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Uncertainty analysis in a decision process
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Uncertainty analysis in a decision process
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Engineering activities during the life cycle of an
aircraft

Figure: Life-cycle of a product/service/utility
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Scope of the presentation

Figure: Design phases
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What is our technical objective?

Figure: Portfolio of technical performances

Performances
Aerodynamic: Drag,

Mass: Maximum Weight,

Acoustics: Perceived Noise Level,

Energy : Maximum Electric Power,

Propulsion: Specific Fuel Consumption...

⇓
y∗ = (y ∗1 , . . . , y

∗
Q)
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A naive presentation of the engineering challenge

Description of the situation

A target T is given to the variable y∗. This target can evolve during
the time of the design.
These performances are uncontrolled for many reasons (lack of
knowledge, variability, approximation, dependency, ...).
The amount of available information I for each variable y∗i evolves
during the time of the design (either over the knowledge of the input
variables, parameters, mesurements, availability of numerical
models).
At a given time of the design, these technical performances must be
estimated with a level of confidence.

Page 9



Statistical Learning and computer experiments January 9, 2012

A naive presentation of the engineering challenge

Figure: Evolution of a performance during the design phase
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A naive presentation of the engineering challenge

Figure: An uncertainty study at a given time of the design
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A naive presentation of the engineering challenge

Figure:
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A naive presentation of the engineering challenge

Objectives in a mathematical framework

In a probabilistic framework, two main goals can be identified:
1 To control the stochastic behaviour of the performances y∗ to reach

the initial or adapted target T .
2 To estimate on-demand some measures of risks during the time of

the design.
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A naive presentation of the engineering challenge

Objectives in a mathematical framework

In a probabilistic framework, two main goals can be identified:
1 To control the stochastic behaviour of the performances y∗ to reach

the initial or adapted target T .
2 To estimate on-demand one or several measures of risks
during the time of the design. –> This is a new discipline for
engineers and where we focus our current efforts!
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What kind of information do we manipulate?

Elements of information

A reference database (Y∗1, · · · ,Y
∗
n) that is enriched during the

design cycle.
A panoply of numerical models H = {h1, · · · , hD} that is
enriched during the design cycle.
A quantification of the uncertainties attached to the inputs of
the numerical models represented by a statistical law PX that is
enriched during the design cycle
A definition of the target T and its associated level of confidence
α to be reached that is enriched during the design cycle.
A global computational budget B that can be allocated at
different times of the design cycle.
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What kind of information do we manipulate?
What does “model” uncertainty recover in our context?

Reference model h∗: Usually not
accessible, expression of a natural or a
complex technical object.

Theoretical model hth: Scientific
expert activity (theoretical solution of
a PDE system, ...), corresponding to
the level of understanding and
simplification of the problem.

Numerical model hnum: Numerical
solution of the theoretical model
(effects of meshing, choice of a
numerical scheme)

Implementation model h: Software
implementation of the model on a
given hardware architecture (computer
accuracy, choice of coding rules, ..).

x

y Original phenomenon

Theoretical model

Numerical model

Implementation  model h

h*

hthth

hnum
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What kind of information do we manipulate?
What does “model” uncertainty recover in our context?
hi is a numerical representation of the phenomenon, and is represented by a
function (also called “model“) belonging to F(Xi ×Θi ,Y).

x

y *Original phenomenon

Implementation  model h

h*
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What kind of information do we manipulate?

Properties of a numerical model h

Dimension: h is classically a real function belonging to F(RP × RT ,RQ).
Even if the dimension of x can be large, most of the engineering problems
we are focused on only contain P ≤ 50 and Q ≤ 5.

Computational budget: A single computation of h can be very expensive.
The computational budget b will be represented by the number m of runs
affordable to solve the problem.

Black box/white box: h is either a black box (the inner operations of the
model are not accessible), a grey box (part of the inner operations is
accessible) or a white box (all the operations of the model are accessible).

Mathematical properties: the basic mathematical properties (regularity,
monotony, linearity or non linearity towards certain parameters) may be
unknown to the engineer.

Domain of validity: h should be delivered with its domain of validity
V [ε] ⊆ RP × RT .
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What kind of information do we manipulate?

What is a panoply H of models? H = {h1, · · · , hD}, hi ∈ F(Xi ×Θi ,Y)

Example:

Model h1: Linear regression based on a database D1

Model h2: Neural network based on a database D2

Model h3: Linear PDE model based on a simplified geometry GS and
solved by numerical methodM1

Model h4: Linear PDE model based on a simplified geometry GS and
solved by numerical methodM2

Model h5: Linear PDE model based on a complex geometry GC and
solved by numerical methodM1

Model h6: Non linear PDE model based on a simplified geometry GS and
solved by numerical methodM1

...

Model hD : Non linear PDE model based on a complex geometry GC and
solved by numerical methodM3
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Notations

Variable of interest: Y∗ with values y∗ ∈ RQ and unknown statistical law
Q
Reference database: ((X∗1 ,Y∗1), · · · , (X∗n,Y∗)) or (Y∗1 , · · · ,Y∗n) when the
X∗i ’s are not observed

Model h: h ∈ H = {h1, · · · , hD}, h : (x, θ) ∈ X ×Θ 7→ y = h(x, θ) ∈ Y
Computational budget B: m simulations (Xk , h(Xk , θ))k=1,··· ,m with Xi

iid following PX.

Features of interest: (ρj (Q))j∈J , ρj (Q) ∈ Fj . Also abusively noted ρ(Y∗j ).

Page 12



Statistical Learning and computer experiments January 9, 2012

Definitions

Contrast
Definition: A contrast function is defined by:

Ψ : F× Y −→ R
(ρ, y) 7→ Ψ(ρ, y)

Examples

F = R:
Mean-squared contrast: Ψ(ρ, y) = (y − ρ)2

F = {Set of density function}:
Log-contrast: Ψ(ρ, y) = − log(ρ(y))
L2-contrast: Ψ(ρ, y) = ‖ρ‖22 − 2ρ(y)
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Definitions

Risk function

Definition: Given (Ψ,F,Q), the risk function RΨ is a real function
defined as:

∀ρ ∈ F, RΨ(ρ) :=

∫
Y

Ψ(ρ, v) Q(dv) = EV∼Q [Ψ(ρ,V )]

Application to our problem

ρ = ρh(θ)

RΨ(h, θ) = EY∗∼Q [Ψ(ρh(θ),Y∗)]

Some classical risk functions:
The mean-squared contrast gives a distance between means:
RΨ(h, θ) = (E [Y∗]− ρh(θ))2 + Var [Y∗]
The log-contrast gives the Kullbach-Leiber divergence between pdfs:
RΨ(h, θ) = KL(fY∗ , ρh(θ))− E [log(Y∗)], where
KL(g1, g2) =

∫
log( g1

g2
(y) g1(y) dy
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Pb 1: Mono feature estimation by a single model approach

Mathematical goal

Let Q be the unknown probability measure associated to the real random
variable Y∗ defined over (RQ ,B(RQ),Q). Our main goal is to predict
one feature ρ(Q) of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of the feature ρ based
upon the availability of a reference database (Y∗1, · · · ,Y

∗
n), a numerical

model h(x, θ), with X following PX and a computational budget B that
can be spent either m times all at once or in an adptative way.
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Pb 1: Mono feature estimation by a single model approach

Examples of probabilistic measures of risk ρ(Y∗)

Mean: ρµ(Y∗) = E [Y∗] ∈ F = R
Variance: ρσ(Y∗) = Var [Y∗] ∈ F = R+

Quantile: ρq(Y∗) = qr (Y∗) ∈ F = R+

Probability: ρp(Y∗) = P (Y∗ ∈ DP) ∈ F = [0, 1]

CDF: ρcdf (Y∗) = P (Y∗ ≤ y∗) ∈ F = Fcdf (RQ , [0, 1])

PDF: ρpdf (Y∗) = fY∗(y∗) ∈ F = Fpdf (RQ ,R+)
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Pb1: Example of density prediction

Suppose that (X∗1,Y
∗
1), ..., (X∗n,Y

∗
n) are available.

Calibration of θ by mean-Squares minimization

θ̂MS = Argmin
θ∈Θ

1
n

n∑
i=1

(Y ∗i − h(X∗i , θ))2

Prediction of ρ
Compute the probability density of h(X, θ̂MS) under X ∼ PX

→ f̂MS
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Pb1: Example of density prediction
Other M-estimators...

Kullback-Leibler minimization KL(f1, f2) =
∫
Y log( f1

f2
) f1

- f = density of Y∗, fθ = density of h(X, θ)
- Goal: Find θ that minimizes KL(f , fθ) .

Two difficulties
- f is unknown → replaced by f n = 1

n

∑n
i=1 δYi

- fθ untractable → replaced by a simulation density (Kernel,

projection, etc...)
(

f m
θ = 1

m

∑m
j=1 Kbm (· − h(Xj , θ)), Xj ∼

i.i.d
PX

)
M-estimator

θ̂KL = Argmin
θ∈Θ

KL(f n, f m
θ ) = Argmin

θ∈Θ
−1
n

n∑
i=1

log(f m
θ )(Y∗i )

Prediction
Compute the probability density of h(X, θ̂KL) under X ∼ PX

→ f̂KL
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Question ?

What is the "best" estimator of f ,

f̂MS or f̂KL ?
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Pb 1: Toy application

Y∗ = sin(X∗) + 0.01 ε, X∗ ⊥ ε ∼ N (0, 1)

h(X, θ) = θ1 + θ2 X + θ3 X 3, X ∼ Px = N (0, 1)

n = 50 and m = 103

Page 19



Statistical Learning and computer experiments January 9, 2012

Pb 1: Toy application

Y∗ = sin(X∗) + 0.01 ε, X∗ ⊥ ε ∼ N (0, 1)

h(X, θ) = θ1 + θ2 X + θ3 X 3, X ∼ Px = N (0, 1)

n = 50 and m = 104
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Pb1: Theoretical results from N. Rachdi PhD Thesis

Theorem: Oracle Inequality (N. Rachdi et al 2010)

Under some conditions on the contrast Ψ and under tightness conditions,
for all ε > 0, with high probability it holds:

0 ≤ RΨ(h, θ̂)− inf
θ∈Θ

(RΨ(h, θ)) ≤
K ε

(ρ̃,Ψ)√
n

(
1 +

√
n
m

(
K ε

(ρ̃,h) + Bm

))
where K ε

(ρ̃,Ψ), K
ε
(ρ̃,h) some concentration constants and Bm a bias factor

Nonasymptotic result, i.e valid for all n,m ≥ 1

infθ∈Θ (RΨ(h, θ)) = the minimal risk we can achieve for Ψ
= Modeling error (mesh size ..., model complexity)

Kε(ρ̃,Ψ)√
n

(
1 +

√ n
m (K ε

(ρ̃,h) + Bm)
)

= Statistical error linked to model
complexity and size of the databases
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Proof Ingredients

to identify empirical processes
Step 1: def. θ̂Ψ + def. θΨ + assumptions
we prove that ∃ a, b, cm (cm →

m
0) such that

Step 2: two empirical processes suprema

Step 3: union bound + tightness
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Proof Ingredients
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Step 1: def. θ̂Ψ + def. θΨ + assumptions
we prove that ∃ a, b, cm (cm →

m
0) such that

RΨ(θ̂Ψ) ≤ inf
θ∈Θ

(RΨ(θ)) +
a√
n
||Gn||W(κ,Ψ)

+
b√
m
‖Kx

m‖P(κ,h)
+ cm .

Step 2: two empirical processes suprema

Step 3: union bound + tightness
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Step 3: union bound + tightness
• tightness 99K "complexity" of classes of functions W(κ,Ψ), P(κ,h)
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Proof Ingredients

to identify empirical processes
Step 1: def. θ̂Ψ + def. θΨ + assumptions
we prove that ∃ a, b, cm (cm →
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m − Px)(·); P(κ,h) = {x ∈ X 7→ κ(h(x, θ))(λ) , (θ, λ) ∈ Θ× Y}

Step 3: union bound + tightness

• tightness 99K Bracketing entropy of the classes W(κ,Ψ), P(κ,h)

Page 21



Statistical Learning and computer experiments January 9, 2012

Pb1: Theoretical results from N. Rachdi PhD Thesis

Compare RΨp (θ̂Ψp ) and RΨp (θ̂Ψ)

study the difference RΨp (θ̂Ψp )−RΨp (θ̂Ψ)

By definition of θΨp : RΨp (θΨp )−RΨp (θ̂Ψ) ≤ 0 for all θ̂Ψ

Question : RΨp (θ̂Ψp )−RΨp (θ̂Ψ) ≤
0? a.s?w .h.p?, in L1? · · · difficult in general?

Proposition: [Mean squares for mean prediction] (N. Rachdi, JC. Fort 2010)

• Feature of interest: ρp = E(Y ) 99K Ψp : (ρ, y) 7→ (ρ− y)2

• Model: h(X, θ) = Φ(X) · θ, Φ = (φ1, ..., φk) orho. w.r.t PX

• Suppose: Yi = Φ(Xi ) · θ∗ + εi , E(εi ) = 0 i.i.d

• Let 2 Ψ-estimators: θ̂Ψp = Argminθ∈Θ

∑n
i=1 (Yi − EΦ(X) · θ)2 and

θ̂Ψreg = Argminθ∈Θ

∑n
i=1 (Yi − Φ(Xi ) · θ)2

• Result:
E(Xi ,Yi )1..n

(
RΨp (θ̂Ψp )−RΨp (θ̂Ψ)

)
≤ 0Page 22
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Inverse Problems Applications
N. Rachdi, JC. Fort & T. Klein Stochastic Inverse Problem with Noisy
Simulator (2011) submitted

Fuel Mass data:

Reference Fuel Masses [kg]
7918 7671 7719 7839 7912 7963 7693 7815
7872 7679 8013 7935 7794 8045 7671 7985
7755 7658 7684 7658 7690 7700 7876 7769
8058 7710 7746 7698 7666 7749 7764 7667

Model (noisy simulator):

Goal: Identify SFC (Specific Fuel Consumption)
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Pb 2: Mono feature estimation by a panoply of models

Mathematical goal

Let Q be the unknown probability measure associated to the real random
variable Y∗ defined over (RQ ,B(RQ),Q). Our main goal is to predict
one feature ρ(Q) of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of a feature ρ based
upon the availability of a reference database (Y∗1, · · · ,Y

∗
n), a panoply of

numerical models H = {h1, · · · , hD}, with hi ∈ F(Xi ×Θi ,Y) and Xi
following PXi and a computational budget B. B can be split into D
computational budgets Bi , each one corresponding to mi simulations of
the model hi either all at once or in an adptative way.
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Pb 3: Multi feature estimation by a single model

Mathematical goal

Let Q be the unknown probability measure associated to the real random
variable Y∗ defined over (RQ ,B(RQ),Q). Our main goal is to predict
several feature (ρj(Q))j∈J of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of several features
(ρj(Q))j∈J ) based upon the availability of a reference database
(Y∗1, · · · ,Y

∗
n), a numerical model h(x, θ), with X following PX and a

computational budget B that can be spent either m times all at once or
in an adptative way.
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Pb 4: Multi feature estimation by a panoply of models

Mathematical goal

Let Q be the unknown probability measure associated to the real random
variable Y∗ defined over (RQ ,B(RQ),Q). Our main goal is to predict
several feature (ρj(Q))j∈J of the distribution Q.

General description of the statistical problem

We want to develop robust estimation procedures of several features
(ρj(Q))j∈J ) based upon the availability of a reference database
(Y∗1, · · · ,Y

∗
n), a panoply of numerical models H = {h1, · · · , hD}, with

hi ∈ F(Xi ×Θi ,Y) and Xi following PXi and a computational budget B.
B can be split into D computational budgets Bi , each one corresponding
to mi simulations of the model hi either all at once or in an adptative way.
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Conclusion

Ψ-estimators θ̂Ψ

- Constants improvement in risk bound inequalities

- Central Limit Theorems

Duality estimation-prediction
- Rigorous analysis, functional study of contrast functions

- More academic results

Extension to model selection
- For a given purpose (quantile study, threshold prob. etc... ), what
model to choose ?

- Formalize the notion of "model granularity"

- 6= classical model selection → we know the "best" model... but too
expensive
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