Infrared aspects of the Nelson model on a static space-time

Annalisa Panati, Centre de Physique Théorique, Marseille et Université Sud Toulon Var

joint work with C.Gérard, F.Hiroshima, A.Suzuki

- Introduction
- 2 Nelson model (standard)
 - The model
 - The infrared problem
- 3 Nelson model with variable coefficients
 - Mathematical results
 - Idea of the proof
 - Comments and meaning
- 4 UV limit

Quantization QM = n degrees of freedom

Quantization QM=n degrees of freedom

$$M$$
 phase space, $M = \mathbb{R}^{2n}$

$$p_i, q_i: M \to \mathbb{R}$$
 symplectic coordinates

$$H = H(p,q)$$

Quantization QM=n degrees of freedom

$$M$$
 phase space, $M = \mathbb{R}^{2n}$

 $p_i, q_i: M \to \mathbb{R}$ symplectic coordinates

$$H=H(p,q)$$

${\cal H}$ Hilbert space

$$p_{i}, q_{i} : D \subset \mathcal{H} \to \mathcal{H}$$

$$[p_{i}, iq_{j}] = \delta_{ij} 11, \quad [p_{i}, p_{j}] = [q_{i}, q_{j}] = 0$$

$$\Leftrightarrow a_{j} := \frac{(p_{j} + iq_{j})}{\sqrt{2}}, \quad a_{j}^{*} := \frac{(p_{j} - iq_{j})}{\sqrt{2}}$$

$$[a_{i}, a_{j}^{*}] = \delta_{ij} 11, \quad [a_{i}, a_{j}] = [a_{i}^{*}, a_{j}^{*}] = 0$$

$$\mathcal{H}^{\parallel} = \parallel \mathcal{H}(p, q) = \mathcal{H}(a^{*}, a)$$

Quantization QM=n degrees of freedom

$$M$$
 phase space, $M = \mathbb{R}^{2n}$

 $p_i, q_i: M \to \mathbb{R}$ symplectic coordinates

$$H = H(p,q)$$

${\cal H}$ Hilbert space

$$\begin{aligned} p_{i}, q_{i} &: D \subset \mathcal{H} \to \mathcal{H} \\ [p_{i}, iq_{j}] &= \delta_{ij} \mathbb{1}, \quad [p_{i}, p_{j}] = [q_{i}, q_{j}] = 0 \\ \Leftrightarrow a_{j} &:= \frac{(p_{j} + iq_{j})}{\sqrt{2}}, \quad a_{j}^{*} &:= \frac{(p_{j} - iq_{j})}{\sqrt{2}} \\ [a_{i}, a_{j}^{*}] &= \delta_{ij} \mathbb{1}, \quad [a_{i}, a_{j}] = [a_{i}^{*}, a_{j}^{*}] = 0 \\ \mathcal{H} & = \text{``} H(p, q) = H(a^{*}, a) \end{aligned}$$

H well defined as a self-adjoint operator

$$\partial_t^2 \varphi(t,x) + (D_x^2 + m^2)\varphi(t,x) + V(x,\varphi(x,t)) = 0.$$

$$\partial_t^2 \varphi(t,x) + (D_x^2 + m^2)\varphi(t,x) + V(x,\varphi(x,t)) = 0.$$

$$M$$
 phase space, $dimM=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$$\partial_t^2 \varphi(t,x) + (D_x^2 + m^2)\varphi(t,x) + V(x,\varphi(x,t)) = 0.$$

$$M$$
 phase space, $dimM=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \\ \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$${\cal H}$$
 Hilbert space

$$\pi, \varphi \iff a^*, a$$

$$[a(f), a^*(g)] = (f, g)_{\mathfrak{h}} \mathbb{1}$$

$$[a(f), a(g)] = [a^*(f), a^*(g)] = 0$$

$$H = H(\pi, \varphi) = H(a^*, a)$$

$$\partial_t^2 \varphi(t,x) + (D_x^2 + m^2)\varphi(t,x) + V(x,\varphi(x,t)) = 0.$$

$$M$$
 phase space, $dimM=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \\ \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$${\cal H}$$
 Hilbert space

$$\pi, \varphi \iff a^*, a$$

$$[a(f), a^*(g)] = (f, g)_{\mathfrak{h}} \mathbb{1}$$

$$[a(f), a(g)] = [a^*(f), a^*(g)] = 0$$

$$H = H(\pi, \varphi) = H(a^*, a)$$

$$\partial_t^2 \varphi(t, x) + (D_x^2 + m^2) \varphi(t, x) + V(x, \varphi(x, t)) = 0.$$

$$\omega^2 := (D_x^2 + m^2)$$

$$M$$
 phase space, $dimM=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$$H = \mathrm{d}\Gamma(\omega) + V(x, \varphi_{\kappa}(x))$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} (a^*(f_{\kappa}) + a(f_{\kappa}))$$

$$f_{\kappa} := \sqrt{2}\omega^{-\frac{1}{2}}\rho_{\kappa}(x)$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} \int \mathrm{e}^{\mathrm{i}kx}\omega^{-\frac{1}{2}}(k)\hat{\rho}_{\kappa}(k)a^*(k)\mathrm{d}k + h.c.$$

$$\partial_t^2 \varphi(t, x) + (D_x^2 + m^2) \varphi(t, x) + V(x, \varphi(x, t)) = 0.$$

$$\omega^2 := (D_x^2 + m^2)$$

$$M$$
 phase space, $dimM=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$$H = \mathrm{d}\Gamma(\omega) + V(x, \varphi_{\kappa}(x))$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} (a^*(f_{\kappa}) + a(f_{\kappa}))$$

$$f_{\kappa} := \sqrt{2}\omega^{-\frac{1}{2}}\rho_{\kappa}(x)$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} \int \mathrm{e}^{\mathrm{i}kx}\omega^{-\frac{1}{2}}(k)\hat{\rho}_{\kappa}(k)a^*(k)\mathrm{d}k + h.c.$$

$$\partial_t^2 \varphi(t, x) + (D_x^2 + m^2) \varphi(t, x) + V(x, \varphi(x, t)) = 0.$$

$$\omega^2 := (D_x^2 + m^2)$$

$$M$$
 phase space, $dimM=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$$H = \mathrm{d}\Gamma(\omega) + V(x, \varphi_{\kappa}(x))$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} (a^*(f_{\kappa}) + a(f_{\kappa}))$$

$$f_{\kappa} := \sqrt{2}\omega^{-\frac{1}{2}}\rho_{\kappa}(x)$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} \int \mathrm{e}^{\mathrm{i}kx}\omega^{-\frac{1}{2}}(k)\hat{\rho}_{\kappa}(k)a^*(k)\mathrm{d}k + h.c.$$

$$(|\bar{\mathbf{g}}|^{-\frac{1}{2}}\partial_{\mu}\bar{\mathbf{g}}^{\mu\nu}|\bar{\mathbf{g}}|^{\frac{1}{2}}\partial_{\nu}+m^{2}+\theta R(x))\varphi(t,x)+V(x,\varphi(x,t))=0$$

$$M$$
 phase space, $dim M=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$$H = \mathrm{d}\Gamma(\omega) + V(x, \varphi_{\kappa}(x))$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} (a^*(f_{\kappa}) + a(f_{\kappa}))$$

$$f_{\kappa} := \sqrt{2}\omega^{-\frac{1}{2}}\rho_{\kappa}(x)$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} \int \mathrm{e}^{\mathrm{i}kx}\omega^{-\frac{1}{2}}(k)\hat{\rho}_{\kappa}(k)a^*(k)\mathrm{d}k + h.c.$$

$$\partial_t^2 \varphi(t,x) + (g(x)(D_j a_{ij}(x)D_i)g(x) + c(x))\varphi(t,x) + V_1(x,\varphi(x,t)) = 0.$$

$$M$$
 phase space, $dimM=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$$H = \mathrm{d}\Gamma(\omega) + V_1(x, \varphi_{\kappa}(x))$$

$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} (a^*(f_{\kappa}) + a(f_{\kappa}))$$

$$\mathsf{f}_{\kappa} := \sqrt{2}\omega^{-\frac{1}{2}}\rho_{\kappa}(x)$$

$$\partial_t^2 \varphi(t,x) + (g(x)(D_j a_{ij}(x)D_i)g(x) + c(x))\varphi(t,x) + V_1(x,\varphi(x,t)) = 0.$$

$$\omega^2 := g(x)(D_j a_{ij}(x)D_i)g(x) + c(x) \quad g(x), a(x) \to 1, c(x) \to m^2$$

$$M$$
 phase space, $dimM=\infty$
$$\pi(x), \varphi(x) \text{ symplectic coordinates } \{\pi_i(x), \varphi_j(x')\} = \delta(x-x') \{\varphi(x), \varphi(x')\} = \{\pi(x), \pi(x')\} = 0$$

$$H = H(\pi, \varphi)$$

$$H = \mathrm{d}\Gamma(\omega) + V_1(x, \varphi_{\kappa}(x))$$
$$\varphi_{\kappa}(x) := \frac{1}{\sqrt{2}} (a^*(f_{\kappa}) + a(f_{\kappa}))$$
$$f_{\kappa} := \sqrt{2}\omega^{-\frac{1}{2}}\rho_{\kappa}(x)$$

$$\Gamma(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \mathfrak{h} \qquad \mathfrak{h} = L^{2}(\mathbb{R}^{3}, dx)$$

$$\Gamma(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \mathfrak{h} \qquad \mathfrak{h} = L^{2}(\mathbb{R}^{3}, dx)$$

$$u \in \bigotimes_{s}^{n} \mathfrak{h} \qquad h \in \mathfrak{h}$$

$$a^{*}(h)u := \sqrt{n+1}u \otimes_{S} h$$

$$a(h)u := \sqrt{n}(h|u)$$

$$\Gamma(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \mathfrak{h} \qquad \mathfrak{h} = L^{2}(\mathbb{R}^{3}, dx)$$

$$u \in \bigotimes_{s}^{n} \mathfrak{h} \qquad h \in \mathfrak{h}$$
 $a^{*}(h)u := \sqrt{n+1}u \otimes_{S} h$
 $a(h)u := \sqrt{n}(h|u)$
 $Nu = nu$

$$\Gamma(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \mathfrak{h} \qquad \mathfrak{h} = L^{2}(\mathbb{R}^{3}, dx)$$

$$u \in \bigotimes_{s}^{n} \mathfrak{h} \qquad h \in \mathfrak{h}$$
 $a^{*}(h)u := \sqrt{n+1}u \otimes_{S} h$ $a(h)u := \sqrt{n}(h|u)$ $Nu = nu$ $a(h)\Omega = 0$

$$\Gamma(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \mathfrak{h} \qquad \mathfrak{h} = L^{2}(\mathbb{R}^{3}, dx)$$

$$u \in \bigotimes_{s}^{n} \mathfrak{h} \qquad h \in \mathfrak{h}$$
 $a^{*}(h)u := \sqrt{n+1}u \otimes_{S} h$ $a(h)u := \sqrt{n}(h|u)$ $Nu = nu$ $a(h)\Omega = 0$

$$\phi(h) = \frac{1}{\sqrt{2}}(a^*(h) + a(h)) \quad h \in \mathfrak{h}$$

$$\mathcal{H} := \mathcal{K} \otimes \Gamma(\mathfrak{h})$$

$$\Gamma(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \mathfrak{h} \qquad \mathfrak{h} = L^{2}(\mathbb{R}^{3}, dx)$$

$$\mathcal{K} := L^{2}(\mathbb{R}^{3}, dx)$$

$$d\Gamma(\omega)|_{\bigotimes_{s}^{n}\mathfrak{h}} := \sum_{i=1}^{n} \omega_{i}$$

$$\omega_{N}^{2} = -\triangle + m^{2} \quad m \geq 0$$

 $H = K \otimes \mathbb{1} + \mathbb{1} \otimes \mathrm{d}\Gamma(\omega) + \lambda \Phi(v)$

$$\Phi(v) = \int v(k) \otimes a^*(k) + v^*(k) \otimes a(k) dk$$
$$v_N(k) := \frac{e^{-ikx}}{\omega(k)^{1/2}} \hat{\rho}(k)$$

$$\mathcal{H} := \mathcal{K} \otimes \Gamma(\mathfrak{h})$$

$$\Gamma(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \mathfrak{h} \qquad \mathfrak{h} = L^{2}(\mathbb{R}^{3}, dx)$$

$$\mathcal{K} := L^{2}(\mathbb{R}^{3}, dx)$$

$$d\Gamma(\omega)|_{\bigotimes_{s}^{n}\mathfrak{h}} := \sum_{i=1}^{n} \omega_{i}$$

$$\omega_{N}^{2} = -\triangle + m^{2} \quad m \geq 0$$

 $H = K \otimes \mathbb{1} + \mathbb{1} \otimes \mathrm{d}\Gamma(\omega) + \lambda \Phi(v)$

$$\Phi(v) = \int v(k) \otimes a^*(k) + v^*(k) \otimes a(k) dk
v_N(k) := \frac{e^{-ikx}}{\omega(k)^{1/2}} \hat{\rho}(k)$$

$$\mathcal{H} := \mathcal{K} \otimes \Gamma(\mathfrak{h})$$

$$\Gamma(\mathfrak{h}) := \bigoplus_{n=0}^{\infty} \bigotimes_{s}^{n} \mathfrak{h} \qquad \mathfrak{h} = L^{2}(\mathbb{R}^{3}, dx)$$

$$\mathcal{K} := L^{2}(\mathbb{R}^{3}, dx)$$

$$H = K \otimes \mathbb{1} + \mathbb{1} \otimes d\Gamma(\omega) + \lambda \Phi(v)$$
$$d\Gamma(\omega)|_{\bigotimes_{s}^{n} \mathfrak{h}} := \sum_{i=1}^{n} \omega_{i}$$
$$\omega_{N}^{2} = -\Delta + m^{2} \quad m \ge 0$$

$$\Phi(v) = a^*(v) + a(v)$$
$$v_N = \omega^{-1/2} \rho(x - x)$$

General situation

$$\sigma(K)$$

General situ

si m = 0

General situ

$$\sin m > 0$$

$$si m = 0$$

if
$$\|\omega^{-1}v\|_{\mathcal{B}(\mathcal{K},\mathcal{K}\otimes\mathfrak{h})}<\infty$$
 (infrared regular condition)
 E is an eigenvalue in the Fock representation [DeGe,BruDe] otherwise (Nelson)

E is NOT an eigenvalue in the Fock representation [LMS,DeGe] *E* is an eignevalue in another representation[Arai]

$$\begin{split} \mathcal{H} &:= \mathcal{K} \otimes \Gamma(\mathfrak{h}) \\ \mathcal{H} &= \mathcal{K} \otimes \mathbb{I} + \mathbb{I} \otimes \mathrm{d}\Gamma(\omega) + \lambda \Phi(v) \\ \mathrm{d}\Gamma(\omega)|_{\bigotimes_{s}^{n} \mathfrak{h}} &:= \sum_{i=1}^{n} \omega_{i} \\ \Phi(v) &= a^{*}(v) + a(v) \\ v &= \omega^{-1/2} \rho(x - x) \\ \mathcal{K} &= -\partial_{j} A_{ij}(x) \partial_{i}) + V(x) \\ 0 &< C_{0} < A_{ij}(x) \leq C_{1} \\ \omega^{2} &= g(x)(-\partial_{j} a_{ij}(x) \partial_{i}) g(x) + m^{2}(x) = h_{0} + m^{2}(x) \\ 0 &< c_{0} < g(x), a_{ij}(x) \leq c_{1}, \quad m^{2}(x) \rightarrow m_{\infty} \geq 0 \\ (\mathcal{K} + 1)^{-1} \text{ compact} \\ \inf \sigma(\omega) &= m > 0 \end{split}$$

E

Theorem

Let $m = \inf \sigma(\omega)$, then

$$inf \sigma_{\rm ess}(H) \subset [\inf \sigma(H) + m, +\infty[.$$

In particular, if m > 0, H has a ground state.

Theorem

E

If $\omega^2=h_0+m^2(x)$, $m^2(x)\geq a\langle x\rangle^{-2}$ for some a>0, then H has no ground state.

Theorem

If $\omega^2=h_0+m^2(x)$, $m^2(x)\leq C\langle x\rangle^{-2-\varepsilon}$, for some $C,\epsilon>0$, then H has a ground state.

Theorem

If $\omega^2=h_0+m^2(x)$, $m^2(x)\geq a\langle x\rangle^{-2}$ for some a>0, then H has no ground state.

Theorem

If $\omega^2 = h_0 + m^2(x)$, $m^2(x) \le C\langle x \rangle^{-2-\varepsilon}$, for some $C, \epsilon > 0$, then H has a ground state.

Theorem

If
$$m^2(x) \ge a\langle x \rangle^{-2}$$
 then

$$\omega^{-\beta} \le \langle x \rangle^{\beta+\varepsilon}$$
, for all $0 < \beta \le d$, where $d \ge 3$.

In particular this implies $\|\omega^{-1}v\|_{\mathcal{B}(\mathcal{K},\mathcal{K}\otimes\mathfrak{h})}<\infty$ (and $\omega^{-1}v(K+1)^{-1}$ compact).

obtained using [Porper-Eidel'man]

Theorem (existence abstract version)

Let $\mathcal{H} := \mathcal{K} \otimes \Gamma(\mathfrak{h})$ and

$$H = K \otimes \mathbb{1} + \mathbb{1} \otimes d\Gamma(\omega) + \lambda \Phi(v),$$

with $\omega:\mathfrak{h}\to\mathfrak{h}$ self-adjoint, $\omega\geq0$, $0\notin\sigma_{\mathrm{DD}}(\omega)$, $v\in B(\mathcal{K},\mathcal{K}\otimes\mathfrak{h})$. Assume there exists a self-adjoint operator d > 0 on \mathfrak{h} such that

$$[F(\frac{d}{R}), \omega_{\mu}] = O(R^{-1}), \quad \omega^{-\frac{1}{2}}F(\frac{d}{R})v_{\mu}(K+1)^{-\frac{1}{2}} = O(R^{0})$$

and $(K+1)^{-1}$, $\omega^{-1}v(K+1)^{-\frac{1}{2}}$ are compact. Then H has a ground state.

Theorem (existence abstract version)

Let $\mathcal{H}:=\mathcal{K}\otimes\Gamma(\mathfrak{h})$ and

$$H = K \otimes \mathbb{1} + \mathbb{1} \otimes d\Gamma(\omega) + \lambda \Phi(v),$$

with $\omega:\mathfrak{h}\to\mathfrak{h}$ self-adjoint, $\omega\geq0$, $0\notin\sigma_{\mathrm{pp}}(\omega),v\in B(\mathcal{K},\mathcal{K}\otimes\mathfrak{h}).$ Assume there exists a self-adjoint operator $d\geq0$ on \mathfrak{h} such that

$$[F(\frac{d}{R}), \omega_{\mu}] = O(R^{-1}), \quad \omega^{-\frac{1}{2}}F(\frac{d}{R})v_{\mu}(K+1)^{-\frac{1}{2}} = O(R^{0})$$

and $(K+1)^{-1}$, $\omega^{-1}v(K+1)^{-\frac{1}{2}}$ are compact. Then H has a ground state.

If $\mathfrak{h} = L^2(\mathbb{R}^3, dx)$, one can replace $(K+1)^{-1}$ compact with a binding condition (follow [Griesimer] for exponential decay).

Proof (idea)

 ${\it H}_{\mu}$ has a ground state ψ_{μ}

 $H_{\mu} \rightarrow H$ in the norm resovent sense

Theorem (General lemma, Arai)

lf

$$\psi_{\mu} \rightarrow_{\mathbf{w}} \psi \neq 0$$
,

Then ψ is a ground state for H.

Key bound:

 $(\psi_{\mu}, \mathsf{N}\psi_{\mu}) < \mathsf{C}$ uniformely in $\mu \Longrightarrow \mathsf{existence}$

$$(\psi_{\mu}, \mathsf{N}\psi_{\mu}) < \mathsf{C}$$
 uniformly in $\mu \Longrightarrow \mathsf{existence}$

proof:

$$K := \chi(N \le \lambda)\chi(H_0 \le \lambda)\Gamma(F_R)$$
 compact

$$\lim_{\mu\to\infty} K\psi_{\mu} = 0$$

Consider first the FLAT CASE:

$$N = \int a^*(k)a(k)dk$$

$$(\psi, N\psi) = \int ||a(k)\psi||^2 dk$$

$$= \int ||(H - E + \omega(k))^{-1}v(k)\psi||^2 dk$$

$$\leq \int ||\omega(k)^{-1}v(k)(K+1)^{-1}||^2 dk$$

With a metrics: you have to avoid to decompose in k

$$N = A^*A$$

A abstract pullthrough operator [Bruneau, Derezinski]

$$A:\Gamma(\mathfrak{h})\to\Gamma(\mathfrak{h})\otimes\mathfrak{h}$$

With a metrics: you have to avoid to decompose in k

$$N = A^*A$$

A abstract pullthrough operator [Bruneau, Derezinski]

$$A: \Gamma(\mathfrak{h}) \to \Gamma(\mathfrak{h}) \otimes \mathfrak{h}$$

$$(\psi, N\psi) = ||A\psi||$$

$$= ||(H \otimes \mathbb{1} - E + \mathbb{1} \otimes \omega)^{-1} v \psi||$$

$$\leq C||\omega^{-1} v (K + 1)^{-\frac{1}{2}}||$$

$$U: \quad \mathcal{K} \otimes \Gamma(\mathfrak{h}) \quad o \quad L^2(M,m)$$
 m probablilty measure $\psi \otimes \Omega \quad \mapsto \quad 1$

Set

$$\gamma(t) = \frac{(1, e^{-tH}1)}{\|e^{-tH}1\|}$$

Lemma

Set $E := \inf \sigma(H)$. Then

$$\lim_{t\to\infty}\gamma(t)=\|\mathbb{1}_E(H)\mathbb{1}\|^2$$

In particular if $\lim_{t \to \infty} \gamma(t) = 0$ then H has no ground state.

One can compute this quantity explicitly, and it depends on $(\rho_x, \frac{e^{-t\omega}}{2\omega}\rho_y)$ to be estimated using [Semenov]

$$m^2(x)=g_{00}(m^2+\theta R(x)), \theta=0,1/6$$

 $\theta=0,$ metrics without singularities $(g_{00}\to 1)$:

```
m^2(x) = g_{00}(m^2 + \theta R(x)), \theta = 0, 1/6

\theta = 0, metrics without singularities (g_{00} \to 1):

massive \to massive: \omega^2 = g(x)(-\triangle_\gamma)g(x) + m^2(x)

massless \to massless short range: \omega^2 = g(x)(-\triangle_\gamma)g(x)
```

```
m^2(x)=g_{00}(m^2+\theta R(x)), \theta=0,1/6 \theta=0, metrics without singularities (g_{00}\to 1): massive \to massive: \omega^2=g(x)(-\triangle_\gamma)g(x)+m^2(x) massless \to massless short range: \omega^2=g(x)(-\triangle_\gamma)g(x) metrics with singularities (g_{00}\to 0):
```

```
m^2(x) = g_{00}(m^2 + \theta R(x)), \theta = 0, 1/6

\theta = 0, metrics without singularities (g_{00} \to 1):

massive \to massive: \omega^2 = g(x)(-\triangle_\gamma)g(x) + m^2(x)

massless \to massless short range: \omega^2 = g(x)(-\triangle_\gamma)g(x)

metrics with singularities (g_{00} \to 0):

massive \to massless short range: \omega^2 = g(x)(-\triangle_\gamma)g(x) + m^2(x)
```

$$m^2(x) = g_{00}(m^2 + \theta R(x)), \theta = 0, 1/6$$

 $\theta = 0$, metrics without singularities $(g_{00} \to 1)$:
massive \to massive: $\omega^2 = g(x)(-\triangle_\gamma)g(x) + m^2(x)$
massless \to massless short range: $\omega^2 = g(x)(-\triangle_\gamma)g(x)$
metrics with singularities $(g_{00} \to 0)$:
massive \to massless short range: $\omega^2 = g(x)(-\triangle_\gamma)g(x) + m^2(x)$
but Schwarzschild is not included $(?)$ in our framework

$$m^2(x)=g_{00}(m^2+\theta R(x)), \theta=0,1/6$$
 $\theta=0,$ metrics without singularities $(g_{00}\to 1):$ massive \to massive: $\omega^2=g(x)(-\triangle_\gamma)g(x)+m^2(x)$ massless \to massless short range: $\omega^2=g(x)(-\triangle_\gamma)g(x)$ metrics with singularities $(g_{00}\to 0):$ massive \to massless short range: $\omega^2=g(x)(-\triangle_\gamma)g(x)+m^2(x)$ but Schwarzschild is not included $(?)$ in our framework

conformal wave: $m^2(x) = m^2 + \theta R(x)$ Ricci scalar (short range)

 $m^2(x) = g_{00}(m^2 + \theta R(x)), \theta = 0, 1/6$

Comments and meaning

$$heta=0$$
, metrics without singularities $(g_{00} o 1)$:

massive o massive: $\omega^2=g(x)(-\triangle_\gamma)g(x)+m^2(x)$

massless o massless short range: $\omega^2=g(x)(-\triangle_\gamma)g(x)$

metrics with singularities $(g_{00} o 0)$:

massive o massless short range: $\omega^2=g(x)(-\triangle_\gamma)g(x)+m^2(x)$

but Schwarzschild is not included $(?)$ in our framework

conformal wave: $m^2(x)=m^2+\theta R(x)$ Ricci scalar (short range)

massless

 \rightarrow massless short range: $\omega^2 = g(x)(-\triangle_{\gamma})g(x) + m^2(x)$

$$m^2(x)=g_{00}(m^2+\theta R(x)), \theta=0,1/6$$
 $\theta=0,$ metrics without singularities $(g_{00}\to 1):$ massive \to massive: $\omega^2=g(x)(-\triangle_\gamma)g(x)+m^2(x)$ massless \to massless short range: $\omega^2=g(x)(-\triangle_\gamma)g(x)$ metrics with singularities $(g_{00}\to 0):$ massive \to massless short range: $\omega^2=g(x)(-\triangle_\gamma)g(x)+m^2(x)$ but Schwarzschild is not included $(?)$ in our framework

conformal wave: $m^2(x) = m^2 + \theta R(x)$ Ricci scalar (short range)

massless
$$\rightarrow$$
 massless short range: $\omega^2 = g(x)(-\triangle_{\gamma})g(x) + m^2(x)$
- $R(x) > 0$ meaning?

UV limit

Theorem

There exists a family of unitary operators U_{κ} on \mathcal{H} and a self-adjoint operator H_{∞} such that:

$$\lim_{\kappa\to\infty}U_{\kappa}^*(H_{\kappa}-E_{\kappa})U_{\kappa}=H_{\infty},$$

(in the strong resolvent sens).

UV limit

Theorem

There exists a family of unitary operators U_{κ} on \mathcal{H} and a self-adjoint operator H_{∞} such that:

$$\lim_{\kappa\to\infty}U_{\kappa}^*(H_{\kappa}-E_{\kappa}(X))U_{\kappa}=H_{\infty},$$

(in the strong resolvent sens).

- include Schwarzschild
- Pauli- Fierz model type, etc

- include Schwarzschild
- Pauli- Fierz model type, etc
- the other representation,

- include Schwarzschild
- Pauli- Fierz model type, etc
- the other representation,
- gs in the UV limit

- include Schwarzschild
- Pauli- Fierz model type, etc
- the other representation,
- gs in the UV limit

- include Schwarzschild
- Pauli- Fierz model type, etc
- the other representation,
- gs in the UV limit

- include Schwarzschild
- Pauli- Fierz model type, etc.
- the other representation,
- gs in the UV limit

black holes