Convergent finite element approximations for Landau-Lifschitz-Gilbert equation

François Alouges - CMAP Ecole Polytechnique, Joint work with:
Evaggelos Kritsikis - Grenoble INP, Institut Néel Jean-Christophe Toussaint - Grenoble INP, Institut Néel

January 2012

Magnetic storage

Micromagnetism

- Continuous medium $\Omega \subset \mathbb{R}^{3}$
- Magnetization $m: \Omega \rightarrow \mathbb{S}^{2}$

Micromagnetism

Locally the magnetization is aligned with the applied field.

Micromagnetism

$$
\begin{array}{ll}
\\
\sim
\end{array}
$$

Stray-field

Magnetic field induced by the magnetization distribution

$$
H_{d}(m)=-\nabla \phi(m)
$$

where

$$
\begin{aligned}
& {\left[\begin{array}{l}
\Delta \phi(m)=M_{s} \operatorname{div}(m) \text { in } \Omega \\
\Delta \phi(m)=0 \text { outside } \Omega \\
{[\phi(m)]=0 \text { across } \partial \Omega} \\
{\left[\frac{\partial \phi(m)}{\partial n}\right]=-m \cdot n \text { across } \partial \Omega}
\end{array}\right.} \\
& H_{d}(m)=-M_{s} \nabla \Delta^{-1} \operatorname{div}(m) \text { in } \mathbb{R}^{3}
\end{aligned}
$$

$H_{d}(m)$ is the L^{2}-orthogonal projection of $-M_{s} m$ on gradient fields

Micromagnetism

Brown's free energy
$A \int_{\Omega}|\nabla m|^{2}+K \int_{\Omega}\left(1-(m \cdot u)^{2}\right)-\frac{\mu_{0} M_{s}}{2} \int_{\mathbb{R}^{3}} H_{d}(m) \cdot m-\mu_{0} M_{s} \int_{\Omega} H_{e x t} \cdot m$
Euler-Lagrange equations (remember $|m|=1$)

where $\lambda=\lambda(x)$ is a Lagrange multiplier

Micromagnetism

Brown's free energy
$A \int_{\Omega}|\nabla m|^{2}+K \int_{\Omega}\left(1-(m \cdot u)^{2}\right)-\frac{\mu_{0} M_{s}}{2} \int_{\mathbb{R}^{3}} H_{d}(m) \cdot m-\mu_{0} M_{s} \int_{\Omega} H_{e x t} \cdot m$
Euler-Lagrange equations (remember $|m|=1$)

$$
H_{e f f}=\frac{2 A}{\mu_{0} M_{s}} \Delta m+\frac{2 K}{\mu_{0} M_{s}}(m \cdot u) u+H_{d}(m)+H_{e x t}=\lambda m
$$

where $\lambda=\lambda(x)$ is a Lagrange multiplier

$$
H_{\text {eff }}=-\frac{1}{\mu_{0} M_{s}} \frac{\partial \mathcal{E}(m)}{\partial m}=\text { Effective field }
$$

Landau-Lifschitz equation

- describes the evolution of the magnetization inside a ferromagnetic material

$$
\begin{aligned}
\frac{\partial m}{\partial t} & =-\gamma \mu_{0} m \times H_{e f f}+\alpha m \times \frac{\partial m}{\partial t} \text { in } \Omega \\
\frac{\partial m}{\partial n} & =0 \text { on } \partial \Omega
\end{aligned}
$$

- $H_{\text {eff }}$ is the effective field, $\alpha>0$ damping parameter, γ gyromagnetic constant

Need for finite element formulations

NiFe nanodot : 100 nm thick and 10 nm height

Properties

- $\frac{\partial m}{\partial t}=-\gamma \mu_{0} m \times H_{e f f}+\alpha m \times \frac{\partial m}{\partial t}$
- $H_{\text {eff }}=\frac{2 A}{\mu_{0} M_{s}} \Delta m+\frac{2 K}{\mu_{0} M_{s}}(m \cdot u) u+H_{d}(m)+H_{\text {ext }}$
- $|m(x, t)|=1$ is preserved

Non linear PDE, with non local terms and a non convex

 constraint...
What does LLG equation look like?

Forget constants $H_{\text {eff }}=\Delta m+$ l.o.t...

Properties

- $\frac{\partial m}{\partial t}=-\gamma \mu_{0} m \times H_{e f f}+\alpha m \times \frac{\partial m}{\partial t}$
- $H_{\text {eff }}=\frac{2 A}{\mu_{0} M_{s}} \Delta m+\frac{2 K}{\mu_{0} M_{s}}(m \cdot u) u+H_{d}(m)+H_{\text {ext }}$
- $|m(x, t)|=1$ is preserved

Non linear PDE, with non local terms and a non convex constraint...

What does LLG equation look like?
Forget constants $H_{\text {eff }}=\Delta m+$ l.o.t...

Properties

- $\frac{\partial m}{\partial t}=-\gamma \mu_{0} m \times H_{e f f}+\alpha m \times \frac{\partial m}{\partial t}$
- $H_{\text {eff }}=\frac{2 A}{\mu_{0} M_{s}} \Delta m+\frac{2 K}{\mu_{0} M_{s}}(m \cdot u) u+H_{d}(m)+H_{\text {ext }}$
- $|m(x, t)|=1$ is preserved

Non linear PDE, with non local terms and a non convex constraint...

What does LLG equation look like?
Forget constants $H_{\text {eff }}=\Delta m+$ l.o.t...

Properties

- $\frac{\partial m}{\partial t}=-\gamma \mu_{0} m \times H_{e f f}+\alpha m \times \frac{\partial m}{\partial t}$
- $H_{\text {eff }}=\frac{2 A}{\mu_{0} M_{s}} \Delta m+\frac{2 K}{\mu_{0} M_{s}}(m \cdot u) u+H_{d}(m)+H_{\text {ext }}$
- $|m(x, t)|=1$ is preserved

Non linear PDE, with non local terms and a non convex constraint...

What does LLG equation look like?
Forget constants $H_{\text {eff }}=\Delta m+$ l.o.t...

$$
\begin{aligned}
& \frac{\partial m}{\partial t}=-m \times \Delta m+\alpha m \times \frac{\partial m}{\partial t} \text { dans } \Omega \\
& \frac{\partial m}{\partial n}=0 \text { sur } \partial \Omega
\end{aligned}
$$

What does LLG equation look like?

Several equivalent forms (formal)
Gilbert form

$$
m_{t}-\alpha m \times m_{t}=-m \times \Delta m
$$

$m \times m_{t}=-m \times(m \times \Delta m)+\alpha m \times\left(m \times m_{t}\right)$

Unused form

$$
\alpha m_{t}+m \times m_{t}=(\Delta m-(\Delta m \cdot m) m)
$$

Multiplying by m_{t} and integrating, we arrive at

$$
a \int\left|m_{t}\right|^{2}=-\frac{1}{2} \frac{d}{d t} \int|\nabla m|^{2}
$$

Landau-Lifshitz form

\square
F. Alouges

What does LLG equation look like?

Several equivalent forms (formal)

Gilbert form

$$
m_{t}-\alpha m \times m_{t}=-m \times \Delta m
$$

$$
m \times m_{t}=-m \times(m \times \Delta m)+\alpha m \times\left(m \times m_{t}\right)
$$

Unused form

$$
\alpha m_{t}+m \times m_{t}=(\Delta m-(\Delta m \cdot m) m)
$$

Multiplying by m_{t} and integrating, we arrive at

$$
\alpha \int\left|m_{t}\right|^{2}=-\frac{1}{2} \frac{d}{d t} \int|\nabla m|^{2}
$$

Landau-Lifshitz form
$\left(1+\alpha^{2}\right) m_{t}--r n \times \Delta m+\alpha(\Delta m-(\Delta m \cdot m) m)$

What does LLG equation look like?

Several equivalent forms (formal)

Gilbert form

$$
m_{t}-\alpha m \times m_{t}=-m \times \Delta m
$$

$$
m \times m_{t}=-m \times(m \times \Delta m)+\alpha m \times\left(m \times m_{t}\right)
$$

Unused form

$$
\alpha m_{t}+m \times m_{t}=(\Delta m-(\Delta m \cdot m) m)
$$

Multiplying by m_{t} and integrating, we arrive at

$$
\alpha \int\left|m_{t}\right|^{2}=-\frac{1}{2} \frac{d}{d t} \int|\nabla m|^{2}
$$

Landau-Lifshitz form

$$
\left(1+\alpha^{2}\right) m_{t}=-m \times \Delta m+\alpha(\Delta m-(\Delta m \cdot m) m)
$$

Known mathematical results

- Local existence of strong solutions [Carbou-Fabrie]
- Global existence of strong solutions for small energy initial data (2D) [Carbou-Fabrie]
- Global existence of strong solutions for small energy initial data (3D only on ellipsoids) [Beauchard-A.]
- Global existence of weak solutions [Visintin, Soyeur-A.]
- Nonuniqueness of weak solutions (only exchange) [Soyeur-A.]

Strong=twice differentiable, Weak = only once differentiable
$m \in H^{1}\left(\Omega \times[0, T], S^{2}\right)$ is a weak solution of (LLG) if

- $\forall \phi \in H^{1}(\Omega \times[0, T])$

$$
\int m_{t} \cdot \phi-\alpha \int m \times m_{t} \cdot \phi=\int \sum_{i} m \times \frac{\partial m}{\partial x_{i}} \cdot \frac{\partial \phi}{\partial x_{i}}
$$

This is due to the fact that

$$
\begin{gathered}
-\sum_{i} \frac{\partial}{\partial x_{i}}\left(m \times \frac{\partial m}{\partial x_{i}}\right)=-\sum_{i} m \times \frac{\partial^{2} m}{\partial x_{i}^{2}}=-m \times \Delta m . \\
- \\
\frac{1}{2} \int|\nabla m(T)|^{2}+\alpha \int_{0}^{T} \int\left|\frac{\partial m}{\partial t}\right|^{2} \leq \frac{1}{2} \int|\nabla m(0)|^{2}
\end{gathered}
$$

What about the discretization

- A lot of existing things (Finite differences, finite volumes, finite elements, etc.). How to deal with the constraint $|m|=1$?
- How to have a weak formulation? (FE)
- Convergence towards a solution of LLG as $\delta t, \delta x \rightarrow 0$?
- Stability, consistency of the scheme ? (Explicit vs implicit)
- Implementation (robustness, speed, efficiency, etc.)
- Algorithmic issues (FFT or FMM for stray field, linear vs non-linear systems)
- Scientific computing (accuracy, e.g. NIST benchs), dissipation but not overdissipation (α small)...
- ...

A first explicit scheme

Idea 1 : Test with a function which is orthogonal to m at every point (tangent plane formulation)

$$
\alpha m_{t}+m \times m_{t}=(\Delta m-(\Delta m \cdot m) m)
$$

$m^{n} \sim m(n \delta t), m^{n}=\sum_{i} m_{i}^{n} \phi_{i}$ with $\forall i,\left|m_{i}^{n}\right|=1$,
$K_{n}=\left\{w=\sum_{i} w_{i} \phi_{i}, w_{i} \cdot m_{i}^{n}=0\right\}$.

- For all $n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
(*) \quad \alpha \int v^{n} \cdot w+\int m^{n} \times v^{n} \cdot w=-\int \nabla m^{n} \cdot \nabla w
$$

A first explicit scheme

Idea 1 : Test with a function which is orthogonal to m at every point (tangent plane formulation)

$$
\alpha m_{t}+m \times m_{t}=(\Delta m-(\Delta m \cdot m) m)
$$

$m^{n} \sim m(n \delta t), m^{n}=\sum_{i} m_{i}^{n} \phi_{i}$ with $\forall i,\left|m_{i}^{n}\right|=1$,
$K_{n}=\left\{w=\sum_{i} w_{i} \phi_{i}, w_{i} \cdot m_{i}^{n}=0\right\}$.

- For all $n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
(*) \quad \alpha \int v^{n} \cdot w+\int m^{n} \times v^{n} \cdot w=-\int \nabla m^{n} \cdot \nabla w
$$

- Set $m^{n+1}=\sum_{i} m_{i}^{n+1} \phi_{i}$, with $m_{i}^{n+1}=\frac{m_{i}^{n}+\delta t v_{i}^{n}}{\left|m_{i}^{n}+\delta t v_{i}^{n}\right|}$

Properties

- The problem (*) is linear. It possesses always a unique solution v^{n}
- After time and space linear interpolation, the solution converges weakly to a weak solution of (LL) when $\delta t \rightarrow 0$, $\delta x \rightarrow 0$, and $\frac{\delta t}{\delta x^{2}} \rightarrow 0$
- Like an explicit scheme for the heat equation. Difficult to use in practice (δt very small...)

Properties

- The problem (*) is linear. It possesses always a unique solution v^{n}
- After time and space linear interpolation, the solution converges weakly to a weak solution of (LL) when $\delta t \rightarrow 0$, $\delta x \rightarrow 0$, and $\frac{\delta t}{\delta x^{2}} \rightarrow 0$
- Like an explicit scheme for the heat equation. Difficult to use in practice (δt very small...)

Properties

- The problem (*) is linear. It possesses always a unique solution v^{n}
- After time and space linear interpolation, the solution converges weakly to a weak solution of (LL) when $\delta t \rightarrow 0$, $\delta x \rightarrow 0$, and $\frac{\delta t}{\delta x^{2}} \rightarrow 0$
- Like an explicit scheme for the heat equation. Difficult to use in practice (δt very small...)
\rightarrow Implicit schemes

Implicit schemes

- Some have been proposed by [Bartels-Prohl]
- Non linear iteration
- Although unconditionally stable, the convergence of the Newton method is guaranteed only if $\frac{\delta t}{\delta x^{2}}$ is sufficiently small
\rightarrow Need for a implicit, unconditionally stable scheme with a linear iteration

Implicit schemes

- Some have been proposed by [Bartels-Prohl]
- Non linear iteration
- Although unconditionally stable, the convergence of the Newton method is guaranteed only if $\frac{\delta t}{\delta x^{2}}$ is sufficiently small
\rightarrow Need for a implicit, unconditionally stable scheme with a linear iteration

A new implicit scheme

- Idea $2: \forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\alpha \int v^{n} \cdot w+\int m^{n+1} \times v^{n} \cdot w=-\int \nabla m^{n+1} \cdot \nabla w
$$

Too difficult... (non linear)

- but $m^{n+1}=\frac{m^{n}+\delta t v^{n}}{\left|m^{n}+\delta t v^{n}\right|} \sim m^{n}+\delta t v^{n}+O\left(\delta t^{2}\right)$

A new implicit scheme

- Idea $2: \forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\alpha \int v^{n} \cdot w+\int m^{n+1} \times v^{n} \cdot w=-\int \nabla m^{n+1} \cdot \nabla w
$$

Too difficult... (non linear)

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\alpha \int v^{n} \cdot w+\int\left(m^{n}+\delta t v^{n}\right) \times v^{n} \cdot w=-\int \nabla\left(m^{n}+\delta t v^{n}\right) \cdot \nabla w
$$

The θ-scheme

Take $\theta \in[0,1]$

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\int \alpha v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\theta \delta t \int \nabla v^{n} \cdot \nabla w=-\int \nabla m^{n} \cdot \nabla w
$$

The θ-scheme

Take $\theta \in[0,1]$

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\int \alpha v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\theta \delta t \int \nabla v^{n} \cdot \nabla w=-\int \nabla m^{n} \cdot \nabla w
$$

- Find $m^{n+1}=\sum_{i} m_{i}^{n+1} \phi_{i}$, with $m_{i}^{n+1}=\frac{m_{i}^{n}+\delta t v_{i}^{n}}{\left|m_{i}^{n}+\delta t v_{i}^{n}\right|}$

Energy decay and renormalization

- For $w \in H^{1}$ being such that $|w| \geq 1$ a.e. one has

$$
\int\left|\nabla \frac{w}{|w|}\right|^{2} \leq \int|\nabla w|^{2}
$$

- Q : Is it still true after discretization ? For $w=\sum_{i} w_{i} \phi_{i}$ with
$\left|w_{i}\right| \geq 1$ do we have

- Answer [Bartels] : Yes, for P^{1}, if the mesh is Delaunay (2D) or has diedral angles less than $\frac{\pi}{2}(3 D)\left({ }^{* *}\right)$

Energy decay and renormalization

- For $w \in H^{1}$ being such that $|w| \geq 1$ a.e. one has

$$
\int\left|\nabla \frac{w}{|w|}\right|^{2} \leq \int|\nabla w|^{2}
$$

- Q : Is it still true after discretization? For $w=\sum_{i} w_{i} \phi_{i}$ with
$\left|w_{i}\right| \geq 1$ do we have

$$
\int\left|\nabla \sum_{i} \frac{w_{i}}{\left|w_{i}\right|} \phi_{i}\right|^{2} \leq \int|\nabla w|^{2} ?
$$

- Answer [Bartels] : Yes, for P^{1}, if the mesh is Delaunay (2D) or has diedral angles less than $\frac{\pi}{2}(3 D)\left({ }^{* *}\right)$

Energy decay and renormalization

- For $w \in H^{1}$ being such that $|w| \geq 1$ a.e. one has

$$
\int\left|\nabla \frac{w}{|w|}\right|^{2} \leq \int|\nabla w|^{2}
$$

- Q : Is it still true after discretization ? For $w=\sum_{i} w_{i} \phi_{i}$ with
$\left|w_{i}\right| \geq 1$ do we have

$$
\int\left|\nabla \sum_{i} \frac{w_{i}}{\left|w_{i}\right|} \phi_{i}\right|^{2} \leq \int|\nabla w|^{2} ?
$$

- Answer [Bartels] : Yes, for P^{1}, if the mesh is Delaunay (2D) or has diedral angles less than $\frac{\pi}{2}$ (3D) (**)

Convergence result

- The θ-scheme is well defined. It needs only to solve linear problems and converges (weakly) after interpolation (and subsequence extraction) to a weak solution of (LL) when $\delta t \rightarrow 0$ and $\delta x \rightarrow 0$ provided $\theta>\frac{1}{2}$ and the meshes satisfy (**)
- When $\theta=\frac{1}{2}$ same result if moreover $\delta t / \delta x \rightarrow 0$.
- When $\theta<\frac{1}{2}$, same result if moreover $\delta t / \delta x^{2} \rightarrow 0$.

Convergence result

- The θ-scheme is well defined. It needs only to solve linear problems and converges (weakly) after interpolation (and subsequence extraction) to a weak solution of (LL) when $\delta t \rightarrow 0$ and $\delta x \rightarrow 0$ provided $\theta>\frac{1}{2}$ and the meshes satisfy (**)
- When $\theta=\frac{1}{2}$ same result if moreover $\delta t / \delta x \rightarrow 0$.
- When $\theta<\frac{1}{2}$, same result if moreover $\delta t / \delta x^{2} \rightarrow 0$.

Convergence result

- The θ-scheme is well defined. It needs only to solve linear problems and converges (weakly) after interpolation (and subsequence extraction) to a weak solution of (LL) when $\delta t \rightarrow 0$ and $\delta x \rightarrow 0$ provided $\theta>\frac{1}{2}$ and the meshes satisfy (**)
- When $\theta=\frac{1}{2}$ same result if moreover $\delta t / \delta x \rightarrow 0$.
- When $\theta<\frac{1}{2}$, same result if moreover $\delta t / \delta x^{2} \rightarrow 0$.

2nd order in time...

A priori the renormalization stage forbids an order 2 formulation $\left(|m+\delta t v|=1+\frac{\delta t^{2}}{2}|v|^{2}+O\left(\delta t^{4}\right)\right)$
Idea 3: Look for $v \perp$ m such that

$$
\frac{m+\delta t v}{|m+\delta t v|}=m(\delta t)+O\left(\delta t^{3}\right)
$$

be 2nd order precise.
One finds $v=m_{t}+\frac{\delta t}{2} \Pi_{m} m_{t t}$

2nd order in time...

A priori the renormalization stage forbids an order 2 formulation $\left(|m+\delta t v|=1+\frac{\delta t^{2}}{2}|v|^{2}+O\left(\delta t^{4}\right)\right)$
Idea 3 : Look for $v \perp m$ such that

$$
\frac{m+\delta t v}{|m+\delta t v|}=m(\delta t)+O\left(\delta t^{3}\right)
$$

be 2nd order precise.
One finds $v=m_{t}+\frac{\delta t}{2} \Pi_{m} \perp m_{t t}$

Order 2...

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\begin{aligned}
& \int \alpha v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\frac{\delta t}{2} \int \nabla v^{n} \cdot \nabla w \\
& \quad-\frac{\delta t}{2} \int\left|\nabla m^{n+s}\right|^{2} v^{n} \cdot w=-\int \nabla m^{n} \cdot \nabla w
\end{aligned}
$$

- Set $m^{n+1}=\sum_{i} m_{i}^{n+1} \phi_{i}$, with $m_{i}^{n+1}=\frac{m_{i}^{n}+\delta t v_{i}^{n}}{\left|m_{i}^{n}+\delta t v_{i}^{n}\right|}$
- Energy decay control for $s=1$, to the price of a slight non linearity
- For $s=0$ the scheme still needs a linear problem to be solved but is not robust. We can not prove existence (and uniqueness of a solution)

Order 2...

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\begin{aligned}
& \int \alpha v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\frac{\delta t}{2} \int \nabla v^{n} \cdot \nabla w \\
& \quad- \frac{\delta t}{2} \int\left|\nabla m^{n+s}\right|^{2} v^{n} \cdot w=-\int \nabla m^{n} \cdot \nabla w
\end{aligned}
$$

- Set $m^{n+1}=\sum_{i} m_{i}^{n+1} \phi_{i}$, with $m_{i}^{n+1}=\frac{m_{i}^{n}+\delta t v_{i}^{n}}{\left|m_{i}^{n}+\delta t v_{i}^{n}\right|}$
- Energy decay control for $s=1$, to the price of a slight non linearity
- For $s=0$ the scheme still needs a linear problem to be solved but is not robust. We can not prove existence (and uniqueness of a solution)

Order 2...

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\begin{aligned}
& \int \alpha v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\frac{\delta t}{2} \int \nabla v^{n} \cdot \nabla w \\
& \quad-\frac{\delta t}{2} \int\left|\nabla m^{n+s}\right|^{2} v^{n} \cdot w=-\int \nabla m^{n} \cdot \nabla w
\end{aligned}
$$

- Set $m^{n+1}=\sum_{i} m_{i}^{n+1} \phi_{i}$, with $m_{i}^{n+1}=\frac{m_{i}^{n}+\delta t v_{i}^{n}}{\left|m_{i}^{n}+\delta t v_{i}^{n}\right|}$
- Energy decay control for $s=1$, to the price of a slight non linearity
- For $s=0$ the scheme still needs a linear problem to be solved but is not robust. We can not prove existence (and uniqueness of a solution)
- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\begin{aligned}
& \int \alpha v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\frac{\delta t}{2} \int \nabla v^{n} \cdot \nabla w \\
& \quad-\frac{\delta t}{2} \int\left|\nabla m^{n+s}\right|^{2} v^{n} \cdot w=-\int \nabla m^{n} \cdot \nabla w
\end{aligned}
$$

- Set $m^{n+1}=\sum_{i} m_{i}^{n+1} \phi_{i}$, with $m_{i}^{n+1}=\frac{m_{i}^{n}+\delta t v_{i}^{n}}{\left|m_{i}^{n}+\delta t v_{i}^{n}\right|}$
- Energy decay control for $s=1$, to the price of a slight non linearity
- For $s=0$ the scheme still needs a linear problem to be solved but is not robust. We can not prove existence (and uniqueness of a solution)

Order 2...

Idea 4

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\begin{aligned}
& \int \frac{\alpha}{1+\frac{\delta t}{2 \alpha}\left|\nabla m^{n}\right|^{2}} v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\frac{\delta t}{2} \int \nabla v^{n} \cdot \nabla w \\
& \quad=-\int \nabla m^{n} \cdot \nabla w
\end{aligned}
$$

- Energy decays along iterations
- Linear iteration (existence and uniqueness of a solution)
- convergence (with minor modifications)

Order 2...

Idea 4

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\begin{aligned}
& \int \frac{\alpha}{1+\frac{\delta t}{2 \alpha}\left|\nabla m^{n}\right|^{2}} v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\frac{\delta t}{2} \int \nabla v^{n} \cdot \nabla w \\
& \quad=-\int \nabla m^{n} \cdot \nabla w
\end{aligned}
$$

- Set $m^{n+1}=\sum_{i} m_{i}^{n+1} \phi_{i}$, with $m_{i}^{n+1}=\frac{m_{i}^{n}+\delta t v_{i}^{n}}{\left|m_{i}^{n}+\delta t v_{i}^{n}\right|}$
- Energy decays along iterations
- Linear iteration (existence and uniqueness of a solution)
- convergence (with minor modifications)

Order 2...

Idea 4

- $\forall n \geq 0$, Find $v^{n} \in K_{n}$ such that $\forall w \in K_{n}$

$$
\begin{aligned}
& \int \frac{\alpha}{1+\frac{\delta t}{2 \alpha}\left|\nabla m^{n}\right|^{2}} v^{n} \cdot w+m^{n} \times v^{n} \cdot w+\frac{\delta t}{2} \int \nabla v^{n} \cdot \nabla w \\
& \quad=-\int \nabla m^{n} \cdot \nabla w
\end{aligned}
$$

- Set $m^{n+1}=\sum_{i} m_{i}^{n+1} \phi_{i}$, with $m_{i}^{n+1}=\frac{m_{i}^{n}+\delta t v_{i}^{n}}{\left|m_{i}^{n}+\delta t v_{i}^{n}\right|}$
- Energy decays along iterations
- Linear iteration (existence and uniqueness of a solution)
- convergence (with minor modifications)

Conclusions

- 1st order in time with cv proof
- 2nd order in time stability (cv ?) proof
- 1st order in space
- FMM or NUFFT for stray field
- Preconditionning of linear systems

Applications

- Comparison with finite difference/finite volumes codes and experiments
- Statics and Dynamics
- NIST benchmark problems
- nanodots
- spin oscillators
- ...

NIST Problem \#4

33k Nodes, 180K Elements

Spin oscillators

F. Alouges

