The influence of the wall on the motion of micro-swimmer

Laetitia Giraldi ${ }^{1}$
Advisor François Alouges

${ }^{1}$ CMAP
Ecole Polytechnique

Journée de bilan de la chaire MMSN

BGA

Motivations

- Developing self-propulsion at micro-scales?
- Application in human diagnostics and therapy...

Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as :

- ξ is a function which defines the shape of the swimmer.
- $p=(c, R) \in \mathbb{R}^{3} \times S O(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\longrightarrow \xi(t)$ pushes the fluid
The fluid reacts, under the Stokes Equation

Self-propulsion constraints $\Longrightarrow\left\{\begin{array}{cl}\sum \text { Forces } & =0 \\ \text { Torque } & =0\end{array}\right.$

As a result the swimmer moves, under the ODE
[Dal Maso, Desimone, and Marandotti, 2010]

Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as :

- ξ is a function which defines the shape of the swimmer.
- $p=(c, R) \in \mathbb{R}^{3} \times S O(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\Longrightarrow \xi(t)$ pushes the fluid.
The fluid reacts, under the Stokes Equation

As a result the swimmer moves, under the ODE

Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as :

- ξ is a function which defines the shape of the swimmer.
- $p=(c, R) \in \mathbb{R}^{3} \times S O(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\Longrightarrow \xi(t)$ pushes the fluid.
The fluid reacts, under the Stokes Equation

Self-propulsion constraints $\Longrightarrow\left\{\begin{array}{cl}\sum \text { Forces } & =0 \\ \text { Torque } & =0\end{array}\right.$

As a result the swimmer moves, under the ODE

Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as :

- ξ is a function which defines the shape of the swimmer.
- $p=(c, R) \in \mathbb{R}^{3} \times S O(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\Longrightarrow \xi(t)$ pushes the fluid.
The fluid reacts, under the Stokes Equation

Self-propulsion constraints $\Longrightarrow\left\{\begin{array}{cl}\sum \text { Forces } & =0 \\ \text { Torque } & =0\end{array}\right.$

As a result the swimmer moves, under the ODE

Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as :

- ξ is a function which defines the shape of the swimmer.
- $p=(c, R) \in \mathbb{R}^{3} \times S O(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\Longrightarrow \xi(t)$ pushes the fluid.
The fluid reacts, under the Stokes Equation

$$
\left[\begin{array}{l}
-\nu \Delta u+\nabla p=f \\
\operatorname{div} u=0
\end{array}\right.
$$

As a result the swimmer moves, under the ODE

Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as :

- ξ is a function which defines the shape of the swimmer.
- $p=(c, R) \in \mathbb{R}^{3} \times S O(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\Longrightarrow \xi(t)$ pushes the fluid.
The fluid reacts, under the Stokes Equation

$$
\left[\begin{array}{l}
-\nu \Delta u+\nabla p=f, \\
\operatorname{div} u=0 .
\end{array}\right.
$$

Self-propulsion constraints $\Longrightarrow\left\{\begin{array}{c}\sum \text { Forces }=0 \\ \text { Torque }=0\end{array}\right.$

$$
\Longleftrightarrow\left\{\begin{array}{l}
\int_{\partial \Omega} D N_{p, \xi}\left(\left(\partial_{p} \Phi\right) \dot{p}+\left(\partial_{\xi} \Phi\right) \dot{\xi}\right) d x_{0}=0 \\
\int_{\partial \Omega} x_{0} \times D N_{p, \xi}\left(\left(\partial_{\rho} \Phi\right) \dot{p}+\left(\partial_{\xi} \Phi\right) \dot{\xi}\right) d x_{0}=0 .
\end{array}\right.
$$

As a result the swimmer moves, under the ODE

Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as :

- ξ is a function which defines the shape of the swimmer.
- $p=(c, R) \in \mathbb{R}^{3} \times S O(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\Longrightarrow \xi(t)$ pushes the fluid.
The fluid reacts, under the Stokes Equation

$$
\left[\begin{array}{l}
-\nu \Delta u+\nabla p=f \\
\operatorname{div} u=0
\end{array}\right.
$$

Self-propulsion constraints $\Longrightarrow\left\{\begin{array}{c}\sum \text { Forces }=0 \\ \text { Torque }=0\end{array}\right.$

$$
\Longleftrightarrow\left\{\begin{array}{l}
\int_{\partial \Omega} D N_{p, \xi}\left(\left(\partial_{p} \Phi\right) \dot{p}+\left(\partial_{\xi} \Phi\right) \dot{\xi}\right) d x_{0}=0 \\
\int_{\partial \Omega} x_{0} \times D N_{p, \xi}\left(\left(\partial_{p} \Phi\right) \dot{p}+\left(\partial_{\xi} \Phi\right) \dot{\xi}\right) d x_{0}=0 .
\end{array}\right.
$$

As a result the swimmer moves, under the ODE

$$
\dot{p}=V(p, \xi) \dot{\xi}
$$

[Dal Maso, Desimone, and Marandotti, 2010]

Controllability issues

$$
\left\{\begin{array}{l}
\dot{p}=V(p, \xi) \dot{\xi} \\
p_{0}
\end{array}\right.
$$

Questions

- Is it possible to control the state of the system (ξ and p) using as controls only the rate of shape changes $\frac{d}{d t} \xi$?
- Does the boundary have an effect on the controllability of the swimmer?

The swimmers

The swimmer that we consider consists of n spheres connected by the swimmer's arm.
The change of the swimmer's shape consists in changing the length of its arms $\left(\xi_{i}\right)_{i}$.

Four sphere swimmer

Three sphere swimmer
[Golestanian, Najafi 2004]

Example of stroke

Controllability's result in \mathbb{R}^{3} [Alouges, DeSimone, Heltai, Lefevbre, Merlet (Preprint)]

The 4-sphere swimmer is globally

 controllable on \mathbb{R}^{3}.
The 3-sphere swimmer is globally controllable on \mathbb{R}.

- Does the presence of a wall modify the swimmer's reachable set?

Influence of the wall - Main results [Alouges, G]

The 4-spheres swimmer is globally controllable on an dense open set.

- For any initial condition $\left(y_{0}, \theta_{0}\right)$ such that $\theta_{0} \neq \frac{\pi}{2}$, the swimmer can reach every $\left(y_{G}, \theta_{G}\right)$ given $\left(\theta_{G} \neq \frac{\pi}{2}\right)$.
- If $\theta_{0}=\frac{\pi}{2}$ then the swimmer cannot change its angle and it moves only on a straight line defined by itself. (i.e., the dimension of $\operatorname{Lie}_{\left(\xi_{1}, \xi_{2}, y, \frac{\pi}{2}\right)}\left(V_{1}, V_{2}\right)$ is equal to 3 .

Outline of the proof

$$
\dot{p}=\sum_{i=1}^{M} V_{i}(p, \xi) \dot{\xi}
$$

By studying the dimension of the subspace $L i e_{(p, \xi)}\left(\left(V_{i}\right)_{i=1 . . M)}\right.$ which denotes the set of all tangent vectors $V(p, \xi)$ in $\operatorname{Lie}\left(\left(V_{i}\right)_{i=1 . . M}\right)$.

- By using the limit and the case without wall
- By calculation of Lie Brackets and application of Nagano (1966) Hermann (1963) theorem [Lobry 1970], we show that there are two kinds of orbit:
- the orbit with a 3 dimensional Lie space (if $\theta_{0}=\frac{\pi}{2}$).
- the others such that the dimension is equal to 4 .

Conclusion and outlook

- Influence of the boundary.

- Optimal strokes.

