Thermal relaxation in a quantum cavity (Collaboration with C.A. Pillet)

L. Bruneau
Univ. Cergy-Pontoise

Mathematical models of Quantum Field Theory, Ecole Polytechnique, 07-08 December 2010

Open Systems

A "small" (or confined) system \mathcal{S} interacts with an environment \mathcal{R}.

Goal: understand the asymptotic $(t \rightarrow+\infty)$ behaviour of the system \mathcal{S} (asymptotic state, thermodynamical properties).

Open Systems

A "small" (or confined) system \mathcal{S} interacts with an environment \mathcal{R}.

Goal: understand the asymptotic $(t \rightarrow+\infty)$ behaviour of the system \mathcal{S} (asymptotic state, thermodynamical properties).
2 approaches: Hamiltonian / Markovian

- Hamiltonian: full description, spectral analysis, scattering theory. Restrictions: perturbative results, \mathcal{S} finite dimensional.
- Markovian: effective description of \mathcal{S}, obtained by weak-coupling type limits or if \mathcal{S} undergoes stochastic forces (Langevin equation).

Repeated Interaction Quantum Systems (RIQS)

Repeated Interaction Quantum Systems (RIQS)

Repeated Interaction Quantum Systems (RIQS)

Repeated Interaction Quantum Systems (RIQS)

Repeated Interaction Quantum Systems (RIQS)

A "small" system \mathcal{S} :

- Quantum system governed by some hamiltonian $H_{\mathcal{S}}$ acting on $\mathcal{H}_{\mathcal{S}}$.

Repeated Interaction Quantum Systems (RIQS)

A "small" system \mathcal{S} :

- Quantum system governed by some hamiltonian $H_{\mathcal{S}}$ acting on $\mathcal{H}_{\mathcal{S}}$. A chain \mathcal{C} of quantum sub-systems $\mathcal{E}_{k} \equiv \mathcal{E}(k=1,2, \ldots)$:
- $\mathcal{C}=\mathcal{E}+\mathcal{E}+\cdots$
- Each \mathcal{E}_{k} is governed by some hamiltonian $H_{\mathcal{E}, k}=H_{\mathcal{E}}$ acting on $\mathcal{H}_{\mathcal{E}}$.

Repeated Interaction Quantum Systems (RIQS)

A "small" system \mathcal{S} :

- Quantum system governed by some hamiltonian $H_{\mathcal{S}}$ acting on $\mathcal{H}_{\mathcal{S}}$. A chain \mathcal{C} of quantum sub-systems $\mathcal{E}_{k} \equiv \mathcal{E}(k=1,2, \ldots)$:
- $\mathcal{C}=\mathcal{E}+\mathcal{E}+\cdots$
- Each \mathcal{E}_{k} is governed by some hamiltonian $H_{\mathcal{E}, k}=H_{\mathcal{E}}$ acting on $\mathcal{H}_{\mathcal{E}}$. Interactions:
- Interaction operators $V_{k} \equiv V$ acting on $\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{E}}$.
- An interaction time $\tau>0$.

Repeated Interaction Quantum Systems (RIQS)

A "small" system \mathcal{S} :

- Quantum system governed by some hamiltonian $H_{\mathcal{S}}$ acting on $\mathcal{H}_{\mathcal{S}}$. A chain \mathcal{C} of quantum sub-systems $\mathcal{E}_{k} \equiv \mathcal{E}(k=1,2, \ldots)$:
- $\mathcal{C}=\mathcal{E}+\mathcal{E}+\cdots$
- Each \mathcal{E}_{k} is governed by some hamiltonian $H_{\mathcal{E}, k}=H_{\mathcal{E}}$ acting on $\mathcal{H}_{\mathcal{E}}$. Interactions:
- Interaction operators $V_{k} \equiv V$ acting on $\mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{E}}$.
- An interaction time $\tau>0$.

For $t \in[(n-1) \tau, n \tau[:$

- \mathcal{S} interacts with \mathcal{E}_{n},
- \mathcal{E}_{k} evolves freely for $k \neq n$,
i.e. the full system is governed by

$$
\widetilde{H_{n}}=H_{\mathcal{S}}+H_{\mathcal{E}, n}+V_{n}+\sum_{k \neq n} H_{\mathcal{E}, k}=H_{n}+\sum_{k \neq n} H_{\mathcal{E}, k} .
$$

Some motivations

(3) Physics: "One-atom masers" (Walther et al '85, Haroche et al '92)

- $\mathcal{S}=$ one mode of the electromagnetic field in a cavity.
- $\mathcal{E}_{k}=k$-th atom interacting with the field.
- \mathcal{C} : beam of atoms sent into the cavity.
(1) Physics: "One-atom masers" (Walther et al '85, Haroche et al '92)

- $\mathcal{S}=$ one mode of the electromagnetic field in a cavity.
- $\mathcal{E}_{k}=k$-th atom interacting with the field.
- \mathcal{C} : beam of atoms sent into the cavity.
(2) Mathematics: Because of their particular structure (they are both Hamiltonian and Markovian), develop our understanding of open quantum systems, e.g. small system of infinite dimension, large coupling constant.

Mathematical model of the one-atom maser

(1) The field in the cavity: (an harmonic oscillator)

$$
\mathcal{H}_{\mathcal{S}}=\Gamma_{s}(\mathbb{C}), \quad H_{\mathcal{S}}=\omega a^{*} a=\omega N
$$

Denote by $|n\rangle$ the eigenstates of $H_{\mathcal{S}}: H_{\mathcal{S}}|n\rangle=n \omega|n\rangle$.

Mathematical model of the one-atom maser

(1) The field in the cavity: (an harmonic oscillator)

$$
\mathcal{H}_{\mathcal{S}}=\Gamma_{s}(\mathbb{C}), \quad H_{\mathcal{S}}=\omega a^{*} a=\omega N
$$

Denote by $|n\rangle$ the eigenstates of $H_{\mathcal{S}}: H_{\mathcal{S}}|n\rangle=n \omega|n\rangle$.
(2) The atoms: 2-level atoms.

$$
\mathcal{H}_{\mathcal{E}}=\mathbb{C}^{2}, \quad H_{\mathcal{E}}=\left(\begin{array}{cc}
0 & 0 \\
0 & \omega_{0}
\end{array}\right) .
$$

We denote by $|-\rangle,|+\rangle$ the eigenstates of \mathcal{E}.

Mathematical model of the one-atom maser

(1) The field in the cavity: (an harmonic oscillator)

$$
\mathcal{H}_{\mathcal{S}}=\Gamma_{s}(\mathbb{C}), \quad H_{\mathcal{S}}=\omega a^{*} a=\omega N
$$

Denote by $|n\rangle$ the eigenstates of $H_{\mathcal{S}}: H_{\mathcal{S}}|n\rangle=n \omega|n\rangle$.
(2) The atoms: 2-level atoms.

$$
\mathcal{H}_{\mathcal{E}}=\mathbb{C}^{2}, \quad H_{\mathcal{E}}=\left(\begin{array}{cc}
0 & 0 \\
0 & \omega_{0}
\end{array}\right) .
$$

We denote by $|-\rangle,|+\rangle$ the eigenstates of \mathcal{E}.
If $b=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is the annihilation operator on $\mathbb{C}^{2}(b|+\rangle=|-\rangle$
and $b|-\rangle=0$), we have $H_{\mathcal{E}}=\omega_{0} b^{*} b$.

Mathematical model of the one-atom maser

(1) The field in the cavity: (an harmonic oscillator)

$$
\mathcal{H}_{\mathcal{S}}=\Gamma_{s}(\mathbb{C}), \quad H_{\mathcal{S}}=\omega a^{*} a=\omega N
$$

Denote by $|n\rangle$ the eigenstates of $H_{\mathcal{S}}: H_{\mathcal{S}}|n\rangle=n \omega|n\rangle$.
(2) The atoms: 2-level atoms.

$$
\mathcal{H}_{\mathcal{E}}=\mathbb{C}^{2}, \quad H_{\mathcal{E}}=\left(\begin{array}{cc}
0 & 0 \\
0 & \omega_{0}
\end{array}\right) .
$$

We denote by $|-\rangle,|+\rangle$ the eigenstates of \mathcal{E}.
If $b=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is the annihilation operator on $\mathbb{C}^{2}(b|+\rangle=|-\rangle$
and $b|-\rangle=0$), we have $H_{\mathcal{E}}=\omega_{0} b^{*} b$.
(3) The interaction: exchange process, i.e. $V=\frac{\lambda}{2}\left(a \otimes b^{*}+a^{*} \otimes b\right)$.

Mathematical model of the one-atom maser

(1) The field in the cavity: (an harmonic oscillator)

$$
\mathcal{H}_{\mathcal{S}}=\Gamma_{s}(\mathbb{C}), \quad H_{\mathcal{S}}=\omega a^{*} a=\omega N
$$

Denote by $|n\rangle$ the eigenstates of $H_{\mathcal{S}}: H_{\mathcal{S}}|n\rangle=n \omega|n\rangle$.
(2) The atoms: 2-level atoms.

$$
\mathcal{H}_{\mathcal{E}}=\mathbb{C}^{2}, \quad H_{\mathcal{E}}=\left(\begin{array}{cc}
0 & 0 \\
0 & \omega_{0}
\end{array}\right)
$$

We denote by $|-\rangle,|+\rangle$ the eigenstates of \mathcal{E}.
If $b=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ is the annihilation operator on $\mathbb{C}^{2}(b|+\rangle=|-\rangle$ and $b|-\rangle=0$), we have $H_{\mathcal{E}}=\omega_{0} b^{*} b$.
(3) The interaction: exchange process, i.e. $V=\frac{\lambda}{2}\left(a \otimes b^{*}+a^{*} \otimes b\right)$.

This is the Jaynes-Cummings hamiltonian (dipole interaction in the rotating-wave approximation).

The repeated interaction dynamics.
(1) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.

The repeated interaction dynamics.
(1) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.

The repeated interaction dynamics.
(1) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.
(3) Initial state of $\mathcal{E}: \rho_{\beta}=$ equilibrium state at temperature β^{-1}, i.e. $\rho_{\beta}=\frac{\mathrm{e}^{-\beta H_{\varepsilon}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta H}\right)}$.
(3) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.
(3) Initial state of $\mathcal{E}: \rho_{\beta}=$ equilibrium state at temperature β^{-1}, i.e.

$$
\rho_{\beta}=\frac{\mathrm{e}^{-\beta H_{\mathcal{E}}}}{\operatorname{Tr}\left(\mathrm{e}^{\left.-\beta H_{\mathcal{E}}\right)}\right.} .
$$

After 0 interaction, the state of the total system is
$\rho_{0}^{\mathrm{tot}}:=$

The repeated interaction dynamics.
(3) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.
(3) Initial state of $\mathcal{E}: \rho_{\beta}=$ equilibrium state at temperature β^{-1}, i.e.

$$
\rho_{\beta}=\frac{\mathrm{e}^{-\beta H_{\mathcal{E}}}}{\operatorname{Tr}\left(\mathrm{e}^{\left.-\beta H_{\mathcal{E}}\right)}\right.} .
$$

After 1 interaction, the state of the total system is

$$
\rho_{1}^{\mathrm{tot}}:=\quad \mathrm{e}^{-i \tau H_{1}}\left(\rho \otimes \bigotimes_{k \geq 1} \rho_{\beta}\right) \mathrm{e}^{i \tau H_{1}}
$$

The repeated interaction dynamics.
(3) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.
(3) Initial state of $\mathcal{E}: \rho_{\beta}=$ equilibrium state at temperature β^{-1}, i.e.

$$
\rho_{\beta}=\frac{\mathrm{e}^{-\beta H_{\mathcal{E}}}}{\operatorname{Tr}\left(\mathrm{e}^{\left.-\beta H_{\mathcal{E}}\right)}\right.} .
$$

After 2 interactions, the state of the total system is

$$
\rho_{2}^{\text {tot }}:=\quad \mathrm{e}^{-i \tau H_{2}} \mathrm{e}^{-i \tau H_{1}}\left(\rho \otimes \bigotimes_{k \geq 1} \rho_{\beta}\right) \mathrm{e}^{i \tau H_{1}} \mathrm{e}^{i \tau H_{2}}
$$

(3) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.
(3) Initial state of $\mathcal{E}: \rho_{\beta}=$ equilibrium state at temperature β^{-1}, i.e.

$$
\rho_{\beta}=\frac{\mathrm{e}^{-\beta H_{\mathcal{E}}}}{\operatorname{Tr}\left(\mathrm{e}^{\left.-\beta H_{\mathcal{E}}\right)}\right.} .
$$

After n interactions, the state of the total system is

$$
\rho_{n}^{\mathrm{tot}}:=\mathrm{e}^{-i \tau H_{n}} \cdots \mathrm{e}^{-i \tau H_{2}} \mathrm{e}^{-i \tau H_{1}}\left(\rho \otimes \bigotimes_{k \geq 1} \rho_{\beta}\right) \mathrm{e}^{i \tau H_{1}} \mathrm{e}^{i \tau H_{2}} \cdots \mathrm{e}^{i \tau H_{n}}
$$

The repeated interaction dynamics.

(1) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.
(3) Initial state of $\mathcal{E}: \rho_{\beta}=$ equilibrium state at temperature β^{-1}, i.e.

$$
\rho_{\beta}=\frac{\mathrm{e}^{-\beta H_{\mathcal{E}}}}{\operatorname{Tr}\left(\mathrm{e}^{\left.-\beta H_{\mathcal{E}}\right)}\right.} .
$$

After n interactions, the state of the total system is

$$
\rho_{n}^{\text {tot }}:=\mathrm{e}^{-i \tau H_{n}} \cdots \mathrm{e}^{-i \tau H_{2}} \mathrm{e}^{-i \tau H_{1}}\left(\rho \otimes \bigotimes_{k \geq 1} \rho_{\beta}\right) \mathrm{e}^{i \tau H_{1}} \mathrm{e}^{i \tau H_{2}} \cdots \mathrm{e}^{i \tau H_{n}}
$$

The state of the cavity is thus $\rho_{n}=\operatorname{Tr}_{\mathcal{C}}\left(\rho_{n}^{\text {tot }}\right)$, i.e. satisfies

$$
\forall A \in \mathcal{B}\left(\mathcal{H}_{\mathcal{S}}\right), \quad \operatorname{Tr}\left(\rho_{n}^{\text {tot }} A \otimes \mathbb{1}_{\mathcal{C}}\right)=\operatorname{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_{n} A\right)
$$

The repeated interaction dynamics.

(1) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.
(3) Initial state of $\mathcal{E}: \rho_{\beta}=$ equilibrium state at temperature β^{-1}, i.e.

$$
\rho_{\beta}=\frac{\mathrm{e}^{-\beta H_{\mathcal{E}}}}{\operatorname{Tr}\left(\mathrm{e}^{\left.-\beta H_{\mathcal{E}}\right)}\right.} .
$$

After n interactions, the state of the total system is

$$
\rho_{n}^{\mathrm{tot}}:=\mathrm{e}^{-i \tau H_{n}} \cdots \mathrm{e}^{-i \tau H_{2}} \mathrm{e}^{-i \tau H_{1}}\left(\rho \otimes \bigotimes_{k \geq 1} \rho_{\beta}\right) \mathrm{e}^{i \tau H_{1}} \mathrm{e}^{i \tau H_{2}} \cdots \mathrm{e}^{i \tau H_{n}}
$$

The state of the cavity is thus $\rho_{n}=\operatorname{Tr}_{\mathcal{C}}\left(\rho_{n}^{\text {tot }}\right)$, i.e. satisfies

$$
\forall A \in \mathcal{B}\left(\mathcal{H}_{\mathcal{S}}\right), \quad \operatorname{Tr}\left(\rho_{n}^{\text {tot }} A \otimes \mathbb{1}_{\mathcal{C}}\right)=\operatorname{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_{n} A\right)
$$

Question: Do we have return to equilibrium in the cavity?

$$
\lim _{n \rightarrow \infty} \rho_{n}=\frac{\mathrm{e}^{-\beta^{*} H_{\mathcal{S}}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta^{*} H_{\mathcal{S}}}\right)} ?
$$

The repeated interaction dynamics.

(1) Full Hamiltonian: $H=H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}}+\mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}}+V$.
(2) Initial state of \mathcal{S} : density matrix $\rho \in \mathcal{J}_{1}\left(\mathcal{H}_{\mathcal{S}}\right)$.
(3) Initial state of $\mathcal{E}: \rho_{\beta}=$ equilibrium state at temperature β^{-1}, i.e.

$$
\rho_{\beta}=\frac{\mathrm{e}^{-\beta H_{\mathcal{E}}}}{\operatorname{Tr}\left(\mathrm{e}^{\left.-\beta H_{\mathcal{E}}\right)}\right.} .
$$

After n interactions, the state of the total system is

$$
\rho_{n}^{\text {tot }}:=\mathrm{e}^{-i \tau H_{n}} \cdots \mathrm{e}^{-i \tau H_{2}} \mathrm{e}^{-i \tau H_{1}}\left(\rho \otimes \bigotimes_{k \geq 1} \rho_{\beta}\right) \mathrm{e}^{i \tau H_{1}} \mathrm{e}^{i \tau H_{2}} \cdots \mathrm{e}^{i \tau H_{n}}
$$

The state of the cavity is thus $\rho_{n}=\operatorname{Tr}_{\mathcal{C}}\left(\rho_{n}^{\text {tot }}\right)$, i.e. satisfies

$$
\forall A \in \mathcal{B}\left(\mathcal{H}_{\mathcal{S}}\right), \quad \operatorname{Tr}\left(\rho_{n}^{\text {tot }} A \otimes \mathbb{1}_{\mathcal{C}}\right)=\operatorname{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_{n} A\right)
$$

Question: Do we have return to equilibrium in the cavity? At which temperature?

$$
\lim _{n \rightarrow \infty} \rho_{n}=\frac{\mathrm{e}^{-\beta^{*} H_{s}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta^{*} H_{s}}\right)} ? \quad \beta^{*}=?
$$

If \mathcal{S} is in the state ρ before some interaction, right after it it is in the state

$$
\mathcal{L}_{\beta}(\rho):=\operatorname{Tr}_{\mathcal{E}}\left(\mathrm{e}^{-i \tau H} \rho \otimes \rho_{\beta} \mathrm{e}^{i \tau H}\right)
$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E}.

If \mathcal{S} is in the state ρ before some interaction, right after it it is in the state

$$
\mathcal{L}_{\beta}(\rho):=\operatorname{Tr}_{\mathcal{E}}\left(\mathrm{e}^{-i \tau H} \rho \otimes \rho_{\beta} \mathrm{e}^{i \tau H}\right)
$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E}.
The "repeated interaction" structure induces a markovian behaviour:

$$
\forall n, \quad \rho_{n}=\mathcal{L}_{\beta}\left(\rho_{n-1}\right)
$$

The reduced dynamics map

If \mathcal{S} is in the state ρ before some interaction, right after it it is in the state

$$
\mathcal{L}_{\beta}(\rho):=\operatorname{Tr}_{\mathcal{E}}\left(\mathrm{e}^{-i \tau H} \rho \otimes \rho_{\beta} \mathrm{e}^{i \tau H}\right),
$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E}.
The "repeated interaction" structure induces a markovian behaviour:

$$
\forall n, \quad \rho_{n}=\mathcal{L}_{\beta}\left(\rho_{n-1}\right) .
$$

Conclusion: we have to study $\lim _{n \rightarrow \infty} \mathcal{L}_{\beta}^{n}(\rho)$, and hence understand the spectrum of \mathcal{L}_{β}.

The reduced dynamics map

If \mathcal{S} is in the state ρ before some interaction, right after it it is in the state

$$
\mathcal{L}_{\beta}(\rho):=\operatorname{Tr}_{\mathcal{E}}\left(\mathrm{e}^{-i \tau H} \rho \otimes \rho_{\beta} \mathrm{e}^{i \tau H}\right),
$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E}.
The "repeated interaction" structure induces a markovian behaviour:

$$
\forall n, \quad \rho_{n}=\mathcal{L}_{\beta}\left(\rho_{n-1}\right) .
$$

Conclusion: we have to study $\lim _{n \rightarrow \infty} \mathcal{L}_{\beta}^{n}(\rho)$, and hence understand the spectrum of \mathcal{L}_{β}.
Remark: \mathcal{L}_{β} is trace preserving and completely positive.

The reduced dynamics map

If \mathcal{S} is in the state ρ before some interaction, right after it it is in the state

$$
\mathcal{L}_{\beta}(\rho):=\operatorname{Tr}_{\mathcal{E}}\left(\mathrm{e}^{-i \tau H} \rho \otimes \rho_{\beta} \mathrm{e}^{i \tau H}\right),
$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E}.
The "repeated interaction" structure induces a markovian behaviour:

$$
\forall n, \quad \rho_{n}=\mathcal{L}_{\beta}\left(\rho_{n-1}\right) .
$$

Conclusion: we have to study $\lim _{n \rightarrow \infty} \mathcal{L}_{\beta}^{n}(\rho)$, and hence understand the spectrum of \mathcal{L}_{β}.
Remark: \mathcal{L}_{β} is trace preserving and completely positive.
Main difficulty: Perturbation theory doesn't work.
When $\lambda=0, \mathcal{L}_{\beta}(\rho)=\mathrm{e}^{-i \tau H_{s}} \rho \mathrm{e}^{i \tau H_{s}}$. Hence $\operatorname{sp}\left(\mathcal{L}_{\beta}\right)=\left\{\mathrm{e}^{i \omega \tau(n-m)}, n, m \in \mathbb{Z}\right\}$: pure point spectrum, but all the eigenvalues, and in particular 1, are infinitely degenerate!

Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are n photons in the cavity, the probability for the atom to make a transition $|-\rangle \rightarrow|+\rangle$ is a periodic function of time

$$
\left.P(t)=\left|\langle n-1,+| \mathrm{e}^{-i t H}\right| n,-\right\rangle \left\lvert\,=\left(1-\frac{\Delta^{2}}{\nu_{n}^{2}}\right) \sin ^{2}\left(\frac{\nu_{n} t}{2}\right)\right.,
$$

with frequency

$$
\nu_{n}:=\sqrt{\lambda^{2} n+\left(\omega-\omega_{0}\right)^{2}}=\sqrt{\lambda^{2} n+\Delta^{2}} .
$$

($\lambda=1$-photon Rabi frequency in a cavity where $\Delta=0$).

If there are n photons in the cavity, the probability for the atom to make a transition $|-\rangle \rightarrow|+\rangle$ is a periodic function of time

$$
\left.P(t)=\left|\langle n-1,+| \mathrm{e}^{-i t H}\right| n,-\right\rangle \left\lvert\,=\left(1-\frac{\Delta^{2}}{\nu_{n}^{2}}\right) \sin ^{2}\left(\frac{\nu_{n} t}{2}\right)\right.,
$$

with frequency

$$
\nu_{n}:=\sqrt{\lambda^{2} n+\left(\omega-\omega_{0}\right)^{2}}=\sqrt{\lambda^{2} n+\Delta^{2}} .
$$

($\lambda=1$-photon Rabi frequency in a cavity where $\Delta=0$).
Conclusion: If the field is in state $|n\rangle$ before an interaction and τ is a multiple of the Rabi period $T_{n}:=\frac{2 \pi}{\nu_{n}}$, after this interaction it can not be in state $|n-1\rangle$: there is a decoupling between the "energy levels" $n-1$ and n.

Rabi resonances

$n>0$ is called a Rabi resonance if τ is a multiple of the period of an n-photon Rabi oscillation, i.e.

$$
\exists k \in \mathbb{N}, \tau=k \frac{2 \pi}{\nu_{n}}
$$

Rabi resonances

$n>0$ is called a Rabi resonance if τ is a multiple of the period of an n-photon Rabi oscillation, i.e.

$$
\exists k \in \mathbb{N}, \tau=k \frac{2 \pi}{\nu_{n}} \Longleftrightarrow \exists k \in \mathbb{N}, \xi n+\eta=k^{2}
$$

where $\xi=\left(\frac{\lambda \tau}{2 \pi}\right)^{2}, \eta=\left(\frac{\Delta \tau}{2 \pi}\right)^{2}$ with $\Delta=\omega-\omega_{0}$.
$n>0$ is called a Rabi resonance if τ is a multiple of the period of an n-photon Rabi oscillation, i.e.

$$
\exists k \in \mathbb{N}, \tau=k \frac{2 \pi}{\nu_{n}} \Longleftrightarrow \exists k \in \mathbb{N}, \xi n+\eta=k^{2}
$$

where $\xi=\left(\frac{\lambda \tau}{2 \pi}\right)^{2}, \eta=\left(\frac{\Delta \tau}{2 \pi}\right)^{2}$ with $\Delta=\omega-\omega_{0}$.
$R(\xi, \eta)=$ set of Rabi resonances. The cavity splits into independant "sectors" each time there is a resonance.
$n>0$ is called a Rabi resonance if τ is a multiple of the period of an n-photon Rabi oscillation, i.e.

$$
\exists k \in \mathbb{N}, \tau=k \frac{2 \pi}{\nu_{n}} \Longleftrightarrow \exists k \in \mathbb{N}, \xi n+\eta=k^{2}
$$

where $\xi=\left(\frac{\lambda \tau}{2 \pi}\right)^{2}, \eta=\left(\frac{\Delta \tau}{2 \pi}\right)^{2}$ with $\Delta=\omega-\omega_{0}$.
$R(\xi, \eta)=$ set of Rabi resonances. The cavity splits into independant "sectors" each time there is a resonance.

3 possible situations (depending on the arithmetic properties of ξ and η): $R(\xi, \eta)$ is empty, a singlet or infinite.
Generically: $R(\xi, \eta)$ is empty $=$ no resonance. We now restrict (for the talk) to this non-resonant situation.

Ergodicity and mixing (I)

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.
We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Ergodicity and mixing (I)

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.
We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called
(3) ergodic if for any $\mu \ll \rho \underset{N \rightarrow \infty}{\mathrm{w}-\lim _{N}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{\beta}^{n}(\mu)=\rho$,

Ergodicity and mixing (I)

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.
We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called
(3) ergodic if for any $\mu \ll \rho \underset{N \rightarrow \infty}{\mathrm{w}-\lim _{N}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{\beta}^{n}(\mu)=\rho$,
(2) mixing if for any $\mu \ll \rho \underset{n \rightarrow \infty}{ }-\lim _{\beta} \mathcal{L}_{\beta}^{n}(\mu)=\rho$.

Ergodicity and mixing (I)

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.
We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called
(3) ergodic if for any $\mu \ll \rho \underset{N \rightarrow \infty}{\mathrm{w}-\lim _{N}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{\beta}^{n}(\mu)=\rho$,
(2) mixing if for any $\mu \ll \rho \quad \mathrm{w}-\lim _{n \rightarrow \infty} \mathcal{L}_{\beta}^{n}(\mu)=\rho$.
(0 exponentially mixing if there exists $\alpha>0$ s.t. for any $\mu \ll \rho$, and any $A \in \mathcal{B}(\mathcal{H})$

$$
\left|\mathcal{L}_{\beta}^{n}(\mu)(A)-\rho(A)\right| \leq C_{A, \mu} \mathrm{e}^{-\alpha n}, \quad \forall n \in \mathbb{N} .
$$

Ergodicity and mixing (I)

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.
We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called
(3) ergodic if for any $\mu \ll \rho \underset{N \rightarrow \infty}{\mathrm{w}-\lim _{N}} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{\beta}^{n}(\mu)=\rho$,
(2) mixing if for any $\mu \ll \rho \quad \mathrm{w}-\lim _{n \rightarrow \infty} \mathcal{L}_{\beta}^{n}(\mu)=\rho$.
(0) exponentially mixing if there exists $\alpha>0$ s.t. for any $\mu \ll \rho$, and any $A \in \mathcal{B}(\mathcal{H})$

$$
\left|\mathcal{L}_{\beta}^{n}(\mu)(A)-\rho(A)\right| \leq C_{A, \mu} \mathrm{e}^{-\alpha n}, \quad \forall n \in \mathbb{N} .
$$

To understand the ergodic properties of \mathcal{L}_{β}, the main issue is to understand its peripheral spectrum, i.e. $\operatorname{sp}\left(\mathcal{L}_{\beta}\right) \cap S^{1}$. In particular, the invariant states are the possible ergodic states.

Spectral analysis of \mathcal{L}_{β}

(1) Use gauge symmetry: $\left[H, a^{*} a+b^{*} b\right]=\left[H_{\mathcal{E}}, \rho_{\beta}\right]=0$

$$
\Rightarrow \quad \mathcal{L}_{\beta}\left(\mathrm{e}^{-i \theta a^{*} a} X \mathrm{e}^{i \theta a^{*} a}\right)=\mathrm{e}^{-i \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{\mathrm{i} \theta a^{*} a} .
$$

Spectral analysis of \mathcal{L}_{β}

(3) Use gauge symmetry: $\left[H, a^{*} a+b^{*} b\right]=\left[H_{\mathcal{E}}, \rho_{\beta}\right]=0$

$$
\Rightarrow \quad \mathcal{L}_{\beta}\left(\mathrm{e}^{-i \theta a^{*} a} X \mathrm{e}^{i \theta a^{*} a}\right)=\mathrm{e}^{-i \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{i \theta a^{*} a}
$$

Corollary: the subspaces $E_{k}=\left\{\rho=\sum_{n} p_{n}|n+k\rangle\langle n|\right\}$ of \mathcal{J}_{1} are globally invariant.

Spectral analysis of \mathcal{L}_{β}

(1) Use gauge symmetry: $\left[H, a^{*} a+b^{*} b\right]=\left[H_{\mathcal{E}}, \rho_{\beta}\right]=0$

$$
\Rightarrow \quad \mathcal{L}_{\beta}\left(\mathrm{e}^{-i \theta a^{*} a} X \mathrm{e}^{i \theta a^{*} a}\right)=\mathrm{e}^{-i \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{i \theta a^{*} a}
$$

Corollary: the subspaces $E_{k}=\left\{\rho=\sum_{n} p_{n}|n+k\rangle\langle n|\right\}$ of \mathcal{J}_{1} are globally invariant.
(2) Action of \mathcal{L}_{β} on diagonal states, i.e. on E_{0}

Spectral analysis of \mathcal{L}_{β}

(1) Use gauge symmetry: $\left[H, a^{*} a+b^{*} b\right]=\left[H_{\mathcal{E}}, \rho_{\beta}\right]=0$

$$
\Rightarrow \quad \mathcal{L}_{\beta}\left(\mathrm{e}^{-i \theta a^{*} a} X \mathrm{e}^{i \theta a^{*} a}\right)=\mathrm{e}^{-i \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{i \theta a^{*} a}
$$

Corollary: the subspaces $E_{k}=\left\{\rho=\sum_{n} p_{n}|n+k\rangle\langle n|\right\}$ of \mathcal{J}_{1} are globally invariant.
(3) Action of \mathcal{L}_{β} on diagonal states, i.e. on E_{0} : with $(\nabla \rho)_{n}:=\rho_{n}-\rho_{n-1},\left(\nabla^{*} \rho\right)_{n}=\rho_{n}-\rho_{n+1}$ and $D(N)=\frac{1}{1+\mathrm{e}^{-\beta \omega_{0}}} \sin ^{2}(\pi \sqrt{\xi N+\eta}) \frac{\xi N}{\xi N+\eta}$, one has

$$
\mathcal{L}_{\beta}=\mathbb{1}-\nabla^{*} D(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N} .
$$

Spectral analysis of \mathcal{L}_{β}

(1) Use gauge symmetry: $\left[H, a^{*} a+b^{*} b\right]=\left[H_{\mathcal{E}}, \rho_{\beta}\right]=0$

$$
\Rightarrow \quad \mathcal{L}_{\beta}\left(\mathrm{e}^{-i \theta a^{*} a} X \mathrm{e}^{i \theta a^{*} a}\right)=\mathrm{e}^{-i \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{i \theta a^{*} a}
$$

Corollary: the subspaces $E_{k}=\left\{\rho=\sum_{n} p_{n}|n+k\rangle\langle n|\right\}$ of \mathcal{J}_{1} are globally invariant.
(2) Action of \mathcal{L}_{β} on diagonal states, i.e. on E_{0} : with $(\nabla \rho)_{n}:=\rho_{n}-\rho_{n-1},\left(\nabla^{*} \rho\right)_{n}=\rho_{n}-\rho_{n+1}$ and $D(N)=\frac{1}{1+\mathrm{e}^{-\beta \omega_{0}}} \sin ^{2}(\pi \sqrt{\xi N+\eta}) \frac{\xi N}{\xi N+\eta}$, one has

$$
\mathcal{L}_{\beta}=\mathbb{1}-\nabla^{*} D(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N} .
$$

$\Rightarrow \rho$ is invariant iff $\rho=C \mathrm{e}^{-\beta \omega_{0} N}=C \mathrm{e}^{-\beta^{*} H_{s}}$ where $\beta^{*}=\frac{\omega_{0}}{\omega} \beta$.

Spectral analysis of \mathcal{L}_{β}

(1) Use gauge symmetry: $\left[H, a^{*} a+b^{*} b\right]=\left[H_{\mathcal{E}}, \rho_{\beta}\right]=0$

$$
\Rightarrow \quad \mathcal{L}_{\beta}\left(\mathrm{e}^{-i \theta a^{*} \mathrm{a}} \mathrm{Xe}^{i \theta a^{*} a}\right)=\mathrm{e}^{-i \theta a^{*} a} \mathcal{L}_{\beta}(X) \mathrm{e}^{i \theta a^{*} a} .
$$

Corollary: the subspaces $E_{k}=\left\{\rho=\sum_{n} p_{n}|n+k\rangle\langle n|\right\}$ of \mathcal{J}_{1} are globally invariant.
(2) Action of \mathcal{L}_{β} on diagonal states, i.e. on E_{0} : with $(\nabla \rho)_{n}:=\rho_{n}-\rho_{n-1},\left(\nabla^{*} \rho\right)_{n}=\rho_{n}-\rho_{n+1}$ and $D(N)=\frac{1}{1+\mathrm{e}^{-\beta \omega_{0}}} \sin ^{2}(\pi \sqrt{\xi N+\eta}) \frac{\xi N}{\xi N+\eta}$, one has

$$
\mathcal{L}_{\beta}=\mathbb{1}-\nabla^{*} D(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N} .
$$

$\Rightarrow \rho$ is invariant iff $\rho=C \mathrm{e}^{-\beta \omega_{0} N}=\mathrm{C} \mathrm{e}^{-\beta^{*} H_{s}}$ where $\beta^{*}=\frac{\omega_{0}}{\omega} \beta$.
(3) A Perron-Frobenius type lemma (Shrader '2000) for completely positive maps on trace ideals \mathcal{J}_{p} :

$$
\mathcal{L}_{\beta}(X)=\mathrm{e}^{i \theta} X \Rightarrow \mathcal{L}_{\beta}(|X|)=|X| \text { where }|X|=\sqrt{X^{*} X}
$$

Ergodicity and mixing (II)

Proposition

If $R(\xi, \eta)=\emptyset$, 1 is the only eigenvalue of \mathcal{L}_{β} on S^{1} and it is simple. The unique invariant state is

$$
\rho_{\mathcal{S}}^{\beta^{*}}=\frac{\mathrm{e}^{-\beta^{*} H_{\mathcal{S}}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta^{*} H_{\mathcal{S}}}\right)} .
$$

Ergodicity and mixing (II)

Proposition

If $R(\xi, \eta)=\emptyset$, 1 is the only eigenvalue of \mathcal{L}_{β} on S^{1} and it is simple. The unique invariant state is

$$
\rho_{\mathcal{S}}^{\beta^{*}}=\frac{\mathrm{e}^{-\beta^{*} H_{\mathcal{S}}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta^{*} H_{\mathcal{S}}}\right)} .
$$

Theorem

If $R(\xi, \eta)=\emptyset, \rho_{\mathcal{S}}^{\beta^{*}}$ is ergodic, i.e. any initial state converges (weakly and in ergodic mean) to $\rho_{\mathcal{S}}^{\beta^{*}}$.

Ergodicity and mixing (II)

Proposition

If $R(\xi, \eta)=\emptyset, 1$ is the only eigenvalue of \mathcal{L}_{β} on S^{1} and it is simple. The unique invariant state is

$$
\rho_{\mathcal{S}}^{\beta^{*}}=\frac{\mathrm{e}^{-\beta^{*} H_{\mathcal{S}}}}{\operatorname{Tr}\left(\mathrm{e}^{-\beta^{*} H_{\mathcal{S}}}\right)} .
$$

Theorem

If $R(\xi, \eta)=\emptyset, \rho_{\mathcal{S}}^{\beta^{*}}$ is ergodic, i.e. any initial state converges (weakly and in ergodic mean) to $\rho_{\mathcal{S}}^{\beta^{*}}$.

Remarks:

1) There is a weak form of decoherence.
2) Numerically it seems that $\rho_{\mathcal{S}}^{\beta^{*}}$ is not only ergodic but also mixing.
3) If $R(\xi, \eta) \neq \emptyset$ the multiplicity of 1 increases (one invariant state per "sector").

Quasi-resonances

Recall: for diagonal states

$$
\mathcal{L}_{\beta}=\mathbb{1}-\nabla^{*} D(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}
$$

where $D(n)=\frac{1}{1+\mathrm{e}^{-\beta \omega_{0}}} \sin ^{2}(\pi \sqrt{\xi n+\eta}) \frac{\xi n}{\xi n+\eta}$.

Quasi-resonances

Recall: for diagonal states

$$
\mathcal{L}_{\beta}=\mathbb{1}-\nabla^{*} D(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}
$$

where $D(n)=\frac{1}{1+\mathrm{e}^{-\beta \omega_{0}}} \sin ^{2}(\pi \sqrt{\xi n+\eta}) \frac{\xi n}{\xi n+\eta}$.
We call $m \in \mathbb{N}^{*}$ a quasi-resonance if $D(m)<D(m \pm 1)$.

Quasi-resonances

Recall: for diagonal states

$$
\mathcal{L}_{\beta}=\mathbb{1}-\nabla^{*} D(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}
$$

where $D(n)=\frac{1}{1+\mathrm{e}^{-\beta \omega_{0}}} \sin ^{2}(\pi \sqrt{\xi n+\eta}) \frac{\xi n}{\xi n+\eta}$.
We call $m \in \mathbb{N}^{*}$ a quasi-resonance if $D(m)<D(m \pm 1)$.

If $\left(m_{k}\right)_{k}$ denotes the sequence of quasi-resonances, we have $D\left(m_{k}\right)=O\left(k^{-2}\right)$.

Metastable sates

Let $\mathcal{L}_{\beta}^{0}=\mathbb{1}-\nabla^{*} D_{0}(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}$ where

$$
D_{0}(n)= \begin{cases}0 & \text { if } n \in\left\{m_{1}, \ldots\right\} \\ D(n) & \text { otherwise }\end{cases}
$$

Metastable sates

Let $\mathcal{L}_{\beta}^{0}=\mathbb{1}-\nabla^{*} D_{0}(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}$ where

$$
D_{0}(n)= \begin{cases}0 & \text { if } n \in\left\{m_{1}, \ldots\right\} \\ D(n) & \text { otherwise }\end{cases}
$$

Then $\mathcal{L}_{\beta}=\mathcal{L}_{\beta}^{0}+\mathcal{T}$ where \mathcal{T} is of trace class and 1 is an infinitely degenerate eigenvalue of \mathcal{L}_{β}^{0}.
$\Rightarrow 1$ always belongs to the essential spectrum of \mathcal{L}_{β}.

Metastable sates

Let $\mathcal{L}_{\beta}^{0}=\mathbb{1}-\nabla^{*} D_{0}(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}$ where

$$
D_{0}(n)= \begin{cases}0 & \text { if } n \in\left\{m_{1}, \ldots\right\} \\ D(n) & \text { otherwise }\end{cases}
$$

Then $\mathcal{L}_{\beta}=\mathcal{L}_{\beta}^{0}+\mathcal{T}$ where \mathcal{T} is of trace class and 1 is an infinitely degenerate eigenvalue of \mathcal{L}_{β}^{0}.
$\Rightarrow 1$ always belongs to the essential spectrum of \mathcal{L}_{β}.
The eigenstates of \mathcal{L}_{β}^{0} are metastable states.
\Rightarrow There are infinitely many metastable states with arbitrarily large lifetimes. Hence we can not expect exponential mixing.

Figure: Cooling the cavity: 5000 interactions.

Figure: Cooling the cavity: 50000 interactions.

Some questions

(3) Prove mixing.
(2) Estimate on the mixing rate?
(Random interaction time \Rightarrow convergence is better?
(. Non-equilibrium situation?

