla_{x}^{S} v=G \nabla_{x} v$ tangential gradient
$\operatorname{div} v_{x}^{S} \Psi=\operatorname{div} v_{x}(G \Psi)$ tangential divergence

## model description

$\kappa$ Rate constant
$K$ Linear adsorption eq. const.
$x$ Macroscopic variable
$y=\frac{x}{\varepsilon}$ Microscopic variable
$\gamma(y)$ outward normal
$G(y)=I d-\gamma(y) \otimes \gamma(y)$ projection matrix
$\nabla_{x}^{S} v=G \nabla_{x} v$ tangential gradient
$\operatorname{div} v_{x}^{S} \Psi=\operatorname{div} v_{x}(G \Psi)$ tangential divergence
$D_{\varepsilon}^{S}(x)=D^{S}\left(\frac{x}{\varepsilon}\right)$ Periodic symmetric
coercive surface diffusion

## model description

$\kappa$ Rate constant
$K$ Linear adsorption eq. const.
$x$ Macroscopic variable
$D_{\varepsilon}(x)=D\left(\frac{x}{\varepsilon}\right)$ Periodic symmetric coercive diffusion
$b_{\varepsilon}(x)=b\left(\frac{x}{\varepsilon}\right)$ Stationary
incompressible periodic flow
$d i v_{y} b=0$ in $Y^{0}$
$b \cdot \gamma=0$ on $\partial \Sigma^{0}$
$y=\frac{x}{\varepsilon}$ Microscopic variable
$\gamma(y)$ outward normal
$G(y)=I d-\gamma(y) \otimes \gamma(y)$ projection matrix
$\nabla_{x}^{S} v=G \nabla_{x} v$ tangential gradient
$\operatorname{div} v_{x}^{S} \Psi=\operatorname{div} v_{x}(G \Psi)$ tangential divergence
$D_{\varepsilon}^{S}(x)=D^{S}\left(\frac{x}{\varepsilon}\right)$ Periodic symmetric coercive surface diffusion
$b_{\varepsilon}^{S}(x)=b^{S}\left(\frac{x}{\varepsilon}\right)$ Stationary
incompressible periodic flow
$\operatorname{div}_{y}^{S} b^{S}=0$ on $\partial \Sigma^{0}$

## Main Result

Theorem 1 The solution $\left(u_{\varepsilon}, v_{\varepsilon}\right)$ of (1) satisfies

$$
u_{\varepsilon}(t, x) \approx u_{0}\left(t, x-\frac{b^{*}}{\varepsilon} t\right) \text { and } v_{\varepsilon}(t, x) \approx K u_{0}\left(t, x-\frac{b^{*}}{\varepsilon} t\right)
$$

with the effective drift

$$
b^{*}=\frac{\int_{Y^{0}} b(y) d y+K \int_{\partial \Sigma^{0}} b^{S}(y) d \sigma(y)}{\left|Y^{0}\right|+K\left|\partial \Sigma^{0}\right|_{n-1}}
$$

and $u_{0}$ the solution of the homogenized problem

$$
\left\{\begin{array}{l}
K_{d} \partial_{t} u_{0}=\operatorname{div}_{x}\left(A^{*} \nabla_{x} u_{0}\right) \text { in }(0, T) \times \mathbb{R}^{n} \\
K_{d} u_{0}(0, x)=\left|Y^{0}\right| u^{0}(x)+\left|\partial \Sigma^{0}\right|_{n-1} v^{0}(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

Where, $K_{d}=\left|Y^{0}\right|+K\left|\partial \Sigma^{0}\right|_{n-1}$, the dispersion tensor $A^{*}$ will be described later.

## Two-scale Asymptotic Expansion

The usual Two-scale Expansion method suggests us to

- Take the ansatz for $u_{\varepsilon}(t, x)$ and $v_{\varepsilon}(t, x)$ in slow and fast variables as

$$
u_{\varepsilon}=\sum_{i=0}^{\infty} \varepsilon^{i} u_{i}\left(t, x, \frac{x}{\varepsilon}\right) \text { and } v_{\varepsilon}=\sum_{i=0}^{\infty} \varepsilon^{i} v_{i}\left(t, x, \frac{x}{\varepsilon}\right)
$$

- Plug-in the two asymptotic expansions in (1).
- Identify the co-efficients of identical powers of $\varepsilon$ and get a cascade of equations.
- solve those system of equations to arrive at the homogenized equation.


## Two-scale Asymptotic Expansion

The usual Two-scale Expansion method suggests us to

- Take the ansatz for $u_{\varepsilon}(t, x)$ and $v_{\varepsilon}(t, x)$ in slow and fast variables as

$$
u_{\varepsilon}=\sum_{i=0}^{\infty} \varepsilon^{i} u_{i}\left(t, x, \frac{x}{\varepsilon}\right) \text { and } v_{\varepsilon}=\sum_{i=0}^{\infty} \varepsilon^{i} v_{i}\left(t, x, \frac{x}{\varepsilon}\right)
$$

- Plug-in the two asymptotic expansions in (1).
- Identify the co-efficients of identical powers of $\varepsilon$ and get a cascade of equations.
- solve those system of equations to arrive at the homogenized equation.
- Convection term in microscale results in strong convection term dominating the diffusion. So, we cannot expect to prove the convergence of $u_{\varepsilon}(t, x)$ in a fixed spatial frame $x$ but in a moving frame $x+b^{*} t$


## Two-scale Asymptotic Expansion with DRIFT

$$
\begin{align*}
& u_{\varepsilon}=\sum_{i=0}^{\infty} \varepsilon^{i} u_{i}\left(t, x-\frac{b^{*} t}{\varepsilon}, \frac{x}{\varepsilon}\right)  \tag{2}\\
& v_{\varepsilon}=\sum_{i=0}^{\infty} \varepsilon^{i} v_{i}\left(t, x-\frac{b^{*} t}{\varepsilon}, \frac{x}{\varepsilon}\right) \tag{3}
\end{align*}
$$

Where $b^{*}$ is the drift which shall be computed along the process.
Consider $y=\frac{x}{\varepsilon}$. Then we have:

$$
\begin{align*}
& \frac{\partial}{\partial t}\left[\phi\left(t, x-\frac{b^{*} t}{\varepsilon}, \frac{x}{\varepsilon}\right)\right]=\left[\frac{\partial \phi}{\partial t}-\sum_{j=1}^{n} \frac{b_{j}^{*}}{\varepsilon} \frac{\partial \phi}{\partial x_{j}}\right]\left(t, x-\frac{b^{*} t}{\varepsilon}, \frac{x}{\varepsilon}\right)  \tag{4}\\
& \frac{\partial}{\partial x_{j}}\left[\phi\left(t, x-\frac{b^{*} t}{\varepsilon}, \frac{x}{\varepsilon}\right)\right]=\left[\frac{\partial}{\partial x_{j}} \phi+\frac{1}{\varepsilon} \frac{\partial}{\partial y_{j}} \phi\right]\left(t, x-\frac{b^{*} t}{\varepsilon}, \frac{x}{\varepsilon}\right)
\end{align*}
$$

$\forall j \in\{1, \cdots, n\}$

## Fredholm type result

Before listing the cascade of equations, we shall state a Fredholm type result that helps us solve them.

Lemma 2 For $f \in L^{2}\left(Y^{0}\right), g \in L^{2}\left(\partial \Sigma^{0}\right)$ and $h \in L^{2}\left(\partial \Sigma^{0}\right)$, the following system of p.d.e.'s admit a solution $(u, v) \in H_{\text {per }}^{1}\left(Y^{0}\right) \times H^{1}\left(\partial \Sigma^{0}\right)$, unique up to the addition of a constant multiple of $(1, K)$,

$$
\begin{cases}b(y) \cdot \nabla_{y} u-d i v_{y}\left(D(y) \nabla_{y} u\right)=f & \text { in } Y^{0}, \\ -D(y) \nabla_{y} u \cdot \gamma+g=k\left(u-\frac{1}{K} v\right) & \text { on } \partial \Sigma^{0}, \\ b^{S}(y) \cdot \nabla_{y}^{S} v_{0}-D^{S} d i v_{y}^{S}\left(D^{S}(y) \nabla_{y}^{S} v_{0}\right)-h=k\left(u-\frac{1}{K} v\right) & \text { on } \partial \Sigma^{0}, \\ y \rightarrow(u(y), v(y)) & Y-\text { periodic, }\end{cases}
$$

if and only if

$$
\begin{equation*}
\int_{Y_{0}} f d y+\int_{\partial \Sigma_{0}}(g+h) d \sigma(y)=0 \tag{6}
\end{equation*}
$$

## Cascade of Systems

Co-efficients of $\varepsilon^{-2}$

$$
\left\{\begin{array}{rlrl}
b(y) \cdot \nabla_{y} u_{0}- & d i v_{y}\left(D(y) \nabla_{y} u_{0}\right)=0 & & \text { in } Y^{0},  \tag{7}\\
-D \nabla_{y} u_{0} \cdot \gamma & =b^{S}(y) \cdot \nabla_{y}^{S} v_{0}-D^{S} d i v_{y}^{S}\left(D^{S}(y) \nabla_{y}^{S} v_{0}\right) & & \\
& =k\left[u_{0}-\frac{1}{K} v_{0}\right] & & \text { on } \partial \Sigma^{0} \\
y \rightarrow\left(u_{0}(y), v_{0}(y)\right) & & Y-\text { periodic, }
\end{array}\right.
$$

The compatibilty condition is trivially satisfied.
Hence the existence and uniqueness of $\left(u_{0}, v_{0}\right)$.
Substituting the test functions by $\left(u_{0}, v_{0}\right)$ in the variational formulation of (7), we can deduce that

$$
v_{0}=K u_{0} \quad \text { and } \quad u_{0}=u_{0}(t, x)
$$

## Cascade of Systems Contd.

Co-efficients of $\varepsilon^{-1}$

$$
\left\{\begin{array}{cc}
-b^{*} \cdot \nabla_{x} u_{0}+b(y) \cdot\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right)-\operatorname{div_{y}}\left(D(y)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right)\right)=0 & \text { in } Y^{0}, \\
-b^{*} \cdot \nabla_{x} v_{0}+b^{S}(y) \cdot\left(\nabla_{x}^{S} v_{0}+\nabla_{y}^{S} v_{1}\right)-\operatorname{div}_{y}^{S}\left(D^{S}(y)\left(\nabla_{x}^{S} v_{0}+\nabla_{y}^{S} v_{1}\right)\right)  \tag{8}\\
=-D(y)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right) \cdot \gamma=k\left[u_{1}-\frac{v_{1}}{K}\right] & \text { on } \partial \Sigma^{0} \\
y \rightarrow\left(u_{1}(y), v_{1}(y)\right) & Y-\text { periodic, }
\end{array}\right.
$$

The linearity helps us deduce that

$$
u_{1}(t, x, y)=\chi(y) \cdot \nabla_{x} u_{0}
$$

and

$$
v_{1}(t, x, y)=\omega(y) \cdot \nabla_{x} u_{0}
$$

The above representation of $\left(u_{1}, v_{1}\right)$ results in the following coupled cell problem, for $i \in\{1, \cdots, n\}$

## Cell Problem

$$
\begin{cases}b(y) \cdot \nabla_{y} \chi_{i}-\operatorname{div}_{y}\left(D(y)\left(\nabla_{y} \chi_{i}+e_{i}\right)\right)=\left(b^{*}-b(y)\right) \cdot e_{i} & \text { in } Y^{0}  \tag{9}\\ b^{S}(y) \cdot \nabla_{y}^{S} \omega_{i}-d i v_{y}^{S}\left(D^{S}(y)\left(\nabla_{y}^{S} \omega_{i}+K e_{i}\right)\right) & \text { on } \partial \Sigma^{0} \\ =K\left(b^{*}-b^{S}(y)\right) \cdot e_{i}+\kappa\left(\chi_{i}-\frac{1}{K} \omega_{i}\right) & \text { on } \partial \Sigma^{0} \\ -D(y)\left(\nabla_{y} \chi_{i}+e_{i}\right) \cdot \gamma=\kappa\left(\chi_{i}-\frac{1}{K} \omega_{i}\right) & Y-\text { periodic } \\ y \rightarrow\left(\chi_{i}(y), \omega_{i}(y)\right) & \end{cases}
$$

Using the Fredholm result, we get the existence of $\left(\chi_{i}, \omega_{i}\right)$ provided

$$
\begin{equation*}
b^{*}=\frac{\int_{Y^{0}} b(y) d y+K \int_{\partial \Sigma^{0}} b^{S}(y) d \sigma(y)}{\left|Y^{0}\right|+K\left|\partial \Sigma^{0}\right|_{n-1}} \tag{10}
\end{equation*}
$$

## Cascade of Systems contd.

Co-efficients of $\varepsilon^{0}$

$$
\begin{cases}\partial_{t} u_{0}-b^{*} \cdot \nabla_{x} u_{1}+b(y) \cdot\left(\nabla_{x} u_{1}+\nabla_{y} u_{2}\right) & \\ -\operatorname{div}_{x}\left(D(y)\left(\nabla_{x} u_{0}+\nabla_{y} u_{1}\right)\right)-\operatorname{div_{y}}\left(D(y)\left(\nabla_{x} u_{1}+\nabla_{y} u_{2}\right)\right)=0 & \text { in } Y^{0}, \\ \partial_{t} v_{0}-b^{*} \cdot \nabla_{x} v_{1}+b^{S}(y) \cdot\left(\nabla_{x}^{S} u_{1}+\nabla_{y}^{S} u_{2}\right) & \\ -\operatorname{div}_{x}\left(G D^{S}(y)\left(G \nabla_{x} v_{0}+\nabla_{y}^{S} v_{1}\right)\right)-\operatorname{div}_{y}^{S}\left(D^{S}(y)\left(G \nabla_{x} v_{1}+\nabla_{y}^{S} v_{2}\right)\right) & \\ =-D(y)\left(\nabla_{y} u_{2}+\nabla_{x} u_{1}\right) \cdot \gamma=\kappa\left[u_{2}-\frac{1}{K} v_{2}\right] & \text { on } \partial \Sigma^{0}, \\ y \rightarrow\left(u_{2}(y), v_{2}(y)\right) & Y \text {-periodic, }\end{cases}
$$

## Homogenized equation

The compatibility condition for $\left(u_{2}, v_{2}\right)$ yields the homogenized equation.

$$
\left\{\begin{array}{l}
K_{d} \partial_{t} u_{0}=\operatorname{div}_{x}\left(A^{*} \nabla_{x} u_{0}\right) \text { in }(0, T) \times \mathbb{R}^{n}  \tag{12}\\
K_{d} u_{0}(0, x)=\left|Y^{0}\right| u^{0}(x)+\left|\partial \Sigma^{0}\right|_{n-1} v^{0}(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

Where, $K_{d}=\left|Y^{0}\right|+K\left|\partial \Sigma^{0}\right|_{n-1}$, the dispersion tensor $A^{*}$ is given by

$$
\begin{align*}
A_{i j}^{*}= & \int_{Y^{0}} D\left(\nabla_{y} \chi_{i}+e_{i}\right) \cdot\left(\nabla_{y} \chi_{j}+e_{j}\right) d y \\
& +\kappa \int_{\partial \Sigma^{0}}\left(\chi_{i}-K^{-1} \omega_{i}\right)\left(\chi_{j}-K^{-1} \omega_{j}\right) d \sigma(y)  \tag{13}\\
& +K \int_{\partial \Sigma^{0}} D^{S}\left(G e_{i}+K^{-1} \nabla_{y}^{S} \omega_{i}\right) \cdot\left(G e_{j}+K^{-1} \nabla_{y}^{S} \omega_{j}\right) d \sigma(y)
\end{align*}
$$

## Homogenized equation

The compatibility condition for $\left(u_{2}, v_{2}\right)$ yields the homogenized equation.

$$
\left\{\begin{array}{l}
K_{d} \partial_{t} u_{0}=\operatorname{div}_{x}\left(A^{*} \nabla_{x} u_{0}\right) \text { in }(0, T) \times \mathbb{R}^{n}  \tag{12}\\
K_{d} u_{0}(0, x)=\left|Y^{0}\right| u^{0}(x)+\left|\partial \Sigma^{0}\right|_{n-1} v^{0}(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

Where, $K_{d}=\left|Y^{0}\right|+K\left|\partial \Sigma^{0}\right|_{n-1}$, the dispersion tensor $A^{*}$ is given by

$$
\begin{align*}
A_{i j}^{*}= & \int_{Y^{0}} D\left(\nabla_{y} \chi_{i}+e_{i}\right) \cdot\left(\nabla_{y} \chi_{j}+e_{j}\right) d y \\
& +\kappa \int_{\partial \Sigma^{0}}\left(\chi_{i}-K^{-1} \omega_{i}\right)\left(\chi_{j}-K^{-1} \omega_{j}\right) d \sigma(y)  \tag{13}\\
& +K \int_{\partial \Sigma^{0}} D^{S}\left(G e_{i}+K^{-1} \nabla_{y}^{S} \omega_{i}\right) \cdot\left(G e_{j}+K^{-1} \nabla_{y}^{S} \omega_{j}\right) d \sigma(y)
\end{align*}
$$

It should be noted that we have used the information we know of $\left(u_{1}, v_{1}\right)$ in terms of $(\chi, \omega)$. $A^{*}$ is symmetrized as anti-symmetric part doesn't contribute.

## Equivalent homogenized equation

Define $\tilde{u}_{\varepsilon}(t, x)=u_{0}\left(t, x-\frac{b^{*}}{\varepsilon} t\right)$. Then, it is solution of

$$
\left\{\begin{array}{l}
\partial_{t} \tilde{u}_{\varepsilon}+\frac{1}{\varepsilon} b^{*} \cdot \nabla \tilde{u}_{\varepsilon}=K_{d}^{-1} \operatorname{div}_{x}\left(A^{*} \nabla_{x} \tilde{u}_{\varepsilon}\right) \text { in }(0, T) \times \mathbb{R}^{n}  \tag{14}\\
K_{d} \tilde{u}_{\varepsilon}(0, x)=\left|Y^{0}\right| u^{0}(x)+\left|\partial \Sigma^{0}\right|_{n-1} v^{0}(x), \quad x \in \mathbb{R}^{n}
\end{array}\right.
$$

## Numerical Study using FreeFem++

Numerical tests were done using FreeFem++.
Using Lagrange P1 finite elements.
Number of vertices $=23894$.
The solid obstacles are isolated circular disks of radius 0.2
The velocity field $b(y)$ is generated by solving the following filtration problem in the fluid part $Y^{0}$ of the unit cell $Y$. For simplicity, we have taken the surface convection $b^{S}$ to be zero.

$$
\begin{cases}\nabla_{y} p-\Delta_{y} b=e_{i} & \text { in } Y^{0}  \tag{15}\\ d i v_{y} b=0 & \text { in } Y^{0} \\ b=0 & \text { on } \partial \Sigma^{0}, \\ p, b & Y^{0}-\text { periodic }\end{cases}
$$

Calculations were done to see the effect of the variation in $\kappa$ and $D^{S}$ on the effective co-efficients. They are seen to show a stable asymptotic behaviour.

## Behavior of the cell solution



Figure 1: The cell solution $\chi_{1}$ : Left, reference value $\kappa=\kappa^{0}$; Right, $\kappa=5 \kappa^{0}$

## Behavior of the cell solution contd.



Figure 2: The cell solution $\chi_{1}$ : Left, $\kappa=6 \kappa^{0}$; Right, $\kappa=8 \kappa^{0}$

## Behavior of logitudinal dispersion with variation in reaction rate




Figure 3: The variation of effective longitudinal diffusion: Left, $\kappa$ tending to 0 ; Right, $\kappa$ increasing in magnitude

## Behavior of transverse dispersion with variation in reaction rate




Figure 4: The variation of effective transverse diffusion: Left, $\kappa$ tending to 0 ; Right, $\kappa$ increasing in magnitude

## Behavior of effective dispersion with variation in surface diffusion




Figure 5: The variation of effective diffusion with $D^{S}$ increasing in magnitude: Left, longitudinal diffusion; Right, transverse diffusion

## Conclusions

- Study of the effective behaviour of the model with the variation in the reaction rate $\kappa$.


## Conclusions

- Study of the effective behaviour of the model with the variation in the reaction rate $\kappa$. The ill-posedness of the cell problems result in the blow-up of the effective tensor when $\kappa \rightarrow 0$.


## Conclusions

- Study of the effective behaviour of the model with the variation in the reaction rate $\kappa$. The ill-posedness of the cell problems result in the blow-up of the effective tensor when $\kappa \rightarrow 0$. When $\kappa \rightarrow \infty$, the transverse and longitudinal dispersion exhibit a stable asymptotic behaviour with transverse dispersion remaining relatively less on comparison with longitudinal dispersion.


## Conclusions

- Study of the effective behaviour of the model with the variation in the reaction rate $\kappa$. The ill-posedness of the cell problems result in the blow-up of the effective tensor when $\kappa \rightarrow 0$. When $\kappa \rightarrow \infty$, the transverse and longitudinal dispersion exhibit a stable asymptotic behaviour with transverse dispersion remaining relatively less on comparison with longitudinal dispersion.
- Study of the effective behaviour of the model with the variation in the surface diffusion $D^{S}$.


## Conclusions

- Study of the effective behaviour of the model with the variation in the reaction rate $\kappa$. The ill-posedness of the cell problems result in the blow-up of the effective tensor when $\kappa \rightarrow 0$. When $\kappa \rightarrow \infty$, the transverse and longitudinal dispersion exhibit a stable asymptotic behaviour with transverse dispersion remaining relatively less on comparison with longitudinal dispersion.
- Study of the effective behaviour of the model with the variation in the surface diffusion $D^{S}$. The case $D^{S}=0$ exactly matches with the previous results on effective dispersion with no surface diffusion.


## Conclusions

- Study of the effective behaviour of the model with the variation in the reaction rate $\kappa$. The ill-posedness of the cell problems result in the blow-up of the effective tensor when $\kappa \rightarrow 0$. When $\kappa \rightarrow \infty$, the transverse and longitudinal dispersion exhibit a stable asymptotic behaviour with transverse dispersion remaining relatively less on comparison with longitudinal dispersion.
- Study of the effective behaviour of the model with the variation in the surface diffusion $D^{S}$. The case $D^{S}=0$ exactly matches with the previous results on effective dispersion with no surface diffusion. When $D^{S} \rightarrow \infty$, the transverse and longitudinal dispersion exhibit a stable asymptotic behaviour with transverse dispersion remaining almost equal to longitudinal dispersion.


## Conclusions

- Study of the effective behaviour of the model with the variation in the reaction rate $\kappa$. The ill-posedness of the cell problems result in the blow-up of the effective tensor when $\kappa \rightarrow 0$. When $\kappa \rightarrow \infty$, the transverse and longitudinal dispersion exhibit a stable asymptotic behaviour with transverse dispersion remaining relatively less on comparison with longitudinal dispersion.
- Study of the effective behaviour of the model with the variation in the surface diffusion $D^{S}$. The case $D^{S}=0$ exactly matches with the previous results on effective dispersion with no surface diffusion. When $D^{S} \rightarrow \infty$, the transverse and longitudinal dispersion exhibit a stable asymptotic behaviour with transverse dispersion remaining almost equal to longitudinal dispersion.
- The Mathematical justification of the upscaling using two-scale convergence with drift upon introducing 2-scale convergence with drift on surfaces.


## References

[1] G. Allaire, R. Brizzi, A. Mikelić, A. Piatnitski, Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media, Chemical Engineering Science, 65, pp.2292-2300 (2010)
[2] G. Allaire, A. Mikelić, A. Piatnitski, Homogenization approach to the dispersion theory for reactive transport through porous media, SIAM J. Math. Anal., 42, pp.125-144 (2010)
[3] H. Hutridurga, Master Thesis, École Polytechnique (2010)
[4] E. Marušić-Paloka, A. Piatnitski, Homogenization of a nonlinear convection-diffusion equation with rapidly oscillating coefficients and strong convection, J. London Math. Soc., 72, pp.391-409 (2005)
[5] O. Pironneau, F. Hecht, A. Le Hyaric, FreeFem++ version 2.15-1, http://www.freefem.org/ff++/


[^0]:    *Centre de Mathématiques Appliquées, CNRS UMR 7641, École Polytechnique, 91128 Palaiseau, France

