Thermal relaxation in a quantum cavity (Collaboration with C.A. Pillet)

L. Bruneau

Univ. Cergy-Pontoise

Mathematical models of Quantum Field Theory, Ecole Polytechnique, 07-08 December 2010

글 > : < 글 >

Open Systems

A "small" (or confined) system $\mathcal S$ interacts with an environment $\mathcal R$.

Goal: understand the asymptotic $(t \to +\infty)$ behaviour of the system S (asymptotic state, thermodynamical properties).

· 글 > · < 글 > · ·

Open Systems

A "small" (or confined) system $\mathcal S$ interacts with an environment $\mathcal R$.

Goal: understand the asymptotic $(t \to +\infty)$ behaviour of the system S (asymptotic state, thermodynamical properties).

2 approaches: Hamiltonian / Markovian

- Hamiltonian: full description, spectral analysis, scattering theory. Restrictions: perturbative results, S finite dimensional.
- Markovian: effective description of S, obtained by weak-coupling type limits or if S undergoes stochastic forces (Langevin equation).

L. Bruneau Thermal relaxation in a quantum cavity

'문▶' ★ 문▶

(B) < B)</p>

(B) < B)</p>

(E)

A "small" system \mathcal{S} :

• Quantum system governed by some hamiltonian $H_{\mathcal{S}}$ acting on $\mathcal{H}_{\mathcal{S}}$.

- A "small" system \mathcal{S} :
 - Quantum system governed by some hamiltonian H_S acting on \mathcal{H}_S .
- A chain C of quantum sub-systems $\mathcal{E}_k \equiv \mathcal{E}$ (k = 1, 2, ...):
 - $\mathcal{C} = \mathcal{E} + \mathcal{E} + \cdots$
 - Each \mathcal{E}_k is governed by some hamiltonian $H_{\mathcal{E},k} = H_{\mathcal{E}}$ acting on $\mathcal{H}_{\mathcal{E}}$.

A "small" system \mathcal{S} :

- Quantum system governed by some hamiltonian $H_{\mathcal{S}}$ acting on $\mathcal{H}_{\mathcal{S}}$.
- A chain C of quantum sub-systems $\mathcal{E}_k \equiv \mathcal{E} \ (k = 1, 2, ...)$:
 - $\mathcal{C} = \mathcal{E} + \mathcal{E} + \cdots$
- Each \mathcal{E}_k is governed by some hamiltonian $H_{\mathcal{E},k} = H_{\mathcal{E}}$ acting on $\mathcal{H}_{\mathcal{E}}$. Interactions:
 - Interaction operators $V_k \equiv V$ acting on $\mathcal{H}_S \otimes \mathcal{H}_{\mathcal{E}}$.
 - An interaction time $\tau > 0$.

ゆ ・ ・ ヨ ・ ・ ヨ ・ う へ ()

A "small" system \mathcal{S} :

- Quantum system governed by some hamiltonian $H_{\mathcal{S}}$ acting on $\mathcal{H}_{\mathcal{S}}$.
- A chain C of quantum sub-systems $\mathcal{E}_k \equiv \mathcal{E}$ (k = 1, 2, ...):
 - $\mathcal{C} = \mathcal{E} + \mathcal{E} + \cdots$

• Each \mathcal{E}_k is governed by some hamiltonian $H_{\mathcal{E},k} = H_{\mathcal{E}}$ acting on $\mathcal{H}_{\mathcal{E}}$. Interactions:

- Interaction operators $V_k \equiv V$ acting on $\mathcal{H}_S \otimes \mathcal{H}_{\mathcal{E}}$.
- An interaction time $\tau > 0$.

For $t \in [(n-1)\tau, n\tau[:$

- S interacts with \mathcal{E}_n ,
- \mathcal{E}_k evolves freely for $k \neq n$,
- i.e. the full system is governed by

$$\widetilde{H_n} = H_{\mathcal{S}} + H_{\mathcal{E},n} + V_n + \sum_{k \neq n} H_{\mathcal{E},k} = H_n + \sum_{k \neq n} H_{\mathcal{E},k}.$$

Some motivations

Physics: "One-atom masers" (Walther et al '85, Haroche et al '92)

- S= one mode of the electromagnetic field in a cavity.
- $\mathcal{E}_k = k$ -th atom interacting with the field.
- \mathcal{C} : beam of atoms sent into the cavity.

- ∢ ≣ →

......

Some motivations

Physics: "One-atom masers" (Walther et al '85, Haroche et al '92)

- S= one mode of the electromagnetic field in a cavity.
- $\mathcal{E}_k = k$ -th atom interacting with the field.
- \mathcal{C} : beam of atoms sent into the cavity.
- Mathematics: Because of their particular structure (they are both Hamiltonian and Markovian), develop our understanding of open quantum systems, e.g. small system of infinite dimension, large coupling constant.

• The field in the cavity: (an harmonic oscillator) $\mathcal{H}_{S} = \Gamma_{s}(\mathbb{C}), \quad \mathcal{H}_{S} = \omega a^{*}a = \omega N.$ Denote by $|n\rangle$ the eigenstates of $\mathcal{H}_{S}: \mathcal{H}_{S}|n\rangle = n\omega|n\rangle.$

∃ ► < ∃ ►</p>

The field in the cavity: (an harmonic oscillator) H_S = Γ_s(ℂ), H_S = ωa*a = ωN. Denote by |n⟩ the eigenstates of H_S: H_S|n⟩ = nω|n⟩.
The atoms: 2-level atoms. H_E = ℂ², H_E = (0 0 0 ω₀). We denote by |-⟩, |+⟩ the eigenstates of E.

The field in the cavity: (an harmonic oscillator) H_S = Γ_s(ℂ), H_S = ωa*a = ωN. Denote by |n⟩ the eigenstates of H_S: H_S|n⟩ = nω|n⟩.
The atoms: 2-level atoms. H_E = ℂ², H_E = (0 0 0 ω₀). We denote by |-⟩, |+⟩ the eigenstates of E. If b = (0 1 0 0) is the annihilation operator on ℂ² (b|+⟩ = |-⟩ and b|-⟩ = 0), we have H_E = ω₀b*b.

The field in the cavity: (an harmonic oscillator) H_S = Γ_s(ℂ), H_S = ωa*a = ωN. Denote by |n⟩ the eigenstates of H_S: H_S|n⟩ = nω|n⟩.
The atoms: 2-level atoms. H_ε = ℂ², H_ε = (0 0 0 ω₀). We denote by |-⟩, |+⟩ the eigenstates of ε. If b = (0 1 0 0) is the annihilation operator on ℂ² (b|+⟩ = |-⟩ and b|-⟩ = 0), we have H_ε = ω₀b*b.

• The interaction: exchange process, i.e. $V = \frac{\lambda}{2} (a \otimes b^* + a^* \otimes b)$.

> < 注) < 注) < 注) 二 注</p>

The field in the cavity: (an harmonic oscillator) $\mathcal{H}_{S} = \Gamma_{s}(\mathbb{C}), \quad \mathcal{H}_{S} = \omega a^{*}a = \omega N.$ Denote by $|n\rangle$ the eigenstates of H_S : $H_S|n\rangle = n\omega |n\rangle$. The atoms: 2-level atoms. $\mathcal{H}_{\mathcal{E}} = \mathbb{C}^2, \quad \mathcal{H}_{\mathcal{E}} = \left(egin{array}{cc} 0 & 0 \\ 0 & \omega_0 \end{array}
ight).$ We denote by $|-\rangle$, $|+\rangle$ the eigenstates of \mathcal{E} . If $b=\left(egin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}
ight)$ is the annihilation operator on \mathbb{C}^2 (b|+
angle=|angleand $b|-\rangle = 0$), we have $H_{\mathcal{E}} = \omega_0 b^* b$. Solution The interaction: exchange process, i.e. $V = \frac{\lambda}{2} (a \otimes b^* + a^* \otimes b)$. This is the Jaynes-Cummings hamiltonian (dipole interaction in the rotating-wave approximation).

• Full Hamiltonian:
$$H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$$
.

글 > : < 글 >

- Full Hamiltonian: $H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$.
- **Q** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.

- Full Hamiltonian: $H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of \mathcal{E} : ρ_{β} =equilibrium state at temperature β^{-1} , i.e. $\rho_{\beta} = \frac{e^{-\beta H_{\mathcal{E}}}}{\text{Tr}(e^{-\beta H_{\mathcal{E}}})}.$

- Full Hamiltonian: $H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of \mathcal{E} : ρ_{β} =equilibrium state at temperature β^{-1} , i.e. $\rho_{\beta} = \frac{e^{-\beta H_{\mathcal{E}}}}{\text{Tr}(e^{-\beta H_{\mathcal{E}}})}$.

After 0 interaction, the state of the total system is

$$ho_0^{ ext{tot}} :=
ho \otimes \bigotimes_{k \ge 1}
ho_{eta}$$

- Full Hamiltonian: $H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of \mathcal{E} : ρ_{β} =equilibrium state at temperature β^{-1} , i.e. $\rho_{\beta} = \frac{e^{-\beta H_{\mathcal{E}}}}{\text{Tr}(e^{-\beta H_{\mathcal{E}}})}$.

After 1 interaction, the state of the total system is

$$\rho_1^{\text{tot}} := e^{-i\tau H_1} \left(\rho \otimes \bigotimes_{k \ge 1} \rho_\beta\right) e^{i\tau H_1}$$

- Full Hamiltonian: $H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of \mathcal{E} : ρ_{β} =equilibrium state at temperature β^{-1} , i.e. $\rho_{\beta} = \frac{e^{-\beta H_{\mathcal{E}}}}{\text{Tr}(e^{-\beta H_{\mathcal{E}}})}$.

After 2 interactions, the state of the total system is

$$\rho_2^{\text{tot}} := \qquad e^{-i\tau H_2} e^{-i\tau H_1} \left(\rho \otimes \bigotimes_{k \ge 1} \rho_\beta \right) e^{i\tau H_1} e^{i\tau H_2}$$

- Full Hamiltonian: $H = H_S \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_S \otimes H_{\mathcal{E}} + V$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of \mathcal{E} : ρ_{β} =equilibrium state at temperature β^{-1} , i.e. $\rho_{\beta} = \frac{e^{-\beta H_{\mathcal{E}}}}{\text{Tr}(e^{-\beta H_{\mathcal{E}}})}$.

After n interactions, the state of the total system is

$$\rho_n^{\text{tot}} := e^{-i\tau H_n} \cdots e^{-i\tau H_2} e^{-i\tau H_1} \left(\rho \otimes \bigotimes_{k \ge 1} \rho_\beta \right) e^{i\tau H_1} e^{i\tau H_2} \cdots e^{i\tau H_n}.$$

- Full Hamiltonian: $H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of \mathcal{E} : $\rho_{\beta} =$ equilibrium state at temperature β^{-1} , i.e. $\rho_{\beta} = \frac{e^{-\beta H_{\mathcal{E}}}}{\text{Tr}(e^{-\beta H_{\mathcal{E}}})}$.

After n interactions, the state of the total system is

$$\rho_n^{\text{tot}} := e^{-i\tau H_n} \cdots e^{-i\tau H_2} e^{-i\tau H_1} \left(\rho \otimes \bigotimes_{\substack{k \ge 1 \\ k \ge 1}} \rho_\beta \right) e^{i\tau H_1} e^{i\tau H_2} \cdots e^{i\tau H_n}.$$

The state of the cavity is thus $\rho_n = \text{Tr}_{\mathcal{C}}(\rho_n^{\text{tot}})$, i.e. satisfies

$$\forall A \in \mathcal{B}(\mathcal{H}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho_n^{\mathrm{tot}} \; A \otimes 1\!\!\!1_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_n A\right).$$

- Full Hamiltonian: $H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of \mathcal{E} : ρ_{β} =equilibrium state at temperature β^{-1} , i.e. $\rho_{\beta} = \frac{e^{-\beta H_{\mathcal{E}}}}{\text{Tr}(e^{-\beta H_{\mathcal{E}}})}$.

After n interactions, the state of the total system is

$$\rho_n^{\text{tot}} := e^{-i\tau H_n} \cdots e^{-i\tau H_2} e^{-i\tau H_1} \left(\rho \otimes \bigotimes_{k \ge 1} \rho_\beta \right) e^{i\tau H_1} e^{i\tau H_2} \cdots e^{i\tau H_n}.$$

The state of the cavity is thus $\rho_n = \text{Tr}_{\mathcal{C}}(\rho_n^{\text{tot}})$, i.e. satisfies

$$\forall A \in \mathcal{B}(\mathcal{H}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho_n^{\mathrm{tot}} \; A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_n A\right).$$

Question: Do we have return to equilibrium in the cavity?

$$\lim_{n \to \infty} \rho_n = \frac{\mathrm{e}^{-\beta^* H_S}}{\mathrm{Tr}(\mathrm{e}^{-\beta^* H_S})} ?$$

ゆ く ヨ ト く ヨ ト う ら つ う つ

- Full Hamiltonian: $H = H_{\mathcal{S}} \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_{\mathcal{S}} \otimes H_{\mathcal{E}} + V$.
- **2** Initial state of S: density matrix $\rho \in \mathcal{J}_1(\mathcal{H}_S)$.
- Initial state of \mathcal{E} : ρ_{β} =equilibrium state at temperature β^{-1} , i.e. $\rho_{\beta} = \frac{e^{-\beta H_{\mathcal{E}}}}{\text{Tr}(e^{-\beta H_{\mathcal{E}}})}$.

After n interactions, the state of the total system is

$$\rho_n^{\text{tot}} := e^{-i\tau H_n} \cdots e^{-i\tau H_2} e^{-i\tau H_1} \left(\rho \otimes \bigotimes_{\substack{k \ge 1 \\ k \ge 1}} \rho_\beta \right) e^{i\tau H_1} e^{i\tau H_2} \cdots e^{i\tau H_n}.$$

The state of the cavity is thus $\rho_n = \text{Tr}_{\mathcal{C}}(\rho_n^{\text{tot}})$, i.e. satisfies

$$\forall A \in \mathcal{B}(\mathcal{H}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho_n^{\mathrm{tot}} \; A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{H}_{\mathcal{S}}}\left(\rho_n A\right).$$

Question: Do we have return to equilibrium in the cavity? At which temperature?

$$\lim_{n \to \infty} \rho_n = \frac{\mathrm{e}^{-\beta^* H_S}}{\mathrm{Tr}(\mathrm{e}^{-\beta^* H_S})} ? \qquad \beta^* = ?$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → � � �

The reduced dynamics map

If ${\mathcal S}$ is in the state ρ before some interaction, right after it it is in the state

$$\mathcal{L}_{\beta}(\rho) := \operatorname{Tr}_{\mathcal{E}} \left(\mathrm{e}^{-i\tau H} \rho \otimes \rho_{\beta} \, \mathrm{e}^{i\tau H} \right),$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E} .

글 > : < 글 >

$$\mathcal{L}_{\beta}(\rho) := \operatorname{Tr}_{\mathcal{E}} \left(\mathrm{e}^{-i\tau H} \rho \otimes \rho_{\beta} \, \mathrm{e}^{i\tau H} \right),$$

where $\mathrm{Tr}_{\mathcal{E}}$ denotes the partial trace over $\mathcal{E}.$ The "repeated interaction" structure induces a markovian behaviour:

 $\forall n, \quad \rho_n = \mathcal{L}_\beta(\rho_{n-1}).$

$$\mathcal{L}_{\beta}(\rho) := \operatorname{Tr}_{\mathcal{E}} \left(\mathrm{e}^{-i\tau H} \rho \otimes \rho_{\beta} \, \mathrm{e}^{i\tau H} \right),$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E} . The "repeated interaction" structure induces a markovian behaviour:

 $\forall n, \quad \rho_n = \mathcal{L}_\beta(\rho_{n-1}).$

Conclusion: we have to study $\lim_{n\to\infty} \mathcal{L}^n_\beta(\rho)$, and hence understand the spectrum of \mathcal{L}_β .

(E) (E) (E)

$$\mathcal{L}_{\beta}(\rho) := \operatorname{Tr}_{\mathcal{E}} \left(\mathrm{e}^{-i\tau H} \rho \otimes \rho_{\beta} \, \mathrm{e}^{i\tau H} \right),$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E} . The "repeated interaction" structure induces a markovian behaviour:

 $\forall n, \quad \rho_n = \mathcal{L}_\beta(\rho_{n-1}).$

Conclusion: we have to study $\lim_{n\to\infty} \mathcal{L}^n_\beta(\rho)$, and hence understand the spectrum of \mathcal{L}_β .

Remark: \mathcal{L}_{β} is trace preserving and completely positive.

$$\mathcal{L}_{\beta}(\rho) := \operatorname{Tr}_{\mathcal{E}} \left(\mathrm{e}^{-i\tau H} \rho \otimes \rho_{\beta} \, \mathrm{e}^{i\tau H} \right),$$

where $\operatorname{Tr}_{\mathcal{E}}$ denotes the partial trace over \mathcal{E} . The "repeated interaction" structure induces a markovian behaviour:

 $\forall n, \quad \rho_n = \mathcal{L}_\beta(\rho_{n-1}).$

Conclusion: we have to study $\lim_{n\to\infty} \mathcal{L}^n_\beta(\rho)$, and hence understand the spectrum of \mathcal{L}_β .

Remark: \mathcal{L}_{β} is trace preserving and completely positive.

Main difficulty: Perturbation theory doesn't work. When $\lambda = 0$, $\mathcal{L}_{\beta}(\rho) = e^{-i\tau H_{S}} \rho e^{i\tau H_{S}}$. Hence $\operatorname{sp}(\mathcal{L}_{\beta}) = \{e^{i\omega\tau(n-m)}, n, m \in \mathbb{Z}\}$: pure point spectrum, but all the eigenvalues, and in particular 1, are infinitely degenerate!

ゆ く ヨ ト く ヨ ト う ら つ う つ

Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are *n* photons in the cavity, the probability for the atom to make a transition $|-\rangle \rightarrow |+\rangle$ is a periodic function of time

$$P(t) = \left| \langle n - 1, + | e^{-itH} | n, - \rangle \right| = \left(1 - \frac{\Delta^2}{\nu_n^2} \right) \sin^2 \left(\frac{\nu_n t}{2} \right),$$

with frequency

$$\nu_n := \sqrt{\lambda^2 n + (\omega - \omega_0)^2} = \sqrt{\lambda^2 n + \Delta^2}.$$

 $(\lambda = 1$ -photon Rabi frequency in a cavity where $\Delta = 0)$.

▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ● ∽ Q @

Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are *n* photons in the cavity, the probability for the atom to make a transition $|-\rangle \rightarrow |+\rangle$ is a periodic function of time

$$P(t) = \left| \langle n - 1, + | e^{-itH} | n, - \rangle \right| = \left(1 - \frac{\Delta^2}{\nu_n^2} \right) \sin^2 \left(\frac{\nu_n t}{2} \right),$$

with frequency

$$u_n := \sqrt{\lambda^2 n + (\omega - \omega_0)^2} = \sqrt{\lambda^2 n + \Delta^2}.$$

 $(\lambda = 1$ -photon Rabi frequency in a cavity where $\Delta = 0$). Conclusion: If the field is in state $|n\rangle$ before an interaction and τ is a multiple of the Rabi period $T_n := \frac{2\pi}{\nu_n}$, after this interaction it can not be in state $|n-1\rangle$: there is a decoupling between the "energy levels" n-1 and n.

ゆ く ヨ ト く ヨ ト う ら つ う つ

$$\exists k \in \mathbb{N}, \ \tau = k \frac{2\pi}{\nu_n}$$

글 > - - 글 > - -

$$\exists k \in \mathbb{N}, \ \tau = k \frac{2\pi}{\nu_n} \Longleftrightarrow \exists k \in \mathbb{N}, \ \xi n + \eta = k^2.$$

where $\xi = \left(\frac{\lambda \tau}{2\pi}\right)^2$, $\eta = \left(\frac{\Delta \tau}{2\pi}\right)^2$ with $\Delta = \omega - \omega_0$.

$$\exists k \in \mathbb{N}, \ \tau = k \frac{2\pi}{\nu_n} \Longleftrightarrow \exists k \in \mathbb{N}, \ \xi n + \eta = k^2.$$

where $\xi = \left(\frac{\lambda \tau}{2\pi}\right)^2$, $\eta = \left(\frac{\Delta \tau}{2\pi}\right)^2$ with $\Delta = \omega - \omega_0$.

 $R(\xi, \eta) =$ set of Rabi resonances. The cavity splits into independent "sectors" each time there is a resonance.

$$\exists k \in \mathbb{N}, \ \tau = k \frac{2\pi}{\nu_n} \Longleftrightarrow \exists k \in \mathbb{N}, \ \xi n + \eta = k^2.$$

where $\xi = \left(\frac{\lambda \tau}{2\pi}\right)^2$, $\eta = \left(\frac{\Delta \tau}{2\pi}\right)^2$ with $\Delta = \omega - \omega_0$.

 $R(\xi, \eta) =$ set of Rabi resonances. The cavity splits into independent "sectors" each time there is a resonance.

3 possible situations (depending on the arithmetic properties of ξ and η): $R(\xi, \eta)$ is empty, a singlet or infinite.

Generically: $R(\xi, \eta)$ is empty = no resonance. We now restrict (for the talk) to this non-resonant situation.

→ □ → → 目 → → 目 → のへで

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.

We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.

We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called

• ergodic if for any
$$\mu \ll \rho$$
 w $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{\beta}^{n}(\mu) = \rho$,

A B > A B >

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.

We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called

• ergodic if for any
$$\mu \ll \rho$$
 w $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{\beta}^{n}(\mu) = \rho$,

• mixing if for any $\mu \ll \rho$ w $-\lim_{n \to \infty} \mathcal{L}^n_{\beta}(\mu) = \rho$.

通 とう きょう うちょう しょう

Λ1

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.

We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called

• ergodic if for any
$$\mu \ll \rho$$
 w $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{\beta}^{n}(\mu) = \rho$,

• mixing if for any
$$\mu \ll \rho$$
 w $-\lim_{n \to \infty} \mathcal{L}^n_{\beta}(\mu) = \rho$.

September 2 exponentially mixing if there exists α > 0 s.t. for any μ ≪ ρ, and any A ∈ B(H)

$$|\mathcal{L}^n_{eta}(\mu)(A) -
ho(A)| \leq C_{A,\mu} \mathrm{e}^{-lpha n}, \quad \forall n \in \mathbb{N}.$$

The support $s(\rho)$ of a state is the orthogonal projection on the closure of $\operatorname{Ran}(\rho)$.

We write $\mu \ll \rho$ when $s(\mu) \leq s(\rho)$ (equivalent of μ absolutely continuous w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called

• ergodic if for any
$$\mu \ll \rho$$
 w $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_{\beta}^{n}(\mu) = \rho$,

• mixing if for any
$$\mu \ll \rho$$
 w $-\lim_{n \to \infty} \mathcal{L}^n_{\beta}(\mu) = \rho$.

exponentially mixing if there exists α > 0 s.t. for any μ ≪ ρ, and any A ∈ B(H)

$$|\mathcal{L}_{\beta}^{n}(\mu)(A) - \rho(A)| \leq C_{A,\mu} \mathrm{e}^{-\alpha n}, \quad \forall n \in \mathbb{N}.$$

To understand the ergodic properties of \mathcal{L}_{β} , the main issue is to understand its peripheral spectrum, i.e. $\operatorname{sp}(\mathcal{L}_{\beta}) \cap S^1$. In particular, the invariant states are the possible ergodic states.

• Use gauge symmetry: $[H, a^*a + b^*b] = [H_{\mathcal{E}}, \rho_{\beta}] = 0$

$$\Rightarrow \quad \mathcal{L}_{\beta}(\mathrm{e}^{-i\theta a^{*}a}X\mathrm{e}^{i\theta a^{*}a}) = \mathrm{e}^{-i\theta a^{*}a}\mathcal{L}_{\beta}(X)\mathrm{e}^{i\theta a^{*}a}$$

▲目▶ ▲目▶ 三目 - 釣へ(や

• Use gauge symmetry: $[H, a^*a + b^*b] = [H_{\mathcal{E}}, \rho_{\beta}] = 0$

$$\Rightarrow \quad \mathcal{L}_{\beta}(\mathrm{e}^{-i\theta a^{*}a}X\mathrm{e}^{i\theta a^{*}a}) = \mathrm{e}^{-i\theta a^{*}a}\mathcal{L}_{\beta}(X)\mathrm{e}^{i\theta a^{*}a}$$

Corollary: the subspaces $E_k = \{\rho = \sum_n p_n | n + k \rangle \langle n | \}$ of \mathcal{J}_1 are

globally invariant.

• Use gauge symmetry: $[H, a^*a + b^*b] = [H_{\mathcal{E}}, \rho_{\beta}] = 0$

$$\Rightarrow \quad \mathcal{L}_{\beta}(\mathrm{e}^{-i\theta a^{*}a}X\mathrm{e}^{i\theta a^{*}a}) = \mathrm{e}^{-i\theta a^{*}a}\mathcal{L}_{\beta}(X)\mathrm{e}^{i\theta a^{*}a}.$$

Corollary: the subspaces $E_k = \{\rho = \sum_n p_n | n + k \rangle \langle n | \}$ of \mathcal{J}_1 are

globally invariant.

2 Action of \mathcal{L}_{β} on diagonal states, i.e. on E_0

• Use gauge symmetry: $[H, a^*a + b^*b] = [H_{\mathcal{E}}, \rho_{\beta}] = 0$

$$\Rightarrow \quad \mathcal{L}_{\beta}(\mathrm{e}^{-i\theta a^{*}a}X\mathrm{e}^{i\theta a^{*}a}) = \mathrm{e}^{-i\theta a^{*}a}\mathcal{L}_{\beta}(X)\mathrm{e}^{i\theta a^{*}a}.$$

Corollary: the subspaces $E_k = \{\rho = \sum_n p_n | n + k \rangle \langle n | \}$ of \mathcal{J}_1 are

globally invariant.

Action of
$$\mathcal{L}_{\beta}$$
 on diagonal states, i.e. on E_0 : with
$$(\nabla \rho)_n := \rho_n - \rho_{n-1}, \ (\nabla^* \rho)_n = \rho_n - \rho_{n+1} \text{ and}$$

$$D(N) = \frac{1}{1 + e^{-\beta\omega_0}} \sin^2(\pi \sqrt{\xi N + \eta}) \frac{\xi N}{\xi N + \eta}, \text{ one has}$$

$$\mathcal{L}_{\beta} = \mathbb{1} - \nabla^* D(N) \mathrm{e}^{-\beta \omega_0 N} \nabla \mathrm{e}^{\beta \omega_0 N}.$$

→ < 문 > < 문 > ... 문

• Use gauge symmetry: $[H, a^*a + b^*b] = [H_{\mathcal{E}}, \rho_{\beta}] = 0$

$$\Rightarrow \quad \mathcal{L}_{\beta}(\mathrm{e}^{-i\theta a^{*}a}X\mathrm{e}^{i\theta a^{*}a}) = \mathrm{e}^{-i\theta a^{*}a}\mathcal{L}_{\beta}(X)\mathrm{e}^{i\theta a^{*}a}.$$

Corollary: the subspaces $E_k = \{\rho = \sum_n p_n | n + k \rangle \langle n | \}$ of \mathcal{J}_1 are

globally invariant.

Action of
$$\mathcal{L}_{\beta}$$
 on diagonal states, i.e. on E_0 : with
$$(\nabla \rho)_n := \rho_n - \rho_{n-1}, \ (\nabla^* \rho)_n = \rho_n - \rho_{n+1} \text{ and}$$

$$D(N) = \frac{1}{1 + e^{-\beta\omega_0}} \sin^2(\pi \sqrt{\xi N + \eta}) \frac{\xi N}{\xi N + \eta}, \text{ one has}$$

 $\mathcal{L}_{\beta} = 1 - \nabla^* D(N) \mathrm{e}^{-\beta \omega_0 N} \nabla \mathrm{e}^{\beta \omega_0 N}.$

 $\Rightarrow \rho \text{ is invariant iff } \rho = C e^{-\beta \omega_0 N} = C e^{-\beta^* H_S} \text{ where } \beta^* = \frac{\omega_0}{\omega} \beta.$

□ ▶ ▲ 目 ▶ ▲ 目 ▶ ▲ 目 ● ○ ○ ○

• Use gauge symmetry: $[H, a^*a + b^*b] = [H_{\mathcal{E}}, \rho_{\beta}] = 0$

$$\Rightarrow \quad \mathcal{L}_{\beta}(\mathrm{e}^{-i\theta a^{*}a}X\mathrm{e}^{i\theta a^{*}a}) = \mathrm{e}^{-i\theta a^{*}a}\mathcal{L}_{\beta}(X)\mathrm{e}^{i\theta a^{*}a}$$

Corollary: the subspaces $E_k = \{\rho = \sum_n p_n | n + k \rangle \langle n | \}$ of \mathcal{J}_1 are

globally invariant.

Action of
$$\mathcal{L}_{\beta}$$
 on diagonal states, i.e. on E_0 : with
$$(\nabla \rho)_n := \rho_n - \rho_{n-1}, \ (\nabla^* \rho)_n = \rho_n - \rho_{n+1} \text{ and}$$

$$D(N) = \frac{1}{1 + e^{-\beta\omega_0}} \sin^2(\pi\sqrt{\xi N + \eta}) \frac{\xi N}{\xi N + \eta}, \text{ one has}$$

 $\mathcal{L}_{\beta} = 1 - \nabla^* D(N) \mathrm{e}^{-\beta \omega_0 N} \nabla \mathrm{e}^{\beta \omega_0 N}.$

 $\Rightarrow \rho$ is invariant iff $\rho = C e^{-\beta \omega_0 N} = C e^{-\beta^* H_S}$ where $\beta^* = \frac{\omega_0}{\omega} \beta$.

A Perron-Frobenius type lemma (Shrader '2000) for completely positive maps on trace ideals J_p:

$$\mathcal{L}_{\beta}(X) = \mathrm{e}^{i\theta}X \Rightarrow \mathcal{L}_{\beta}(|X|) = |X| \text{ where } |X| = \sqrt{X^*X}.$$

Proposition

If $R(\xi, \eta) = \emptyset$, 1 is the only eigenvalue of \mathcal{L}_{β} on S^1 and it is simple. The unique invariant state is

$$\rho_{\mathcal{S}}^{\beta^*} = \frac{\mathrm{e}^{-\beta^* H_{\mathcal{S}}}}{\mathrm{Tr}(\mathrm{e}^{-\beta^* H_{\mathcal{S}}})}$$

Proposition

If $R(\xi, \eta) = \emptyset$, 1 is the only eigenvalue of \mathcal{L}_{β} on S^1 and it is simple. The unique invariant state is

$$\rho_{\mathcal{S}}^{\beta^*} = \frac{\mathrm{e}^{-\beta^* H_{\mathcal{S}}}}{\mathrm{Tr}(\mathrm{e}^{-\beta^* H_{\mathcal{S}}})}$$

Theorem

If $R(\xi, \eta) = \emptyset$, $\rho_{S}^{\beta^{*}}$ is ergodic, i.e. any initial state converges (weakly and in ergodic mean) to $\rho_{S}^{\beta^{*}}$.

Proposition

If $R(\xi, \eta) = \emptyset$, 1 is the only eigenvalue of \mathcal{L}_{β} on S^1 and it is simple. The unique invariant state is

$$\rho_{\mathcal{S}}^{\beta^*} = \frac{\mathrm{e}^{-\beta^* H_{\mathcal{S}}}}{\mathrm{Tr}(\mathrm{e}^{-\beta^* H_{\mathcal{S}}})}$$

Theorem

If $R(\xi, \eta) = \emptyset$, $\rho_{S}^{\beta^{*}}$ is ergodic, i.e. any initial state converges (weakly and in ergodic mean) to $\rho_{S}^{\beta^{*}}$.

Remarks:

- 1) There is a weak form of decoherence.
- 2) Numerically it seems that $\rho_{S}^{\beta^{*}}$ is not only ergodic but also mixing.
- If R(ξ, η) ≠ Ø the multiplicity of 1 increases (one invariant state per "sector").

Quasi-resonances

Recall: for diagonal states

$$\mathcal{L}_{eta} = 1 -
abla^* D(N) \mathrm{e}^{-eta \omega_0 N}
abla \mathrm{e}^{eta \omega_0 N}$$

where $D(n) = \frac{1}{1+e^{-\beta\omega_0}} \sin^2(\pi\sqrt{\xi n + \eta}) \frac{\xi n}{\xi n + \eta}$.

★ E ► ★ E ► E

Quasi-resonances

Recall: for diagonal states

$$\mathcal{L}_{eta} = 1 -
abla^* D(N) \mathrm{e}^{-eta \omega_0 N}
abla \mathrm{e}^{eta \omega_0 N}$$

where $D(n) = \frac{1}{1 + e^{-\beta \omega_0}} \sin^2(\pi \sqrt{\xi n + \eta}) \frac{\xi n}{\xi n + \eta}$.

We call $m \in \mathbb{N}^*$ a quasi-resonance if $D(m) < D(m \pm 1)$.

(B) < B)</p>

Quasi-resonances

Recall: for diagonal states

$$\mathcal{L}_{eta} = 1 -
abla^* D(N) \mathrm{e}^{-eta \omega_0 N}
abla \mathrm{e}^{eta \omega_0 N}$$

where $D(n) = \frac{1}{1 + e^{-\beta\omega_0}} \sin^2(\pi \sqrt{\xi n + \eta}) \frac{\xi n}{\xi n + \eta}$.

We call $m \in \mathbb{N}^*$ a quasi-resonance if $D(m) < D(m \pm 1)$.

If $(m_k)_k$ denotes the sequence of quasi-resonances, we have $D(m_k) = O(k^{-2}).$

프 (프)

Let
$$\mathcal{L}^{0}_{\beta} = \mathbb{1} - \nabla^{*} D_{0}(N) \mathrm{e}^{-\beta \omega_{0} N} \nabla \mathrm{e}^{\beta \omega_{0} N}$$
 where
$$D_{0}(n) = \begin{cases} 0 & \text{if } n \in \{m_{1}, \ldots\}, \\ D(n) & \text{otherwise.} \end{cases}$$

문어 문

Let
$$\mathcal{L}^0_eta=1\!\!1-
abla^*D_0(N)\mathrm{e}^{-eta\omega_0N}
abla\mathrm{e}^{eta\omega_0N}$$
 where

$$D_0(n) = \begin{cases} 0 & \text{if } n \in \{m_1, \ldots\}, \\ D(n) & \text{otherwise.} \end{cases}$$

Then $\mathcal{L}_{\beta} = \mathcal{L}_{\beta}^{0} + \mathcal{T}$ where \mathcal{T} is of trace class and 1 is an infinitely degenerate eigenvalue of \mathcal{L}_{β}^{0} .

 \Rightarrow 1 always belongs to the essential spectrum of \mathcal{L}_{β} .

Let
$$\mathcal{L}^0_eta=1\!\!1-
abla^*D_0(N)\mathrm{e}^{-eta\omega_0N}
abla\mathrm{e}^{eta\omega_0N}$$
 where

$$D_0(n) = \begin{cases} 0 & \text{if } n \in \{m_1, \ldots\}, \\ D(n) & \text{otherwise.} \end{cases}$$

Then $\mathcal{L}_{\beta} = \mathcal{L}_{\beta}^{0} + \mathcal{T}$ where \mathcal{T} is of trace class and 1 is an infinitely degenerate eigenvalue of \mathcal{L}_{β}^{0} .

 \Rightarrow 1 always belongs to the essential spectrum of \mathcal{L}_{β} .

The eigenstates of \mathcal{L}^0_{β} are metastable states.

 \Rightarrow There are infinitely many metastable states with arbitrarily large lifetimes. Hence we can not expect exponential mixing.

Figure: Cooling the cavity: 5000 interactions.

2

э

Figure: Cooling the cavity: 50000 interactions.

문어 문

- Prove mixing.
- Stimate on the mixing rate?
- Solution Random interaction time \Rightarrow convergence is better?
- Non-equilibrium situation?

프 > - * 프 >