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Abstract

The Brockett-Wegner diagonalizing flow Ḣt =
[
Ht, [Ht, A]

]
is stud-

ied. Global existence and uniqueness of solutions of this evolution
equation is proved on the space B[H ] of bounded operators on a com-
plex Hilbert space H . Local existence is proved for certain unbounded
initial operators H0. Furthermore, if H0, A are Hilbert-Schmidt op-
erators, it is demonstrated that Ht strongly converges to a diagonal
operator H∞ which is unitarily equivalent to H0.

Keywords : Flow equations for operators, Brockett-Wegner flow,
Double bracket flow, Evolution equations.
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I Introduction

Almost two decades ago, Brockett [1] proposed a method to diagonalize self-
adjoint complex matrices by means of a flow on the space of matrices, which
we briefly outline. (He also used this method to solve linear programs, but
this is of no concern here.) The notion of diagonalization he used is given
in terms of the commutator [H,A] = HA− AH of two self-adjoint matrices
H = H∗ and A = A∗, which we assume to be complex N × N matrices,
H,A ∈ Mat(N,C), to be specific. The matrix H is called A-diagonal iff
[H,A] = 0. So, A is a reference matrix whose eigenspaces determine what
is considered diagonal. If A = diag(α1, α2, . . . , αN) is diagonal and possesses
N different eigenvalues (of multiplicity one) then H is A-diagonal iff H is
diagonal in the usual sense, i.e., H = diag(λ1, λ2, . . . , λN).

Brockett suggested to study the solution of the Cauchy problem

∀t > 0 : Ḣt := i[Ht, Gt], H0 := H, (I.1)

where G(·) = G∗
(·) ∈ C1

(
R

+
0 ; Mat(N,C)

)
is chosen later. He introduced a

(Lyapunov) function

ft :=
1

2
Tr

{(
Ht − A

)2}
≥ 0. (I.2)

Note that (Ht, Gt) form a Lax pair and the solution Ht of (I.1) is unitary
equivalent to H, for all t > 0, since Gs is self-adjoint, for all s ≥ 0. Hence

ft =
1

2
Tr

{
H2

t + A2 − 2HtA
}

=
1

2
Tr

{
H2 + A2

}
− Tr

{
HtA

}
. (I.3)

Assuming the existence of a solution H(·) ∈ C1
(
R

+
0 ; Mat(N,C)

)
of (I.1), a

differentiation yields

ḟt := −Tr
{
ḢtA

}
= −Tr

{
i[Ht, Gt]A

}
= −Tr

{
i[A,Ht]Gt

}
, (I.4)

using the cyclicity of the trace. Brockett’s key observation is that upon
choosing

Gt = G∗
t := i[A,Ht], (I.5)

we obtain

∀t ≥ 0 : ft ≥ 0, −ḟt = Tr
{
G2

t

}
≥ 0. (I.6)

Since f is continuously differentiable, the fundamental theorem of calculus
implies that −ḟ ∈ L1(R+; R+

0 ) is a nonnegative, continuous, integrable func-
tion. This suggests that in the limit t→ ∞
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(i) [iA,Ht] → 0, as the square of its Hilbert-Schmidt norm equals

Tr
{
[iA,Ht]

2
}

= Tr
{
G2

t

}
= −ḟt, (I.7)

(ii) Ht converges to a limit matrix H∞ = limt→∞Ht = limt→∞
{
Ut,0HU

∗
t,0

}

which is unitarily equivalent toH and A-diagonal. Here, Ut,s ⊆ U(N) is
the cocycle (i.e., possessing the cocyclicity, or Chapman-Kolmogorov,
property Ut,rUr,s = Ut,s, for all t ≥ r ≥ s ≥ 0) of unitary matrices
generated by iGt.

About the same time as Brockett, but independently, Wegner [9] used a
similar idea for the diagonalization of self-adjoint operators. In the context
of Eqs. (I.1)–(I.6), Wegner’s choice for Gt is

Gt := i
[
Hdiag

t , Ht

]
, (I.8)

where Hdiag
t denotes the diagonal part of Ht. That is, if Ht(k, ℓ) := 〈ek|Hteℓ〉

denotes the matrix elements of Ht w.r.t. the standard basis {en}
N
n=1 ⊆ C

N ,
then Hdiag

t (k, ℓ) := δk,ℓHt(k, k). Wegner’s method has been successfully ap-
plied to analyze a variety of models in theoretical (mostly: condensed matter)
physics, see [7]. Brockett’s proposal, however, has two obvious mathematical
advantages over Wegner’s: It is formulated in an invariant way by means of
A, fixing what is considered diagonal without referring to a particular basis.
In fact, it is unclear how to extend (I.8) in case that the operators H and A
have continuous spectrum and the diagonalizabilty with respect to a discrete
basis is not possible. The second flaw is that Wegner’s choice (I.8) for Gt

is quadratic in Ht, leading to a cubicly nonlinear evolution equation for Ht,
while Brockett’s choice (I.5) for Gt leads to a quadratic nonlinearity. We
henceforth refer to (I.1) and its solution as the Brockett-Wegner Flow.

We note that a few years before, Deift, Li, and Tomei [4, 5, 3] studied
similar evolution equations in the context of their integrability and what is
known as the Toda flow L̇t = [Bt, Lt], where Lt and Bt are tridiagonal real
symmetric matrices given as

L =




a1 b1 0

b1 a2
. . .

. . . . . . bN−1

0 bN−1 aN


 , B =




0 b1 0

−b1 0
. . .

. . . . . . bN−1

0 −bN−1 0


 .

(I.9)
Setting Ht := Lt and choosing A = diag(1, 2, . . . , N), we observe that Gt :=
i[A,Ht] = iBt, and hence the Toda flow is a special case of (I.1) and (I.5).
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This is remarkable because in [4, 5, 3] the Toda flow is explicitly integrated
(as an ODE), is compared to the QR-decomposition method of matrices, and
variants of it are discussed, some of which become singular in finite time even
in finite dimension N <∞

It turns out that even for N×N -matrices, the properties described under
(ii) above are not obvious. Ignoring this for the time being, we remark that
our outline of the Brockett-Wegner flow forN×N -matrices uses the finiteness
of the dimension N2 = dim Mat(N,C) <∞ at various places:

(a) Inserting the definition (I.5) of G into (I.1) we obtain

∀t > 0 : Ḣt :=
[
Ht, [Ht, A]

]
, H0 := H, (I.10)

which is a (quadratically) nonlinear differential equation, for which the
global existence of solutions is not obvious, but essentially follows from
the fact that the solution is a unitary conjugate of the initial value, see
Sec. II.

(b) The very definition (I.2) of the Lyapunov function f employs the trace
on Mat(N,C), and its cyclicity is crucial for the validity of Brockett’s
observation (I.4)-(I.6).

(c) Thus, in the infinite-dimensional context, the finiteness of f0 would
require that H − A is a Hilbert-Schmidt operator.

(d) The convergence of the operators is defined in Hilbert-Schmidt norm.
For many applications, this norm is not appropriate, as it is known
that one can, at best, hope for strong convergence.

(f) In infinite dimensions, the unitary equivalence of all Ht and their con-
vergence Ht → H∞ do not necessarily imply that the limiting operator
H∞ is unitarily equivalent toH = H0, because the family Ut,s of unitary
operators generated by iGt may not converge.

(g) In fact, in infinite dimensions, the distinguished spectral types (ac, sc,
pp, etc.) characterizing the spectral measure of H are unitary invari-
ants. So, for instance, if H has continuous spectrum then it cannot
be forced to become diagonal in any orthonormal basis. Then either
Ht does not converge at all or it does converge but not to a diagonal
operator or its limit is not unitarily equivalent to H. Either way, the
flow will not diagonalize H.

The results in the present paper are the following.
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• We first show that (I.10) has a unique, smooth global solution H(·) ∈
C∞(R+

0 ;B[H ]), provided H0, A ∈ B[H ] are bounded operators. There
is a family U(·) ∈ C∞(R+

0 ;B[H ]) of unitary operators such that all
Ht = UtH0U

∗
t are (mutually) unitarily equivalent. This is carried out

in Sect. II.

• Secondly, using a Nash-Moser type of estimate, we show that (I.10) has
a unique, smooth local solution H(·) ∈ C∞([0, T ];B[H ]) in case of un-
bounded H0 provided its iterated commutators with A define bounded
operators whose norm tends to zero, as the order increases, sufficiently
fast. The precise formulation of the assertion and its proof is the con-
tents of Sect. III.

• Thirdly, under the additional assumption that H0, A ∈ L2[H ] are
Hilbert-Schmidt operators, we show in Sect. IV that Ht strongly con-
verges to a diagonal operator H∞ which is unitarily equivalent to H0.

We conclude this introduction with a few remarks. A typical situation en-
countered in quantum mechanics, say, is that both H and A are unbounded,
but bounded below. In this case H + λ and A + λ are positive and hence
bounded invertible, provided λ > 0 is sufficiently big. The A-diagonalization
of H is clearly equivalent to the (A+ λ)−1-diagonalization of (H + λ)−1. So,
it seems that the diagonalization of unbounded, but semibounded operators
can be traced back to the diagonalization of bounded operators. This is,
however, not really the case because the differential equation for Ht changes
- even if H and A are strictly positive. Namely, if

∂t

(
H−1

t

)
=

[
H−1

t , [H−1
t , A−1]

]
, (I.11)

then

Ḣt =
[
Ht, [H

−1
t , A−1]

]
= −H−1

t

[
Ht, [Ht, A

−1]
]
H−1

t , (I.12)

which is not identical to (I.10) - even if we ignore the change from A to A−1.
In fact, (I.12) is more involved than (I.10) because it additionally requires to
invert Ht for the computation of its right side.

One may also consider passing fromH and A to e−βH and e−βA in the case
of semibounded H and A, but this suffers from the same flaw: computing
the right side of the differential equation requires the explicit computation
of e−βH and e−βA.

Another observation is that without specification of Gt, Eq. (I.1) is a lin-
ear, non-autonomous evolution equation. The theory of these is known to be
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much more difficult than the one of autonomous evolution equations. The lat-
ter are fully characterized by the Hille-Yoshida theorem which essentially says
that the solutions of autonomous evolution equations are precisely strongly
continuous hyperbolic semigroups generated by densely defined operators ful-
filling Kato’s (quasi-)stability condition. In contrast, in the non-autonomous
case, only sufficient conditions, basically extending the autonomous case, are
known. The necessity of these conditions remains unclear until today. This
subject has a long history, and important contributions have been made by
Kato, Yosida, Tanabe, Kisynski, Hackman, Kobayasi, Ishii, Goldstein, Ac-
quistapace, Terreni, Nickel, Schnaubelt, Caps, Tanaka, and many more; see
for instance [6, 2] and references therein. From this angle, the problem treated
in Sect. III seems trivial: the (Gt)t≥0 is a family of bounded self-adjoint op-
erators. The preservation of the domain of Ht under the flow generated by
Gt, however, is difficult to control because Gt itself depends on Ht. This is
the achievement of Sect. III.
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II Global Existence on Bounded Operators

Our first task is to show that the Cauchy problem stated in (I.10), that is

∀t > 0 : Ḣt :=
[
Ht, [Ht, A]

]
, H0 := H, (II.13)

possesses a unique global solution (Ht)t≥0 which is smooth in t. We formulate
this result in the following theorem

Theorem 1 Let (A, ‖ · ‖A) be a Banach subalgebra of the Banach algebra
B[H ] ⊃ A of bounded operators on a separable Hilbert space H such that
‖ · ‖A is a unitarily invariant norm. Suppose that H0 = H∗

0 , A = A∗ ∈ A are
two self-adjoint operators such that A ≥ 0. Then Eq. (II.13) has a unique
solution H(·) ∈ C∞(R+

0 ;A), and Ht is unitarily equivalent to H0, for all t > 0.

Proof: The assumption on A to be a Banach algebra with unitarily invariant
norm means that ‖AB‖A ≤ ‖A‖A · ‖B‖A and ‖UAU∗‖A = ‖A‖A, for all
A,B ∈ A and all unitary operators U ∈ B[H ].

The first part of the argument employs the standard contraction mapping
principle in connection to the Picard iteration. We fix A ∈ A and define
F : A → A by

F (H) :=
[
H, [H,A]

]
. (II.14)

We observe for any H, H̃ ∈ A that

F (H) − F (H̃) =
[
H − H̃, [H,A]

]
+

[
H̃, [H − H̃, A]

]
(II.15)

which implies that F is locally Lipschitz continuous and that t 7→ F (Ht) is
differentiable in norm if t 7→ Ht is, namely

‖F (H) − F (H̃)‖A ≤ 4 ‖A‖A
(
‖H‖A + ‖H̃‖A

)
‖H − H̃‖A, (II.16)

and
dF (Ht)

dt
=

[
Ḣt, [Ht, A]

]
+

[
Ht, [Ḣt, A]

]
. (II.17)

Denoting by YT := C
(
[0, T ];A

)
the Banach space w. r. t. the norm ‖M(·)‖ :=

max0≤t≤T ‖Mt‖A, as usual, we conclude that FT : C
(
[0, T ];A

)
→ C

(
[0, T ];A

)
,

defined by
(
FT (M(·))

)
t

:= H0 +

∫ t

0

F (Ms) ds (II.18)

defines a contraction on

DT :=
{
M(·) ∈ YT

∣∣∣ max
0≤t≤T

‖Mt‖A ≤ (16 ‖A‖A T )−1
}
. (II.19)
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Thus M(·) = FT (M(·)) has a unique smooth solution which we denote H(·) ∈
C∞(

[0, T ];A
)

provided

T :=
1

32 ‖A‖A ‖H0‖A
. (II.20)

The key observation is that the self-adjointness of Gt = i[A,Ht] ∈ A implies
that the unique solution U(·) ∈ C∞(

[0, T ];A
)

of the linear, non-autonomous
evolution equation

∀t > 0 : U̇t := −iGt Ut, U0 := 1, (II.21)

is unitary. Moreover, Ht = UtH0U
∗
t and in particular

‖HT‖A = ‖UT H0 U
∗
T‖A = ‖H0‖A. (II.22)

We can therefore repeat the argument starting from (II.18), replacing H0 by
HT . Clearly, an iteration of this procedure yields the desired global solution.

�
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III Local Existence on Unbounded Operators

This section is devoted to proving local existence and uniqueness of solutions
of the Brockett-Wegner flow for unbounded operators H0 which, together
with its iterated commutators, are bounded relative to A, where we assume
w. l. o. g. that A ≥ 1. Instead of (I.10), we study

∀t > 0 : Ḣt :=
[
Ht, [Ht, A

−1]
]
, H0 := H, (III.23)

in this section, i.e., we replace A by A−1. The proof of our result in Theorem 2
below was inspired by a similar result of Caps [2] for quasilinear evolution
equations on scales of Banach spaces, using estimates of Nash-Moser type,
see [8].

To formulate our result, we introduce some notation. We denote by X :=
B[H ] the space of bounded operators on a complex, separable Hilbert space
H . We assume that A ≥ 1 is a positive operator and H a closed operator
with dense common domain D ⊆ H which is itself a Hilbert space w.r.t.
〈x|y〉D := 〈Ax|Ay〉H . We denote by Y := B[D ] the bounded operators on D

and note the natural identification ‖M‖Y = ‖AMA−1‖X .
We further assume that HA−1 ∈ X and Rn(H) ∈ X ∩ Y , for all n ∈

N0 := {0, 1, 2, 3, . . .}, where Rn(H) is recursively defined by R0(H) := A−1

and

∀n ∈ N : Rn(H) := [H,Rn−1(H)] = Adn
H [A−1], (III.24)

with [A,B] := AB − BA, as usual. More precisely, for a given n ∈ N and
Rn−1(H) ∈ X ∩ Y , we first define Rn(H) ∈ B[D ; H ] by

Rn(H)A−1 :=
(
HA−1

)(
ARn−1(H)A−1

)
− Rn−1(H)

(
HA−1

)
(III.25)

and assume that Rn(H) extends to an operator bounded both on D and on
H , i.e., Rn(H) ∈ X ∩ Y .

Theorem 2 Suppose that H0 = H∗
0 and A = A∗ ≥ 1 are two self-adjoint

operators on H ⊇ D and that Rn(H0) : D → H extend to bounded operators
Rn(H0) ∈ X ∩ Y , for all n ∈ N, such that ‖H0A

−1‖X <∞ and

∞∑

n=0

eρn

n!

(
‖Rn(H0)‖X + ‖Rn(H0)‖Y

)
≤ eη , (III.26)

for some ρ, η ∈ R. Then the following assertions hold true.
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(i) Eq. (III.23) has a self-adjoint solution H(·) ∈ C∞(
[0, T∗);B[D ,H ]

)
,

where T∗ := 1
8
eρ−η−1, and there exists a smooth family U(·) ∈ C∞(

[0, T∗);
X ∩ Y

)
of unitary tranformations preserving the domain D of Ht such

that Ht = UtH0U
∗
t is unitarily equivalent to H0, for all t ∈ [0, T∗).

(ii) For all T < T∗, the solution H(·) ∈ C∞(
[0, T∗);B[D ,H ]

)
obeys

∞∑

n=0

eρn

n!
max
t∈[0,T ]

{
e−nt/T∗

(
‖Rn(Ht)‖X + ‖Rn(Ht)‖Y

)}
≤ 2 eη , (III.27)

and H(·) is the only solution with this property.

We break up the proof of Theorem 2 into several steps.
Our first task is to map (III.23) to an auxiliary problem for any solution

H(·) ∈ C1(R+
0 ;X), for which the operators Rn(Ht) ∈ X ∩ Y . Lemma 3

below derives a system of evolution equations on R(t) from (III.23), where
R(t) :=

(
Rn(Ht)

)∞
n=0

.

Lemma 3 Let H(·) ∈ C1
(
R

+
0 ;B[D ; H ]

)
be a solution of the Cauchy problem

(III.23) such that Rn := Rn(H(·)) ∈ C1
(
R

+
0 ;X ∩ Y

)
, for all n ∈ N0. Then

Ṙn(t) = Fn[R(t)] :=
n∑

ν=1

(
n

ν

)
[Rν+1(t) , Rn−ν(t)] , (III.28)

for all n ∈ N0.

Proof: We use an induction in n ≥ 0. First, R0(t) = A−1 is independent of
t, and so we have 0 on both sides of (III.28) for n = 0.

Now suppose that (III.28) holds true for n ≥ 0. To understand the struc-
ture of the next computation, assume temporarily that Ht ∈ X is bounded.
Then Rn+1(Ht) = [Ht, Rn(Ht)], Leibniz’ rule, and Ḣt = R2(t) would yield

Ṙn+1(t) = [Ḣt , Rn(t)] + [Ht , Ṙn(t)] (III.29)

= [R2(t) , Rn(t)] +
n∑

ν=1

(
n

ν

) [
Ht , [Rν+1(t) , Rn−ν(t)]

]
,

where we use that all operators are bounded. By Jacobi’s identity, we have
that

[
Ht , [Rν+1(t) , Rn−ν(t)]

]

=
[
[Ht , Rν+1(t)] , Rn−ν(t)

]
+

[
Rν+1(t) , [Ht , Rn−ν(t)]

]

= [Rν+2(t) , Rn−ν(t)] + [Rν+1(t) , Rn−ν+1(t)]. (III.30)
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Since Ht is not bounded but only bounded relative to A, carrying out (III.29)
and (III.30) require an additional argument, in general. Denoting H := Ht,

H(A) := HtA
−1, Rk := Rk(t), and R

(A)
k := ARk(t)A

−1, we observe that

according to (III.25), we have Rn+1A
−1 := H(A)R

(A)
n −RnH

(A) and thus

Ṙn+1A
−1 = Ḣ(A)R(A)

n − Rn Ḣ
(A) + H(A) Ṙ(A)

n − ṘnH
(A) (III.31)

= [R2 , Rn]A−1 +
n∑

ν=1

(
n

ν

) (
H(A) [R

(A)
ν+1 , R

(A)
n−ν ] − [Rν+1 , Rn−ν ]H

(A)
)
.

Similar to Jacobi’s identity, we obtain

H(A) [R
(A)
ν+1 , R

(A)
n−ν ] − [Rν+1 , Rn−ν ]H

(A) (III.32)

= H(A)R
(A)
ν+1R

(A)
n−ν − H(A)R

(A)
n−ν R

(A)
ν+1

+Rn−ν Rν+1H
(A) − Rν+1Rn−ν H

(A)

=
(
H(A)R

(A)
ν+1 −Rν+1H

(A)
)
R

(A)
n−ν −

(
H(A)R

(A)
n−ν −Rn−ν H

(A)
)
R

(A)
ν+1

+Rν+1

(
H(A)R

(A)
n−ν −Rn−ν H

(A)
)
− Rn−ν

(
H(A)R

(A)
ν+1 −Rν+1H

(A)
)

= [Rν+2 , Rn−ν ]A
−1 + [Rν+1 , Rn−ν+1]A

−1 (III.33)

and thus

Ṙn+1 = [R2 , Rn] +
n∑

ν=1

(
n

ν

) (
[Rν+2 , Rn−ν ] + [Rν+1 , Rn−ν+1]

)
(III.34)

holds on D and by continuity hence also on H . Inserting this into (III.29),
we obtain

Ṙn+1(t) = [R2(t) , Rn(t)] +
n∑

ν=1

(
n

ν

)
[Rν+2(t) , Rn−ν(t)]

+
n∑

ν=1

(
n

ν

)
[Rν+1(t) , Rn+1−ν(t)] (III.35)

=
n∑

ν=0

(
n

ν

)
[Rν+2(t) , Rn−ν(t)] +

n∑

ν=1

(
n

ν

)
[Rν+1(t) , Rn+1−ν(t)]

=
n+1∑

ν=1

(
n

ν − 1

)
[Rν+1(t) , Rn+1−ν(t)] +

n∑

ν=1

(
n

ν

)
[Rν+1(t) , Rn+1−ν(t)]

=
n+1∑

ν=1

(
n+ 1

ν

)
[Rν+1(t) , Rn+1−ν(t)],
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which completes the induction step and hence the proof of (III.28). �

We can rewrite (III.28) as the integral equation

r(t) = F [r](t) := r(0) +

∫ t

0

F [r(τ)] dτ (III.36)

with initial value r(0) = R(0) and F (r) :=
(
Fn(r)

)∞
n=0

. Next we show that
any solution R of (III.36) is continuous at tց 0 and of moderate growth for
small t, provided the initial data R(0) is sufficiently regular.

For the precise formulation of this statement we fix a triple θ := (α, T, ρ)
consisting of a positive parameter α > 0, a time T > 0, and a real number
ρ ∈ R. Furthermore (X ∩Y )N0 denotes the space of sequences (x0, x1, x2, . . .)
with xj ∈ X ∩ Y . Then we introduce the Banach space

Rθ := C
(
[0, T ] ; (X ∩ Y )N0

)
, (III.37)

which we equip with the norm

‖r‖θ :=
∞∑

n=0

eρn

n!
max
t∈[0,T ]

{
e−αnt‖rn(t)‖X∩Y

}
, (III.38)

where r =
(
rn(·)

)∞
n=0

∈ Rθ and ‖a‖X∩Y := ‖a‖X + ‖a‖Y . Note that this
norm is again submultiplicative because the norms on X and Y are, i.e.,

‖ab‖X∩Y = ‖ab‖X + ‖ab‖Y ≤ ‖a‖X‖b‖X + ‖a‖Y ‖b‖Y (III.39)

≤
(
‖a‖X + ‖a‖Y

)(
‖b‖X + ‖b‖Y

)
= ‖a‖X∩Y ‖b‖X∩Y .

Now we are in position to show that F is locally Lipschitz-continuous on Rθ.

Lemma 4 Let θ = (α, T, ρ) with α > 0, T < ∞, ρ ∈ R, and r(0) ∈ Rθ.
Then, for all r, r̂ ∈ Rθ, we have

∥∥F [ r ] − F [ r̂ ]
∥∥

θ
≤

2 eαT−ρ

α

(∥∥r
∥∥

θ
+

∥∥r̂
∥∥

θ

) ∥∥r − r̂
∥∥

θ
. (III.40)

Proof: We first remark that

Fn[r] − Fn[r̂] =
n∑

ν=1

(
n

ν

){
[rν+1 , rn−ν ] − [r̂ν+1 , r̂n−ν ]

}
(III.41)

=
n∑

ν=1

(
n

ν

)(
[rν+1 − r̂ν+1 , rn−ν ] + [r̂ν+1 , rn−ν − r̂n−ν ]

)
,
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and thus

∥∥F [r] − F [r̂]
∥∥

θ
(III.42)

≤
∞∑

n=0

eρn

n!
max
t∈[0,T ]

∥∥∥∥e
−αnt

n∑

ν=1

(
n

ν

) ∫ t

0

(
[rν+1(τ) − r̂ν+1(τ) , rn−ν(τ)]

+ [r̂ν+1(τ) , rn−ν(τ) − r̂n−ν(τ)]
)
dτ

∥∥∥∥
X∩Y

≤
∞∑

n=0

n∑

ν=1

max
t∈[0,T ]

{
2 eρn e−αnt

ν! (n− ν)!

∫ t

0

(∥∥rν+1(τ) − r̂ν+1(τ)
∥∥

X∩Y

∥∥rn−ν(τ)
∥∥

X∩Y

+
∥∥r̂ν+1(τ)

∥∥
X∩Y

∥∥rn−ν(τ) − r̂n−ν(τ)
∥∥

X∩Y

)
dτ

≤

∞∑

n=0

n∑

ν=1

2(ν + 1)

eρ
max
t∈[0,T ]

{
e−αnt

∫ t

0

eα(n+1)τ dτ

}(
dν+1cn−ν + ĉν+1dn−ν

)
,

where

cn :=
eρn

n!
max
t∈[0,T ]

{
e−αnt‖rn(t)‖X∩Y

}
, (III.43)

ĉn :=
eρn

n!
max
t∈[0,T ]

{
e−αnt‖r̂n(t)‖X∩Y

}
, (III.44)

dn :=
eρn

n!
max
t∈[0,T ]

{
e−αnt‖rn(t) − r̂n(t)‖X∩Y

}
. (III.45)

We observe that

ν + 1

eρ
max
t∈[0,T ]

{
e−αnt

∫ t

0

eα(n+1)τ dτ

}
≤

ν + 1

α (n+ 1)
max
t∈[0,T ]

{
eαt−ρ

}
≤

eαT−ρ

α
.

(III.46)
Inserting this into (III.42) and using

∑∞
n=0 cn = ‖r‖θ,

∑∞
n=0 ĉn = ‖r̂‖θ, and∑∞

n=0 dn = ‖r − r̂‖θ, we arrive at (III.40). �

The following Lemma 5 asserts that F maps small balls in Rθ into itself.
The proof is omitted, as it is very similar to the one for Lemma 4.

Lemma 5 Let θ = (α, T, ρ) with α > 0, T < ∞, ρ ∈ R, and r(0) ∈ Rθ.
Then, for all r ∈ Rθ, we have

∥∥F [ r ]
∥∥

θ
≤

∥∥r(0)
∥∥

θ
+

2 eαT−ρ

α

∥∥r
∥∥2

θ
. (III.47)
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Proof of Theorem 2:
(i) We first choose α := 8e1+η−ρ = T−1

∗ and T < T∗, so that αT < 1 and

2 eαT−ρ

α
<

e1−ρ

4 e1+η−ρ
=

e−η

4
. (III.48)

We set r
(0)
n := Rn(H0) and r(0) :=

(
r
(0)
n

)∞
n=0

. Identifying r(0) with the corre-

sponding constant vector r(0)(·) := r(0) ∈ Rθ, we have
∥∥r(0)

∥∥
θ
≤ eη , (III.49)

with θ = (α, T, ρ). In particular,

r(0) ∈ B :=
{
r ∈ Rθ

∣∣∣
∥∥r

∥∥
θ
≤ 2 eη

}
. (III.50)

Moreover, for r ∈ B, we observe that due to Lemma 5, (III.48), and (III.49),
we have ∥∥F [ r ]

∥∥
θ
≤

∥∥r(0)
∥∥

θ
+
e−η

4

∥∥r
∥∥2

θ
≤ 2 eη (III.51)

and thus F leaves B invariant, i.e.,

F [B] ⊆ B . (III.52)

Furthermore, for any r, r̂ ∈ B with r 6= r̂, we have
∥∥F [ r ] − F [ r̂ ]

∥∥
θ∥∥r − r̂

∥∥
θ

≤
2 eαT−ρ

α
(2eη + 2eη) < 1 , (III.53)

and F : B → B is a contraction. By the contraction mapping principle, F
has a unique fixed point in B which we denote S. Clearly, S =:

(
Sn(·)

)∞
n=0

is the unique (X ∩ Y )N0-valued smooth solution of (III.28) with initial value(
Sn(0)

)∞
n=0

=
(
Rn(H0)

)∞
n=0

. In particular,

iS1 ∈ C∞(
[0, T ];X∩Y

)
, iS1(t) = −iS∗

1(t) ∈ X , ‖S1(t)‖X∩Y ≤ 2 eη−ρ+αt ,
(III.54)

for all t ∈ [0, T ], defines a smooth family of bounded self-adjoint operators,
and thus

U̇t = −S1(t)Ut , U0 = 1 (III.55)

defines a smooth family U(·) ∈ C∞(
[0, T ] ; X ∩ Y

)
of unitary operators on

H . Equivalently to (III.55), the family U(·) is determined by U̇∗
t = U∗

t S1(t)
and U∗

0 = 1. Hence, we have the norm bound

‖U∗
t ‖Y ≤ exp

[ ∫ t

0

‖S1(τ)‖Y dτ

]
≤ exp

[
2eη−ρ+αt

α

]
≤ exp

[
e−α(T−t)

4

]
.

(III.56)
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Setting
Ht := UtH0 U

∗
t , (III.57)

we observe that H(·) ∈ C∞(
[0, T ];B[D ,H ]

)
is a smooth family of self-adjoint

operators defined on D obeying

‖HtA
−1‖X ≤ ‖H0A

−1‖X · ‖Ut‖Y ≤ 2 ‖H0A
−1‖X , (III.58)

for all t ∈ [0, T ]. (Here we use es/4 ≤ 2 for s ≤ 1.) Moreover, H(·) solves the
Cauchy Problem

Ḣt = [Ht , S1(t)] , H0 = H . (III.59)

We introduce the family Q := (Qn)n∈N ∈ C∞(
[0, T ]; (X ∩ Y )N0

)
by

∀n ∈ N0, t ∈ [0, T ] : Qn(t) = [Ht , Sn(t)] − Sn+1(t) . (III.60)

Note that the initial value vanishes, Qn(0) = 0, for all n ∈ N. We observe
that (suppressing the time parameter) by Leibniz’ rule and Jacobi’s identity

∂t[H,Sn] = [Ḣ, Sn] + [H, Ṡn] (III.61)

=
[
[H,S1], Sn

]
+

n∑

ν=1

(
n

ν

) [
H, [Sν+1, Sn−ν ]

]

=
[
[H,S1], Sn

]
+

n∑

ν=1

(
n

ν

) {[
[H,Sν+1], Sn−ν

]
+

[
Sν+1, [H,Sn−ν ]

]}
,

while, as in (III.34)

Ṡn+1 = [S2 , Sn] +
n∑

ν=1

(
n

ν

) (
[Sν+2 , Sn−ν ] + [Sν+1 , Sn−ν+1]

)
. (III.62)

Consequently,

Q̇n = [Q1 , Sn] +
n∑

ν=1

(
n

ν

) (
[Qν+1 , Sn−ν ] + [Sν+1 , Qn−ν ]

)
, (III.63)

which in turn implies that

‖Q̇n‖X∩Y

n!
≤ (III.64)

2
n∑

ν=0

(ν + 1)

{
‖Qν+1‖X∩Y

(ν + 1)!

‖Sn−ν‖X∩Y

(n− ν)!
+

‖Sν+1‖X∩Y

(ν + 1)!

‖Qn−ν‖X∩Y

(n− ν)!

}
.
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Now, an estimation as in (III.42), taking Qn(0) = 0 and ‖S‖θ ≤ 2eη into
account, yields

‖Q‖θ ≤ 4
eαT−ρ

α
‖S‖θ ‖Q‖θ ≤

eαT−ρ

α

8

e−η
‖Q‖θ . (III.65)

Since eαT−ρ

α
< e−η

8
, this estimate implies that ‖Q‖θ = 0, i.e.,

∀n ∈ N0, t ∈ [0, T ] : [Ht , Sn(t)] = Sn+1(t) . (III.66)

This in turn gives

Ṡ1 − Ṙ1 = [S2, A
−1] − [Ḣ, A−1] =

[
S2 − [H,S1] , A

−1
]

= 0 , (III.67)

hence S1(t) = R1(t) = [Ht, A
−1] and

Ḣt =
[
Ht , [Ht, A

−1]
]
, (III.68)

for all t > 0. In other words: H(·) is a smooth solution of the original evolu-
tion equation (III.23).

(ii) Let H̃(·) ∈ C∞(
[0, T ];B[D ,H ]

)
be another solution of (III.23), possibly

different from H(·) found in (i). We denote Rn := Rn(Ht), as before, and

R̃n := Rn(H̃t). According to Lemma 3, both R = (Rn)∞n=0 and R̃ = (R̃n)∞n=0

solve (III.28). By the uniqueness of its solution, due to the fact that F is a

contraction on B, we have R̃ = R and in particular R̃1 = R1 = S1. This, in
turn, implies that

Ḣ −
˙̃
H = [H,R1] − [H̃, R̃1] = [H − H̃ , S1] (III.69)

and hence

∥∥(Ḣ −
˙̃
H)A−1

∥∥
X

≤
∥∥(H − H̃)A−1

∥∥
X
‖S1‖Y + ‖S1‖X

∥∥(H − H̃)A−1
∥∥

X
.

(III.70)
It follows from T < T∗ = eρ−η−1/8 and (III.54) that

max
0≤t≤T

∥∥(Ht − H̃t)A
−1

∥∥
X

≤ 2T ‖S1‖X∩Y max
0≤t≤T

∥∥(H − H̃)A−1
∥∥

X

≤
1

2
max
0≤t≤T

∥∥(H − H̃)A−1
∥∥

X
, (III.71)

which finally implies H̃t = Ht, for all t ∈ [0, T ]. �
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IV Convergence on Hilbert-Schmidt Opera-

tors

In Sect. I it was assumed that H = H∗, A = A∗ ∈ Mat(N,C) are two self-
adjoint complex N ×N -matrices such that A ≥ 0.

We generalize this now and study Hilbert-Schmidt operatorsH = H∗, A =
A∗ ∈ L2[H ], with A ≥ 0, on a separable Hilbert space H . We define the
initial value H0 := H and study the flow equation

∀t > 0 : Ḣt := i[Ht, Gt], Gt := i[A,Ht]. (IV.72)

We use the fact proved in Section II that (IV.72) possesses a unique smooth
global solution H(·) ∈ C∞(

R
+
0 ;L2[H ]

)
. This follows from an application of

Theorem 1, taking into account that the norm ‖M‖hs =
√

Tr{M∗M} on
L2[H ] is unitarily invariant.

Lemma 6 Suppose H0 := H = H∗, A = A∗ ∈ L2[H ] are two self-adjoint
Hilbert-Schmidt operators on a separable Hilbert space H such that A ≥ 0,
and let H(·) ∈ C∞(

R
+
0 ;L2[H ]

)
be the unique solution of (IV.72). Then

lim
t→∞

i[A,Ht] = 0. (IV.73)

Proof: We introduce

∀t ≥ 0 : gt := −ḟt = Tr{G2
t} ≥ 0 (IV.74)

and observe that g is integrable, namely
∫ ∞

0

gt dt = f0 − f∞ ≤ f0. (IV.75)

The integrability of g alone, however, does not imply that g(t) → 0, as
t→ ∞, since g could in principle have arbitrarily high bumps which are, yet,
so narrow that they yield a small integral.

To conclude the convergence of g and then of H, we compute

ġ(t) = 2 Tr{Gt Ġt} = 2 Tr{Gt [iA, Ḣt]}

= 2 Tr{Ḣt [Gt, iA]} = 2 Tr{[iHt, Gt] [−iA,Gt]}

≤ 2 Tr{[i(Ht − A), Gt] [−iA,Gt]} ≤ 8 ‖A‖ f
1/2
0 gt. (IV.76)

By Grønwall’s Lemma, this differential inequality yields

gt

gs

≤ exp
(
8 ‖A‖ f

1/2
0 (t− s)

)
, (IV.77)
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for all t ≥ s ≥ 0. Applying this estimate to s := n ∈ N0 and t ∈ [n, n + 1],
we obtain ∞∑

n=0

gn ≤ e8‖A‖
√

f0

∫ ∞

0

gt dt ≤ f0 e
8‖A‖

√
f0 , (IV.78)

from which we conclude the existence of a constant C <∞, such that

gn ≤
C

n+ 1
. (IV.79)

Applying Estimate IV.77 again, but with t := n ∈ N and s ∈ [n − 1, n], we
obtain

∀ s ≥ 0 : gs ≤
C e8‖A‖

√
f0

s
, (IV.80)

and therefore, we arrive at the assertion thanks to

∀t ≥ 0 : Tr{[iA,Ht]
2} = gt ≤

C e8‖A‖
√

f0

t
. (IV.81)

�

In the next theorem we prove the convergence of Ht, as t → ∞, under
the additional assumption that A ≥ 0 has full rank. To be more explicit,
we assume that A =

∑∞
j=1 αjQj, where Qj = Q2

j = Q∗
j are orthogonal

projections of rank nj = Tr{Qj} ∈ N and α1 > α2 > . . . > 0, with Tr{A2} =∑∞
j=1 α

2
jnj <∞.

Theorem 7 Suppose H0 ≡ H = H∗, A = A∗ ∈ L2[H ] are two self-adjoint
Hilbert-Schmidt operators on a separable Hilbert space H such that A > 0
has full rank. Let H(·) ∈ C∞(

R
+
0 ;L2[H ]

)
be the unique solution of (IV.72).

Then
lim
t→∞

Ht =: H∞ (IV.82)

converges strongly on H , we have [H∞, A] = 0, and there exists a unitary
operator W ∈ B[H ] such that

H∞ = W H0 W
∗. (IV.83)

Proof: As mentioned above, we assume without loss of generality that A =∑∞
j=1 αjQj, where Qj = Q2

j = Q∗
j are orthogonal projections of rank nj =

Tr{Qj} ∈ N and α1 > α2 > . . . > 0, with Tr{A2} =
∑∞

j=1 α
2
jnj <∞.

We set α0 := ∞ and

κj := dist
[
αj , σ(A)\{αj}

]
= min

{
αj−1−αj , αj −αj+1

}
> 0, (IV.84)
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for all j ∈ N. We first observe, for j ∈ N, that due to (IV.74), we have

Tr{QjHtQ
⊥
j HtQj} =

∞∑

k=1

(
1 − δj,k

)
Tr{QjHtQkHtQj}

≤
1

κ2
j

∞∑

k,ℓ=1

Tr{QℓHtQkHtQℓ} (αℓ − αk)
2

=
1

κ2
j

Tr
{
[iA,Ht]

2
}

=
gt

κ2
j

, (IV.85)

which shows that the off-diagonal matrix blocks QjHtQ
⊥
j and Q⊥

j HtQj of Ht

tend to 0, as t→ ∞. Next, we prove the convergence of the diagonal matrix
blocks QjHtQj. To this end, we observe that, for 1 ≤ j <∞,

∥∥QjḢtQj

∥∥
L1[H ]

=
∥∥QjHtGtQj − QjGtHtQj

∥∥
L1[H ]

=
∥∥QjHtQ

⊥
j GtQj − QjGtQ

⊥
j HtQj

∥∥
L1[H ]

≤ 2
∥∥QjHtQ

⊥
j GtQj

∥∥
L1[H ]

= 2

∥∥∥∥
∞∑

k=1

QjHtQkHtQj (αj − αk)

∥∥∥∥
L1[H ]

≤ 2
∞∑

k=1

Tr{QjHtQkHtQj} |αj − αk|

≤
2

κj

∞∑

k,ℓ=1

Tr{QℓHtQkHtQℓ} (αℓ − αk)
2

=
2

κj

Tr
{
[iA,Ht]

2
}

=
2 gt

κj

, (IV.86)

using that QjGt = QjGtQ
⊥
j and QjHtQkHtQj ≥ 0, where the latter implies

that ‖QjHtQkHtQj‖L1[H ] = Tr{QjHtQkHtQj}. Since gt is integrable, so is

‖QjḢtQj‖L1[H ], which establishes the desired convergence of the diagonal
blocks QjHtQj in L1[H ]. It follows that Ht converges strongly, i.e., (IV.82).

We proceed to proving (IV.83). Given H∞ := limt→∞Ht, we invoke the
spectral theorem to obtain its spectral decomposition

H∞ =:
L∑

ℓ=1

λℓ Pℓ, (IV.87)

where λ1 < λ2 < · · · < λL are its eigenvalues and P1, P2, . . . , PL are its
spectral projections (possibly L = ∞), i.e., orthogonal projections Pℓ of rank
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nℓ ≥ 1 (possibly, nℓ = ∞, too). Choosing r > 0 sufficiently small, these
projections may be written as the Cauchy integral

Pℓ =
1

2πi

∫

|z|=r

dz

z −H∞
. (IV.88)

Next, define the simplex S := {(T, t) ∈ R
2|0 ≤ t ≤ T} and let (UT,t)T≥t≥0 ∈

C∞(
S;B[H ]

)
be the unique unitary solution of

∀T > t ≥ 0 : ∂TUT,t = −iGT UT,t, Ut,t = 1. (IV.89)

Note the cocyclicity UT,tUt,s = UT,s, for T ≥ t ≥ s ≥ 0. This property implies
that

∀T > t ≥ 0 : HT = UT,0H0 U
∗
T,0 = UT,tHt U

∗
T,t → H∞, (IV.90)

as T → ∞, from which we obtain

∀t ≥ 0 : lim
T→∞

{
U∗

T,tH∞ UT,t

}
= Ht. (IV.91)

We then define Pℓ(t) by

Pℓ(t) := 1
(
|Ht − λℓ| < r

)
=

1

2πi

∫

|z|=r

dz

z −Ht

, (IV.92)

for t > 0 and sufficiently small r > 0. Due to (IV.91), we have

Pℓ(t) = lim
T→∞

{
U∗

T,t Pℓ UT,t

}
. (IV.93)

In particular, the rank of Pℓ(t) is bounded by

rk{Pℓ(t)} ≤ nℓ. (IV.94)

Moreover,
L∑

ℓ=1

Pℓ(t) = lim
T→∞

{
U∗

T,t

( L∑

ℓ=1

Pℓ

)
UT,t

}
= 1. (IV.95)

Eqs. (IV.94) and (IV.95) yield rk{Pℓ(t)} = nℓ and hence

Ht =
L∑

ℓ=1

λℓ Pℓ(t) (IV.96)

is the spectral decomposition of Ht. For each ℓ, we can now pick orthonormal
bases {ϕn|1 ≤ n ≤ nℓ} and {ψn|1 ≤ n ≤ nℓ} of RanPℓ(0) and RanPℓ,
respectively. We then define a unitary W ∈ B[H ] by

∀n ≥ 1 : Wϕn := ψn, (IV.97)

and we clearly have
W H0W

∗ = H∞. (IV.98)

�



Brockett-Wegner Flow, 22-Jul-2009 20

References

[1] R. W. Brockett. Dynamical systems that sort lists, diagonalize matrices,
and solve linear programming problems. Linear Alg. Appl., 146:79–01,
1991.

[2] O. Caps. Evolution Equations in Scales of Banach Spaces. B.G. Teubner,
Stuttgart, Leipzig, Wiesbaden, 2002.

[3] P. Deift and L. C. Li. Generalized affine lie algebras and the solution of a
class of flows associated with the QR eigenvalue algorithm. Comm. Pure
Appl. Math., 42(7):963–991, 1989.

[4] P. Deift, L. C. Li, and C. Tomei. Toda flows with infinitely many vari-
ables. J. Func. Anal., 64(3):358–402, 1985.

[5] P. Deift, L. C. Li, and C. Tomei. Matrix factorizations and integrable
systems. Comm. Pure Appl. Math., 42(7):443–521, 1989.

[6] T. Kato. Abstract evolution equations, linear and quasilinear, revisited.
In H. Komatsu, editor, Functional Analysis and Related Topics, volume
1540 of Lecture Notes Math., pages 103–125. Springer (?), 1993.

[7] S. K. Kehrein. The Flow Equation Approach to Many-Particle Systems,
volume 217 of Springer Tracts in Modern Physics. Springer-Verlag, Hei-
delberg, 1 edition, 2006.

[8] J. Moser. A new technique for the construction of solutions of nonlinear
differential equations. Proc. Nat. Acad. Sci. USA, 47:1824–1831, 1961.

[9] F. Wegner. Flow equations for Hamiltonians. Ann. Phys. (Leipzig), 3:77,
1994.


