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Magnetic storage
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Micromagnetism

Continuous medium Ω ⊂ R3

Magnetization m : Ω→ S2
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Micromagnetism

Locally the magnetization is aligned with the applied field.
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Micromagnetism

E(m) = A
∫

Ω
|∇m|2

+K
∫

Ω
(1− (m · u)2)

−µ0Ms

∫
Ω

Hext ·m

−µ0Ms

2

∫
R3

Hd (m) ·m
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Stray-field

Magnetic field induced by the magnetization distribution

Hd (m) = −∇φ(m)

where 
∆φ(m) = Msdiv(m) in Ω
∆φ(m) = 0 outside Ω
[φ(m)] = 0 across ∂Ω[
∂φ(m)
∂n

]
= −m · n across ∂Ω

Hd (m) = −Ms∇∆−1div(m) in R3

Hd (m) is the L2−orthogonal projection of −Msm on gradient
fields
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Micromagnetism

Brown’s free energy

A
∫

Ω
|∇m|2+K

∫
Ω

(1−(m·u)2)−µ0Ms

2

∫
R3

Hd (m)·m−µ0Ms

∫
Ω

Hext ·m

Euler-Lagrange equations (remember |m| = 1)

Heff =
2A
µ0Ms

∆m +
2K
µ0Ms

(m · u)u + Hd (m) + Hext = λm,

where λ = λ(x) is a Lagrange multiplier

Heff = − 1
µ0Ms

∂E(m)

∂m
= Effective field
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Landau-Lifschitz equation

describes the evolution of the magnetization inside a
ferromagnetic material

∂m
∂t

= −γµ0m × Heff + αm × ∂m
∂t

in Ω

∂m
∂n

= 0 on ∂Ω

Heff is the effective field, α > 0 damping parameter, γ
gyromagnetic constant

H
0
 H

0
 

m
0
 m

0
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Need for finite element formulations

NiFe nanodot : 100 nm thick and 10 nm height
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Properties
∂m
∂t

= −γµ0m × Heff + αm × ∂m
∂t

Heff = 2A
µ0Ms

∆m + 2K
µ0Ms

(m · u)u + Hd (m) + Hext

|m(x , t)| = 1 is preserved

Non linear PDE, with non local terms and a non convex
constraint...

What does LLG equation look like ?

Forget constants Heff = ∆m + l .o.t ...

∂m
∂t

= −m ×∆m + αm × ∂m
∂t

dans Ω

∂m
∂n

= 0 sur ∂Ω
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What does LLG equation look like ?

Several equivalent forms (formal)

Gilbert form

mt − αm ×mt = −m ×∆m

m ×mt = −m × (m ×∆m) + αm × (m ×mt )

Unused form

αmt + m ×mt = (∆m − (∆m ·m)m)

Multiplying by mt and integrating, we arrive at

α

∫
|mt |2 = −1

2
d
dt

∫
|∇m|2

Landau-Lifshitz form

(1 + α2)mt = −m ×∆m + α(∆m − (∆m ·m)m)
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Known mathematical results

Local existence of strong solutions [Carbou-Fabrie]
Global existence of strong solutions for small energy initial
data (2D) [Carbou-Fabrie]
Global existence of strong solutions for small energy initial
data (3D only on ellipsoids) [Beauchard-A.]
Global existence of weak solutions [Visintin, Soyeur-A.]
Nonuniqueness of weak solutions (only exchange)
[Soyeur-A.]

Strong=twice differentiable, Weak = only once differentiable
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Weak solutions

m ∈ H1(Ω× [0,T ],S2) is a weak solution of (LLG) if
∀φ ∈ H1(Ω× [0,T ])∫

mt · φ− α
∫

m ×mt · φ =

∫ ∑
i

m × ∂m
∂xi
· ∂φ
∂xi

This is due to the fact that
−
∑

i
∂
∂xi

(
m × ∂m

∂xi

)
= −

∑
i m × ∂2m

∂x2
i

= −m ×∆m .

1
2

∫
|∇m(T )|2 + α

∫ T

0

∫ ∣∣∣∣∂m
∂t

∣∣∣∣2 ≤ 1
2

∫
|∇m(0)|2

F. Alouges



What about the discretization

A lot of existing things (Finite differences, finite volumes,
finite elements, etc.). How to deal with the constraint
|m| = 1 ?
How to have a weak formulation ? (FE)
Convergence towards a solution of LLG as δt , δx → 0 ?
Stability, consistency of the scheme ? (Explicit vs implicit)
Implementation (robustness, speed, efficiency, etc.)
Algorithmic issues (FFT or FMM for stray field, linear vs
non-linear systems)
Scientific computing (accuracy, e.g. NIST benchs),
dissipation but not overdissipation (α small)...
...
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A first explicit scheme

Idea 1 : Test with a function which is orthogonal to m at every
point (tangent plane formulation)

αmt + m ×mt = (∆m − (∆m ·m)m)

mn ∼ m(nδt), mn =
∑

i mn
i φi with ∀i , |mn

i | = 1,

Kn = {w =
∑

i wiφi , wi ·mn
i = 0}.

For all n ≥ 0, Find vn ∈ Kn such that ∀w ∈ Kn

(∗) α

∫
vn · w +

∫
mn × vn · w = −

∫
∇mn · ∇w

Set mn+1 =
∑

i mn+1
i φi , with mn+1

i =
mn

i + δtvn
i

|mn
i + δtvn

i |
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Properties

The problem (*) is linear. It possesses always a unique
solution vn

After time and space linear interpolation, the solution
converges weakly to a weak solution of (LL) when δt → 0,
δx → 0, and δt

δx2 → 0
Like an explicit scheme for the heat equation. Difficult to
use in practice (δt very small...)

→ Implicit schemes
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Implicit schemes

Some have been proposed by [Bartels-Prohl]
Non linear iteration
Although unconditionally stable, the convergence of the
Newton method is guaranteed only if δt

δx2 is sufficiently
small

→ Need for a implicit, unconditionally stable scheme with a
linear iteration
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A new implicit scheme

Idea 2 : ∀n ≥ 0, Find vn ∈ Kn such that ∀w ∈ Kn

α

∫
vn · w +

∫
mn+1 × vn · w = −

∫
∇mn+1 · ∇w

Too difficult... (non linear)

but mn+1 =
mn + δtvn

|mn + δtvn|
∼ mn + δtvn + O(δt2)
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A new implicit scheme

Idea 2 : ∀n ≥ 0, Find vn ∈ Kn such that ∀w ∈ Kn

α

∫
vn · w +

∫
mn+1 × vn · w = −

∫
∇mn+1 · ∇w

Too difficult... (non linear)

∀n ≥ 0, Find vn ∈ Kn such that ∀w ∈ Kn

α

∫
vn ·w +

∫
(mn +δt vn)×vn ·w = −

∫
∇(mn +δt vn)·∇w

F. Alouges



The θ−scheme

Take θ ∈ [0,1]

∀n ≥ 0, Find vn ∈ Kn such that ∀w ∈ Kn∫
αvn · w + mn × vn · w + θδt

∫
∇vn · ∇w = −

∫
∇mn · ∇w

Find mn+1 =
∑

i mn+1
i φi , with mn+1

i =
mn

i + δt vn
i

|mn
i + δt vn

i |
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Energy decay and renormalization

For w ∈ H1 being such that |w | ≥ 1 a.e. one has∫ ∣∣∣∣∇ w
|w |

∣∣∣∣2 ≤ ∫ |∇w |2

Q : Is it still true after discretization ? For w =
∑

i wiφi with

|wi | ≥ 1 do we have

∫ ∣∣∣∣∣∇∑
i

wi

|wi |
φi

∣∣∣∣∣
2

≤
∫
|∇w |2 ?

Answer [Bartels] : Yes, for P1, if the mesh is Delaunay (2D)
or has diedral angles less than π

2 (3D) (**)
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Convergence result

The θ−scheme is well defined. It needs only to solve linear
problems and converges (weakly) after interpolation (and
subsequence extraction) to a weak solution of (LL) when
δt → 0 and δx → 0 provided θ > 1

2 and the meshes satisfy
(**)
When θ = 1

2 same result if moreover δt/δx → 0.

When θ < 1
2 , same result if moreover δt/δx2 → 0.
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2nd order in time...

A priori the renormalization stage forbids an order 2 formulation
(|m + δt v | = 1 + δt2

2 |v |
2 + O(δt4))

Idea 3 : Look for v ⊥ m such that

m + δt v
|m + δt v |

= m(δt) + O(δt3)

be 2nd order precise.
One finds v = mt + δt

2 Πm⊥mtt
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Order 2...

∀n ≥ 0, Find vn ∈ Kn such that ∀w ∈ Kn∫
αvn · w + mn × vn · w +

δt
2

∫
∇vn · ∇w

−δt
2

∫
|∇mn+s|2vn · w = −

∫
∇mn · ∇w

Set mn+1 =
∑

i mn+1
i φi , with mn+1

i =
mn

i + δt vn
i

|mn
i + δt vn

i |

Energy decay control for s = 1, to the price of a slight non
linearity
For s = 0 the scheme still needs a linear problem to be
solved but is not robust. We can not prove existence (and
uniqueness of a solution)
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Order 2...

Idea 4
∀n ≥ 0, Find vn ∈ Kn such that ∀w ∈ Kn∫

α

1 + δt
2α |∇mn|2

vn · w + mn × vn · w +
δt
2

∫
∇vn · ∇w

= −
∫
∇mn · ∇w

Set mn+1 =
∑

i mn+1
i φi , with mn+1

i =
mn

i + δt vn
i

|mn
i + δt vn

i |

Energy decays along iterations
Linear iteration (existence and uniqueness of a solution)
convergence (with minor modifications)
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Conclusions

1st order in time with cv proof
2nd order in time stability (cv ?) proof
1st order in space
FMM or NUFFT for stray field
Preconditionning of linear systems
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Applications

Comparison with finite difference/finite volumes codes and
experiments
Statics and Dynamics
NIST benchmark problems
nanodots
spin oscillators
...
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NIST Problem #4

33k Nodes, 180K Elements
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Spin oscillators
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