

Recent progress in bound-state QED: from light elements to super-heavy ones

Paul Indelicato

Mathematical models of Quantum Field Theory

Centre de Mathématiques Appliquées, École Polytechnique

décembre 2010 (Palaiseau)

Topics

- Introduction
- Principe of Bound-state QED
 - Dirac equation
 - Field operators
 - Gell-Mann and Low theorem and perturbation expansion
 - Two-time green function
 - Mixing QED and relativistic perturbation theory
 - Renormalisation
- Numerical methods
 - Exact coulomb Green function
 - Integration techniques
- Recent experimental results
- The hydrogen/muonic hydrogen puzzle
- Super-Heavy elements
- Conclusion

23/06/2010

- One-electron QED corrections
 - One electron ions: $nl \rightarrow 1s$ transitions are the most sensitive
 - Two-loop effects checked only in light elements and lithium-like systems
- Two-electron QED corrections
 - Much more difficult to evaluate (same as one-electron, plus twoelectron correlation and combined QED-correlation)
 - Most advanced on the experimental and theoretical side are three-electron ions (Storage rings, dielectronic resonance, free electron lasers...)
 - Helium fine structure is now better understood

23/06/2010

08/12/2010

Starting point

Dirac Equation

Relativistic Wave Equation for one Fermion in an electro-magnetic potential (ϕ, \vec{A}) :

$$i\hbar \frac{\partial}{\partial t}\psi = [c\vec{\alpha}(\vec{p} - q\vec{A}) + q\phi + \beta mc^2]\psi$$

where

$$eta = \left(egin{array}{cc} I & 0 \ 0 & -I \end{array}
ight), \ \ ec lpha = \left(egin{array}{cc} 0 & ec lpha \ ec \sigma & 0 \end{array}
ight)$$

are called Dirac matrices.

They obey anti-commutation relations

$$eta lpha^i + lpha^i eta = 0, \quad eta^2 = 1, \quad lpha^i lpha^j + lpha^j lpha^i = -2\delta_{ij}$$

08/12/2010

$$\psi(x) = \sum_{E_n > 0} a_n e^{-iE_n t} \phi_n(\vec{x}) + \sum_{E_m < 0} b_m^{\dagger} e^{iE_n t} \phi_m(\vec{x})$$

- ϕ_n are solutions of the Dirac equation $h_0\phi_n = E_n\phi_n$
- a_n is the electron annihilation operator for an electron in state n ($E_n > 0$)
- b_n^{\dagger} is the positron creation operator for a positron in state m ($E_m < 0$)
- Because we are dealing with fermions, these operators anti-commute $\{a_n, a_m^{\dagger}\} = \delta_{nm}; \{a_n, a_m\} = 0, \ldots$
- An unperturbed state is obtained by having a creation operator acting on the vacuum: $|n\rangle = a_n^{\dagger} |0\rangle$ while annihilation operators destroy the vacuum: $a_n |0\rangle = 0$

Perturbation potential switched off at $t = \pm \infty$.

 $V_{\epsilon,g} = gH_I e^{-\epsilon|t|},$

and

$$H_I = j^{\mu} A_{\mu} - \frac{\delta}{\delta} M(x),$$

- $j^{\mu} = -e \bar{\psi}(x) \gamma^{\mu} \psi(x)$ is the 4-current
- $\delta M(x) = \delta m \bar{\psi}(x) \psi(x)$ is the mass counter-term
- A_µ is the photon 4-vector potential

The adiabatic evolution operator transform the wave function at t_1 into one at t_2

$$U_{\epsilon,g}\left(t_{1},t_{2}\right)=Te^{-i\int_{t_{1}}^{t_{2}}dtV_{\epsilon,g}\left(t\right)}.$$

where T is the time ordering operator.

____LKB

- The adiabatic *S*-matrix is defined as $S_{\epsilon,g} = \lim_{t\to\infty} U_{\epsilon,g}(-t,t)$
- The energy shift is given by the Gell-Mann and Low theorem

$$\Delta E_{N_p} = \lim_{\substack{\epsilon \to 0 \\ g \to 1}} \frac{i\epsilon g}{2} \frac{\partial}{\partial g} \log \langle N_p; 0 | S_{\epsilon,g} | N_p; 0 \rangle$$

for a *p*-electron state with no real photons

- the logarithmic derivative diverges as $1/\epsilon$ as do the norm of the exact wave function
- Gell-Mann and Low say that the energy shift is still well defined

The S-matrix can be expanded in power of g.

$$\begin{split} g \frac{\partial}{\partial g} \log \left\langle S_{\epsilon,g} \right\rangle \Big|_{g=1} &= \frac{\left\langle S_{\epsilon,1}^{(1)} \right\rangle + 2 \left\langle S_{\epsilon,1}^{(2)} \right\rangle + 3 \left\langle S_{\epsilon,1}^{(3)} \right\rangle + \cdots}{1 + \left\langle S_{\epsilon,1}^{(1)} \right\rangle + \left\langle S_{\epsilon,1}^{(2)} \right\rangle + \left\langle S_{\epsilon,1}^{(3)} \right\rangle + \cdots} \\ &= \left\langle S_{\epsilon,1}^{(1)} \right\rangle + 2 \left\langle S_{\epsilon,1}^{(2)} \right\rangle - \left\langle S_{\epsilon,1}^{(1)} \right\rangle^2 + 3 \left\langle S_{\epsilon,1}^{(3)} \right\rangle - 3 \left\langle S_{\epsilon,1}^{(1)} \right\rangle \left\langle S_{\epsilon,1}^{(2)} \right\rangle + \left\langle S_{\epsilon,1}^{(1)} \right\rangle^3 \\ &+ 4 \left\langle S_{\epsilon,1}^{(4)} \right\rangle - 4 \left\langle S_{\epsilon,1}^{(1)} \right\rangle \left\langle S_{\epsilon,1}^{(3)} \right\rangle - 2 \left\langle S_{\epsilon,1}^{(2)} \right\rangle^2 + 4 \left\langle S_{\epsilon,1}^{(1)} \right\rangle^2 \left\langle S_{\epsilon,1}^{(2)} \right\rangle - \left\langle S_{\epsilon,1}^{(1)} \right\rangle^4 \end{split}$$

where

$$\begin{cases} S_{\epsilon,1}^{(j)} \rangle &= \langle N_p; 0 | S_{\epsilon,1}^{(j)} | N_p; 0 \rangle \\ \langle S_{\epsilon,g} \rangle &= \langle N_p; 0 | S_{\epsilon,g} | N_p; 0 \rangle \end{cases}$$

08/12/2010

From the definition of the S-matrix and of the evolution operator one obtains

$$S_{\epsilon,g}^{(j)} = \frac{(-ig)^{j}}{j!} \int d^{4}x_{j} \dots \int d^{4}x_{1} e^{-\epsilon |t_{j}|} \dots e^{-\epsilon |t_{1}|} T \left[H_{I}(x_{j}) \dots H_{I}(x_{1}) \right]$$

Using Wick's theorem it is possible to re-express all contributions in term of Vacuum expectation values

$$\begin{split} T\left[\psi\left(x\right)\psi\left(y\right)\right] &= :\psi\left(x\right)\psi\left(y\right): + \left\langle 0\right|T\left[\psi\left(x\right)\psi\left(y\right)\right]\left|0\right\rangle =:\psi\left(x\right)\psi\left(y\right):,\\ T\left[\bar{\psi}\left(x\right)\bar{\psi}\left(y\right)\right] &= :\bar{\psi}\left(x\right)\bar{\psi}\left(y\right): + \left\langle 0\right|T\left[\bar{\psi}\left(x\right)\bar{\psi}\left(y\right)\right]\left|0\right\rangle =:\bar{\psi}\left(x\right)\bar{\psi}\left(y\right):,\\ T\left[\psi\left(x\right)\bar{\psi}\left(y\right)\right] &= :\psi\left(x\right)\bar{\psi}\left(y\right): + \left\langle 0\right|T\left[\psi\left(x\right)\bar{\psi}\left(y\right)\right]\left|0\right\rangle,\\ T\left[\bar{\psi}\left(x\right)\psi\left(y\right)\right] &= :\bar{\psi}\left(x\right)\psi\left(y\right): + \left\langle 0\right|T\left[\psi\left(x\right)\bar{\psi}\left(y\right)\right]\left|0\right\rangle,\\ \end{split}$$

The propagator is expressed in term of vacuum expectation value of $T\left[\psi\left(x\right)\bar{\psi}\left(y
ight)
ight]$ as

 $S_{F}(x, y) = \langle 0 | T \left[\psi(x) \overline{\psi}(y) \right] | 0 \rangle$

Vacuum Polarization

H-like "One Photon" order (α/π)

08/12/2010

H-like "Two Photon" order $(\alpha/\pi)^2$

08/12/2010

The two-time Green's function method

Almost degenerate states

Almost-degenerate states of "bound-state QED" (e.g., $2s - 2p_{1/2}$ and $2s - 2p_{3/2}$, separated by an energy of order $(Z\alpha)^4$) can be handled by the two-time Green's function method.¹ There is only one other method that works for this case and that we are aware of. [Lindgren]

Effective hamiltonian We construct a finite-sized effective hamiltonian on the set of almostdegenerate states. The effective hamiltonian includes in principle all the QED effects exactly. The effective hamiltonian is built from Green's functions (= propagators = correlation functions):

22/06/2010

Alternative methods: two-times Green function

How to find the position of the poles for an isolated level

Useful mathematical identity...

If g(E) has a single pole at E_0 , then we can recover the position of the pole from g itself:

... generalized to almost-degenerate levels

22/06/2010

"Screening of S.E. and V. P."

23/06/2010

"Screening of S.E. and V. P."

 \rightarrow RMBPT or MCDF (1/Z expansion!)

→Non Radiative QED (no Hamiltonian or potential form!)

Non Radiative QED (QED correction to correlation and projection operators...)

Auger shift for auto-ionizing states

23/06/2010

• Each contribution to the S-matrix can be decomposed in Feynman diagrams.

Signification of the Feynman diagrams for self-energy.

The Energy shift is given by

$$\Delta E_n = \frac{\alpha}{2\pi i} \int_C dz \int d\vec{x}_2 \int d\vec{x}_1 \phi_n^{\dagger}(\vec{x}_2) \alpha_{\mu} G(\vec{x}_2, \vec{x}_1, z) \alpha^{\mu} \phi_n(\vec{x}_1) \frac{e^{-bx_{21}}}{x_{21}} - \delta m \int d\vec{x} \phi_n^{\dagger}(\vec{x}) \beta \phi_n(\vec{x}),$$

where $b = -i \left[(E_n - z)^2 \right]^{1/2}$, $\operatorname{Re}(b) > 0$, and $\vec{x}_{21} = \vec{x}_2 - \vec{x}_1$ The photon propagator $\frac{1}{x_{21}} \times e^{-bx_{21}}$ is just the Coulomb potential with a retardation term (speed of light is finite!)

08/12/2010

• Until 1974, expansion of the propagator was the rule

$$E_{\rm SE}^{(2)} = \frac{\alpha}{\pi} \frac{(Z\alpha)^4}{n^3} F(Z\alpha) m_{\rm e} c^2,$$
(19)

where

$$F(Z\alpha) = A_{41} \ln(Z\alpha)^{-2} + A_{40} + A_{50}(Z\alpha) + A_{62}(Z\alpha)^2 \ln^2(Z\alpha)^{-2} + A_{61}(Z\alpha)^2 \ln(Z\alpha)^{-2} + G_{SE}(Z\alpha)(Z\alpha)^2.$$
(20)

23/06/2010

• Does not work at high-Z

08/12/2010

FIG. 3. The contour C_F and the singularities of the integrand in the complex z-plane. The points to the left of z = +1 represent the bound-state poles; E_n is the ground-state energy in this diagram.

Singularities

08/12/2010

Singularities

FIG. 4. The new contour in the complex z-plane

08/12/2010

Singularities

08/12/2010

_**∕**_lkb

Singularities

FIG. 5. The complex z-plane with the singularities of the integrand in Eq. (3.2). In the upper diagram, the branch points of b are at $E_n \pm (-i\epsilon)^{1/2}$. As $\epsilon \to 0+$, the branch points meet at E_n . In the lower diagram, the cuts, which are drawn to insure $\operatorname{Re}(b) > 0$, meet at E_n and extend along the real z-axis. In this diagram $z_1 = z_2 = 0$.

08/12/2010

_**∕**_LKB

 ΔE_{SE} is decomposed in a sum $\Delta E_L + \Delta E_H$

$$\begin{split} \Delta E_L &= \frac{\alpha}{\pi} E_n - \frac{\alpha}{\pi} P \int_0^{E_n} dz \int d\vec{x}_2 \int d\vec{x}_1 \phi_n^{\dagger}(\vec{x}_2) \alpha^l G(\vec{x}_2, \vec{x}_1, z) \alpha^m \\ & \times \phi_n(\vec{x}_1) (\delta_{lm} \vec{\nabla}_2 \cdot \vec{\nabla}_1 - \nabla_2^l \nabla_1^m) \frac{\sin[(E_n - z)x_{21}]}{(E_n - z)^2 x_{21}} \end{split}$$

and

$$\begin{split} \Delta E_H &= \frac{\alpha}{2\pi i} \int_{C_H} dz \int d\vec{x}_2 \int d\vec{x}_1 \phi_n^{\dagger}(\vec{x}_2) \alpha_{\mu} G(\vec{x}_2, \vec{x}_1, z) \alpha^{\mu} \phi_n(\vec{x}_1) \frac{e^{-bx_{21}}}{x_{21}} \\ &- \delta m \int d\vec{x} \phi_n^{\dagger}(\vec{x}) \beta \phi_n(\vec{x}) \end{split}$$

08/12/2010

_∕∕_lkb

 ΔE_{SE} is decomposed in a sum $\Delta E_L + \Delta E_H$

$$\begin{split} \Delta E_L &= \frac{\alpha}{\pi} E_n - \frac{\alpha}{\pi} P \int_0^{E_n} dz \int d\vec{x}_2 \int d\vec{x}_1 \phi_n^{\dagger}(\vec{x}_2) \alpha^l G(\vec{x}_2, \vec{x}_1, z) \alpha^m \\ & \times \phi_n(\vec{x}_1) (\delta_{lm} \vec{\nabla}_2 \cdot \vec{\nabla}_1 - \nabla_2^l \nabla_1^m) \frac{\sin[(E_n - z)x_{21}]}{(E_n - z)^2 x_{21}} \end{split}$$

and No IR divergence if in Coulomb gauge

$$\begin{split} \Delta E_H &= \frac{\alpha}{2\pi i} \int_{C_H} dz \int d\vec{x}_2 \int d\vec{x}_1 \phi_n^{\dagger}(\vec{x}_2) \alpha_{\mu} G(\vec{x}_2, \vec{x}_1, z) \alpha^{\mu} \phi_n(\vec{x}_1) \frac{e^{-bx_{21}}}{x_{21}} \\ &- \delta m \int d\vec{x} \phi_n^{\dagger}(\vec{x}) \beta \phi_n(\vec{x}) \end{split}$$

_**∕**_LKB

$$\begin{split} \phi_{n}(\mathbf{x}) &= \begin{bmatrix} f_{n,1}(x)\chi_{\kappa}^{\mu}(\hat{x}) \\ if_{n,2}(x)\chi_{-\kappa}^{\mu}(\hat{x}) \end{bmatrix}, & \text{Eigenstate of } \mathsf{J}^{2}, \mathsf{J}_{z} \text{ and parity} \\ \chi_{\kappa}^{\mu}(\hat{x}) &= \begin{bmatrix} -\frac{\kappa}{|\kappa|} \left[\frac{\kappa + \frac{1}{2} - \mu}{2\kappa + 1}\right]^{1/2} Y_{|\kappa+(1/2)|-(1/2)}^{\mu-(1/2)}(\hat{x}) \\ \left[\frac{\kappa + \frac{1}{2} + \mu}{2\kappa + 1}\right]^{1/2} Y_{|\kappa+(1/2)|-(1/2)}^{\mu+(1/2)}(\hat{x}) \end{bmatrix} \end{split}$$

$$\begin{split} G(\mathbf{x}_2\,,\,\mathbf{x}_1\,,\,z) &= \sum_{\kappa} \begin{bmatrix} G_{\kappa}^{11}(x_2\,,\,x_1\,,\,z) \; \pi_{\kappa}(\hat{x}_2\,,\,\hat{x}_1) & G_{\kappa}^{12}(x_2\,,\,x_1\,,\,z) \; i\boldsymbol{\sigma}\cdot\hat{x}_2\pi_{-\kappa}(\hat{x}_2\,,\,\hat{x}_1) \\ &- G_{\kappa}^{21}(x_2\,,\,x_1\,,\,z) \; i\boldsymbol{\sigma}\cdot\hat{x}_2\pi_{\kappa}(\hat{x}_2\,,\,\hat{x}_1) & G_{\kappa}^{22}(x_2\,,\,x_1\,,\,z) \; \pi_{-\kappa}(\hat{x}_2\,,\,\hat{x}_1) \end{bmatrix}. \end{split}$$

$$\pi_{\kappa}(\hat{x}_{2}, \hat{x}_{1}) = \sum_{\mu} \chi_{\kappa}^{\mu}(\hat{x}_{2}) \chi_{\kappa}^{\mu\dagger}(\hat{x}_{1})$$

$$= (|\kappa|/4\pi) \{ IP_{|\kappa+(1/2)|-(1/2)}(\xi) + (1/\kappa) i\sigma \cdot (\hat{x}_{2} \times \hat{x}_{1}) P'_{|\kappa+(1/2)|-(1/2)}(\xi) \},$$
(A.6)

08/12/2010

Integrations

Very excited states... Many poles on the real axis...

08/12/2010

- Although the integration over z in ΔE_H is exponentially damped at large |z| when $x_{21} \neq 0$, the unregulated integral is infinite, because the point $x_{21} = 0$ is included in the range of the coordinate-space integration.
- $x_{21} \rightarrow 0$ (short distance) is equivalent to large energy in momentum space. We do an expansion around $x_{21} \rightarrow 0$
 - of the Green's function (in term of the free Green's function F)

$$G(\vec{x}_2, \vec{x}_1, z) = F(\vec{x}_2, \vec{x}_1, z) - \int d\vec{x}_3 F(\vec{x}_2, \vec{x}_3, z) V(\vec{x}_3) F(\vec{x}_3, \vec{x}_1, z) + \cdots$$

- of the potential
$$V(\vec{x}_3) = V(\vec{x}_2) + \cdots$$

of the wave function

$$\phi_n(\vec{x}_1) = \phi_n(\vec{x}_2) + (\vec{x}_1 - \vec{x}_2) \cdot \vec{\nabla}_2 \phi_n(\vec{x}_2) + \cdots$$

08/12/2010

The free Green's function is itself divergent:

$$F(\vec{x}_2, \vec{x}_1, z) = \left[\left(\frac{c}{x_{21}} + \frac{1}{x_{21}^2} \right) i \vec{\alpha} \cdot \vec{x}_{21} + \beta + z \right] \frac{e^{-cx_{21}}}{4\pi x_{21}}$$

with $c = (1 - z^2)^{1/2}$, $\operatorname{Re}(c) > 0$.

The expansion gives for example $\Delta E_H = \Delta E_H^{(0,0)} + \Delta E_H^{(0,1)} + \Delta E_H^{(1,0)} + \cdots$ with

$$\begin{split} \Delta E_H^{(0,0)} &= \frac{\alpha}{2\pi i} \int_{C_H} dz \, \int d\vec{x}_2 \int d\vec{x}_1 \, \phi_n^{\dagger}(\vec{x}_2) \alpha_{\mu} F(\vec{x}_2, \vec{x}_1, z) \alpha^{\mu} \\ &\times \phi_n(\vec{x}_2) \frac{e^{-bx_{21}}}{x_{21}} \\ &= \frac{\alpha}{\pi i} \int_{C_H} dz \, \left\langle 2\beta - z \right\rangle \left(\frac{1}{b+c} \right) \end{split}$$

 $z=iu,\ b\to u$ and $c\to u$ when $u\to\infty$ so integral is logarithmically divergent (first term) or linearly divergent (second term)

Regularization

This integral must then be regularized to have a meaning (i.e., being finite (Pauli-Villars)).

The photon propagator $\frac{e^{-bx_{21}}}{x_{21}}$ is replaced everywhere by

$$\frac{e^{-bx_{21}}}{x_{21}} - \frac{e^{-b'x_{21}}}{x_{21}}$$

with $b = -i \left[(E_n - z)^2 + i\delta \right]^{1/2}$, $\operatorname{Re}(b) > 0$ and $b' = -i \left[(E_n - z)^2 - \Lambda^2 + i\delta \right]^{1/2}$; $\operatorname{Re}(b') > 0$. $b' \approx \Lambda$ when $\Lambda \to \infty$, and thus we get a Yukawa potential for a particle of mass Λ .

This is can also be understood in momentum space:

 $\frac{1}{q^2+i\delta} \rightarrow \frac{1}{q^2+i\delta} - \frac{1}{q^2-\Lambda^2+i\delta}$

We add a massive photon, the mass of which $\Lambda \to \infty$ at the end (An infinitely massive photon won't propagate).

The first term gives:

$$\begin{split} \Delta E_{H}^{(0,0)} &= \frac{\alpha}{\pi i} \int_{C_{H}} dz \, \left\langle 2\beta - z \right\rangle \left(\frac{1}{b+c} - \frac{1}{b'+c} \right) \\ &= \frac{\alpha}{\pi} \bigg\{ \left\langle \beta \right\rangle \left[\ln(\Lambda^{2}) - 1 + \frac{1 - E_{n}^{2}}{E_{n}^{2}} \ln\left(1 + E_{n}^{2}\right) \right] \\ &- E_{n} \left[\frac{1}{4} \ln(\Lambda^{2}) + \frac{3E_{n}^{2} - 2}{8E_{n}^{2}} + \frac{1 - E_{n}^{4}}{4E_{n}^{4}} \ln\left(1 + E_{n}^{2}\right) \right] \\ &+ \mathcal{O}(\frac{1}{\Lambda}) \bigg\} \end{split}$$

The result is still logarithmically divergent in Λ !

____LKB

Renormalization

In the perturbation Hamiltonian we had an extra term (called a counter-term) $H_I = j^{\mu}A_{\mu} - \delta M(x)$, If we do all calculations for ΔE_H we get

$$\begin{split} \Delta E_H &= \frac{\alpha}{\pi} \left[-\frac{5}{6} E_n - \left(\frac{2}{3} + \frac{3}{8}\right) \langle \beta \rangle - \frac{7}{6} \langle V \rangle + \frac{(Z\alpha)^4}{n^3} f_H(Z\alpha) \right. \\ &+ \langle \beta \rangle \ln(\Lambda^2) - E_n \frac{1}{4} \ln(\Lambda^2) \\ &+ \langle \vec{\alpha} \cdot \vec{p} \rangle \frac{1}{4} \ln(\Lambda^2) \\ &+ \langle V \rangle \frac{1}{4} \ln(\Lambda^2) + \mathcal{O}(\frac{1}{\Lambda}) \right] - \langle \delta M \rangle \end{split}$$

but remember Dirac equation is $\langle \vec{\alpha} \cdot \vec{p} + \beta + V - E_n \rangle = 0!!$

If we take $\delta M(x) = \frac{\alpha}{\pi} \left(\frac{3}{4} \ln(\Lambda^2) + \frac{3}{8} \right) \phi^{\dagger}(x) \beta \phi(x)$ the self-energy is finite.

The **miracle** is that all other diagrams containing self-energy loops will be finite to all orders of the theory.

The $\frac{3}{8}$ is included so that the mass of a free electron (when $Z \to 0$) is not changed by self-energy

08/12/2010

Orders of magnitude

Self-energy is of order αmc^2

$$\Delta E_{\rm SE} = \Delta E_L + \Delta E_H \qquad \Delta E_L = \frac{\alpha}{\pi} \left[\frac{3}{2} E_n + \frac{7}{6} \langle V \rangle + \frac{(Z\alpha)^4}{n^3} f_L(Z\alpha) \right].$$

$$\Delta E_{H} = \Delta E_{HA} + \Delta E_{HB} \qquad \Delta E_{HA} = \frac{\alpha}{\pi} \left[-\frac{3}{2} E_n - \frac{7}{6} \langle V \rangle + \frac{(Z\alpha)^4}{n^3} f_{HA}(Z\alpha) \right]$$
$$\Delta E_{HB} = \Delta E_H - \Delta E_{HA} = \frac{\alpha}{2\pi i} \int_{C_H} dz \int_0^\infty dx_2 \ x_2^2 \int_0^\infty dx_1 x_1^2 \\ \times \left\{ \sum_{|\kappa|=1}^\infty K_{\kappa}(x_2, x_1, z) - K_A(x_2, x_1, z) \right\}, \qquad (12)$$

At Z=1 one looses $(\alpha Z)^4=2.8\times10^{-9}$ i.e., 9 digits of numerical accuracy

08/12/2010

Very slow convergence for the sum over κ

$$\begin{split} \Delta E_{\mathrm{HB}} &= \frac{\alpha}{\pi} \int_0^1 dt \, \int_0^1 dr \, \int_0^\infty dy \, S_{\mathrm{HB}}(r, y, t) \,. \\ S_{\mathrm{HB}}(r, y, t) &= \left(1 + \frac{1}{t^2} \right) \frac{r^2 \, y^5}{a^6} \sum_{|\kappa|=1}^\infty T_{\mathrm{HB}, |\kappa|}(r, y, t) \,. \\ T_{\mathrm{HB}, |\kappa|} &= \frac{r^{2 \, |\kappa|}}{|\kappa|} \left[\operatorname{const} + O\left(\frac{1}{|\kappa|}\right) \right], \qquad 0 < r \le 1 \end{split}$$

 $t_k = T_{\text{HB},k+1}$ Non-linear Van Wijngaarden condensation transform:

$$\sum_{k=0}^{\infty} t_k = \sum_{j=0}^{\infty} (-1)^j \mathbf{A}_j,$$

$$\mathbf{A}_{j} = \sum_{k=0}^{\infty} 2^{k} t_{2^{k} (j+1)-1}$$

08/12/2010

 $A_j = \sum_{k=0}^{k} 2^k t_{(j+1)-1}$

Very slow convergence for the sum over κ

$$\begin{split} \Delta E_{\mathrm{HB}} &= \frac{\alpha}{\pi} \int_0^1 dt \, \int_0^1 dr \, \int_0^\infty dy \, S_{\mathrm{HB}}(r, y, t) \,. \\ S_{\mathrm{HB}}(r, y, t) &= \left(1 + \frac{1}{t^2} \right) \frac{r^2 \, y^5}{a^6} \sum_{|\kappa|=1}^\infty T_{\mathrm{HB}, |\kappa|}(r, y, t) \,. \\ T_{\mathrm{HB}, |\kappa|} &= \frac{r^{2 \, |\kappa|}}{|\kappa|} \left[\operatorname{const} + O\left(\frac{1}{|\kappa|}\right) \right], \qquad 0 < r \le 1 \end{split}$$

 $t_k = T_{\text{HB},k+1}$ Non-linear Van Wijngaarden condensation transform:

$$\sum_{k=0}^{\infty} t_k = \sum_{j=0}^{\infty} (-1)^j \mathbf{A}_j,$$

Mathematical models of Quantum Field Theory

08/12/2010

LKB

Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series, E.J. Weniger. Computer Physics Reports **10**, 189-371 (1989).

Convergence acceleration via combined nonlinear-condensation transformations, U.D. Jentschura, P.J. Mohr, G. Soff *et al.* Computer Physics Communications **116**, 28-54 (1999).

Calculation of the Electron Self-Energy for Low Nuclear Charge, U.D. Jentschura, P.J. Mohr et G. Soff. Phys. Rev. Lett. **82**, 53-57 (1999)

Electron self-energy for the K and L shells at low nuclear charge, U.D. Jentschura, P.J. Mohr et G. Soff. Phys. Rev. A **63**, 042512 (2001).

$$\mathbf{S}_{n} = \sum_{j=0}^{n} (-1)^{j} \mathbf{A}_{j}$$
 $\mathbf{B}_{j} = (-1)^{j} \mathbf{A}_{j}$

$$\delta_n^{(0)}(1, \mathbf{S}_0) = \frac{\sum_{j=0}^n (-1)^j \binom{n}{j} \frac{(1+j)_{n-1}}{(1+n)_{n-1}} \frac{\mathbf{S}_j}{\mathbf{B}_{j+1}}}{\sum_{j=0}^n (-1)^j \binom{n}{j} \frac{(1+j)_{n-1}}{(1+n)_{n-1}} \frac{1}{\mathbf{B}_{j+1}}},$$

All calculations of S and B must be performed in 128 bits arithmetic for Z=1–5

08/12/2010

_∕∕_lkb

Two-loop self-energy

Fig. 2. Schematic view of the UV subtractions for the *M* term. The identity $(\partial/\partial \varepsilon)(\varepsilon - H)^{-1} = -(\varepsilon - H)^{-2}$ is used for the reducible part.

Two-Loop Self-Energy Correction in a Strong Coulomb Nuclear Field, V.A. Yerokhin, P. Indelicato et V.M. Shabaev. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS **101**, 280–293 (2005).

- Renormalization very hard
- Mixed coordinate-space and momentum space Green function to evaluate numerically some renormalization contributions
- Double sums over angular momenta with slow convergence
- More numerical integrations
- cancellations

23/06/2010

Mathematical Aspects of Quantum Electrodynamics

Two-loop self-energy (1s)

V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. rev. A 71, 040101(R) (2005).

$$\Delta E_{\text{SESE}} = m \left(\frac{\alpha}{\pi}\right)^2 (Z\alpha)^4 \{B_{40} + (Z\alpha)B_{50} + (Z\alpha)^2 \\ \times [L^3 B_{63} + L^2 B_{62} + L B_{61} + G_{\text{SESE}}^{\text{h.o.}}(Z)] \}$$

Mathematical models of Quantum Field Theory

,

Evolution at low-Z

All order numerical calculations

V. A. Yerokhin, Phys. Rev. A 80, 040501 (2009)

$$G_{\text{SESE}}^{\text{h.o.}}(Z=0) \equiv B_{60} = -84(15),$$

V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev. A 71, 040101(R) (2005).

-127(42)

Analytic calculations

$$B_{40} = 1.409244, B_{50} = -24.2668(31),$$

 $B_{63} = -8/27, B_{62} = 16/27 - (16/9) \ln 2,$

K. Pachucki and U. D. Jentschura, Phys. Rev. Lett. **91**, 113005 (4) (2003).

 $B_{60} = -61.6(9.2).$

U. D. Jentschura, A. Czarnecki, and K. Pachucki, Physical Review A 72, 062102 (2005).

 $B_{61} = 48.388913$ $\delta B_{61} = -1.4494...$

08/12/2010

Cancellation at low Z

Z	ΔE_{LAL}	ΔE_F^R	ΔE_P^R	ΔE_M	Sum
10	-0.3577	822.14(2)	-721.34(12)	-100.19(10)	0.25(16)
15	-0.4951	292.902(13)	-235.205(70)	-57.366(48)	-0.164(85)
20	-0.6015	136.911(7)	-102.026(55)	-34.764(16)	-0.481(58)
30	-0.7565	44.729(3)	-29.410(25)	-15.465(5)	-0.903(26)
40	-0.8711	19.505(3)	-11.575(30)	-8.253(5)	-1.194(31)
			$-11.41(15)^{a}$	-8.27(18) ^a	-1.05(23) ^a
50	-0.9734	10.025(2)	-5.488(26)	-5.001(3)	-1.437(26)
			$-5.41(8)^{a}$	-4.99(6) ^a	-1.34(10) ^a
60	-1.082	5.723(1)	-2.970(18)	-3.341(2)	-1.670(18)
			-2.93(4) ^a	-3.342(21) ^a	$-1.63(4)^{a}$
70	-1.216	3.497(1)	-1.757(25)	-2.412(11)	-1.888(27)
83	-1.466	1.938	-1.057(13)	-1.764(4)	-2.349(14)
92	-1.734	1.276	-0.812(10)	-1.513(3)	-2.783(10)
100	-2.099	0.825	-0.723(7)	-1.384(3)	-3.381(8)

٠

Note: All of the data are given in units of $F(Z\alpha)$.^a The data from [13].

Exemple of experimental results

Pushing QED to the limit

Third order

Fig. 10. The universal third order contribution to a_g. All fermion loops here are muon-loops. Graphs (1) to (6) are the light-by-light scattering diagrams. Graphs (7) to (22) include photon vacuum polarization insertions. All non-universal contributions follow by replacing at least one muon in a closed loop by some other fermion.

08/12/2010

_**∕**_LKB

La constante de Rydberg

Précision de la mesure de $R_{\rm H}$

Elle défini les énergies des niveaux des atomes

08/12/2010

_**∕**_LKB

La constante de Rydberg

Précision de la mesure de $R_{\rm H}$

08/12/2010

08/12/2010

Déplacement de Lamb

Plus la particule est lourde plus c'est petit!

Polarisation du vide Plus on est près plus c'est fort!

Hydrogène (électron)

Hydrogène muonique (muon 207 fois plus lourd que l'électron)

08/12/2010

_____LKB

muonic hydrogen : $2S_{1/2}(F=1) - 2P_{3/2}(F=2)$

_∧_lkb

muonic hydrogen: 2S_{1/2}(F=0)- 2P_{3/2}(F=1)

^{23/06/2010} ~ at the position deduced with dome $M_{p}^{\text{Mathematical Aspects of Quantum}} \rightarrow hfs : Zeemach radius (few %)$

____LKB

_**↓**Lkb

08/12/2010

Recent progress

08/12/2010

Mathematical models of Quantum Field Theory

samedi 11 décembre 2010

51

Atomic Physics in Strong Coulomb Fields

03/11/10

DPG Symposium Precision spectroscopy of highly ionized matter

Atomic Physics in Strong Coulomb Fields

Atomic Physics in Strong Coulomb Fields

Atomic Physics in Strong Coulomb Fields

Atomic Physics in Strong Coulomb Fields

Atomic Structure at High-Z

- bound state quantum electrodynamics (QED)
- effects of relativity on the atomic structure
- electron correlation in the presence of strong fields

03/11/10

03/11/10

03/11/10

03/11/10

03/11/10

How to make HCI ?

ECRIS

The large factory vs the mechanics around the corner

03/11/10

DPG Symposium Precision spectroscopy of highly ionized matter

samedi 11 décembre 2010

53

03/11/10

EBIT

The large factory vs the mechanics around the corner

03/11/10

He-like U: $1s2p {}^{3}P_{2}$ - $1s2s {}^{3}S_{1}$

23/06/2010

thematical Aspects of Quantur Electrodynamics _**∕**_LKB

EBIT: Heidelberg

FIG. 1. Principle of the method. For simplicity, possible eccentricities of crystal and camera are not shown. The horizontal dashed-dotted line represents the main instrumentation axis. X rays are reflected under the Bragg angle θ , and α is the angle between the main axis and the x ray. The reflection position on the crystal depends on the crystal angle $\xi(\alpha)$ which, due to alignment of the spectrometer, includes an arbitrary offset angle ϵ (which is constant for all measurements).

08/12/2010

EBIT: Heidelberg

FIG. 4. Sum of all 24 Lyman- α spectra after relative calibration (24 h total measuring time). The line describes a Voigt fit to the spectrum, the inset shows the spectrum with a logarithmic scale. There is no indication for shifts of the Lyman- α lines due to close-lying satellites.

FIG. 5. Sum of all 23 w spectra after relative calibration (11.5 h total measuring time). The line describes a Voigt fit to the spectrum and the insert shows the spectrum with a logarithmic scale. There is no indication for shifts of the w-line due to close-lying satellites.

EBIT: Heidelberg

FIG. 4. Sum of all 24 Lyman- α spectra after relative calibration (24 h total measuring time). The line describes a Voigt fit to the spectrum, the inset shows the spectrum with a logarithmic scale. There is no indication for shifts of the Lyman- α lines due to close-lying satellites.

FIG. 5. Sum of all 23 w spectra after relative calibration (11.5 h total measuring time). The line describes a Voigt fit to the spectrum and the insert shows the spectrum with a logarithmic scale. There is no indication for shifts of the w-line due to close-lying satellites.

Heidelberg EBIT (2)

Table 1. Present experimental results and theoretical values.

Transition	$E_{\rm theo}~(eV)$	\mathbf{E}_{exp} (eV)	$\mathbf{Error}\;(\mathbf{ppm})$
$\begin{array}{c} \operatorname{Cl}^{16+} \operatorname{Ly-} \alpha_1 \\ \operatorname{S}^{14+} w \\ \operatorname{Ar}^{16+} w \end{array}$	2962.352 [22] 2460.629 [5] 3139.582 [5]	$\begin{array}{l} 2962.344(30) \ [28] \\ 2460.641(32) \\ 3139.583(6) \ \ [28] \end{array}$	10.0 13.0 1.9

Novel technique for high-precision Bragg-angle determination in crystal x-ray spectroscopy, J. Braun, H. Bruhns, M. Trinczek et al. Rev. Sci. instrum. **76**, 073105-6 (2005). *Testing QED Screening and Two-Loop Contributions with He-Like Ions*, H. Bruhns, J. Braun, K. Kubiček et al. Phys. Rev. Let. **99**, 113001-4 (2007). *Two-loop QED contributions tests with mid-Z He-like ions*, K. Kubiček, H. Bruhns, J. Braun et al. J. Phys.: Conf. Ser. 012007 (2009)

08/12/2010

Typical acquisition time 40 mn parallel side and ~3:30h antiparallel

Other production methods (accelerators, Electron-Beam Ion Traps) provide diagram lines like the 1s $^{1}\mathrm{P_{1}-1s^{2}\,^{1}S_{0}}$ line

08/12/2010

From K. Kubiček, H. Bruhns, J. Braun, J.R.C. Lopez-Urrutia et J. Ullrich. J. Phys.: Conf. Series. 012007, (2009).

From K. Kubiček, H. Bruhns, J. Braun, J.R.C. Lopez-Urrutia et J. Ullrich. J. Phys.: Conf. Series. 012007, (2009).

08/12/2010

_∧_lkb

Helium-like ions 1s2p ${}^{1}P_{1} \rightarrow 1s^{2}$

08/12/2010

_∧_lkb

08/12/2010

The hydrogen/muonic hydrogen puzzle

08/12/2010

Mathematical models of Quantum Field Theory

61

Most important contributions 1

Γ	Diagram	Value (in meV)	Name & order	References]	Chift to poppy the
		205.0074(1)	leading order VP $[\alpha(Z\alpha)^2]$	Galanin and Pomeranchuk [1952], Pachucki [1999, Table I], Eides et al. [2001, Eq. (208)]		CODATA radius:
	-	-3.862(108)	$\begin{array}{l} \text{leading nuclear size} \\ \text{contribution} \\ [(Z\alpha)^4 m_{\rm r}^3 \langle r^2 \rangle] \end{array}$	Eides et al. [2001, § 9.6], Pachucki [1999, Table I]		➡-0.327 meV
8	-00-	1.5079(1)	two-loop EVP $[\alpha^2 (Z\alpha)^2 m]$	Di Giacomo [1969], Pachucki [1999, Table I], Eides et al. [2001, Eq. (213)]	6 1	Strategy: check all
		-0.6677(1)	muon self-energy + muon VP	Pachucki [1999, Table I], Eides et al. [2001, § 9.5]		Iarde contributions
	-0-*	0.1509(1)	double EVP $[\alpha^2 (Z\alpha)^2]$	Pachucki [1999, Tabl0J3268 Eides et al. [2001, Eq. (215)], Pachucki [1996, Eq. (31)]		
8	0	0.0594(1)	rel. corr. to EVP $[\alpha(Z\alpha)^4]$	Pachucki [1996], Pachucki [1999, Table I], Eides et al. [2001, Eq. (223)]		
		0.0575(1)	recoil of order α^4 [α^4]	Barker and Glover [1955], Pachucki [1999, Table I], Eides et al. [2001, Table 11]		
		-0.0440(1)	recoil corrections of order $(Z\alpha)^n \frac{m}{M}m$	Eides et al. [2001, § 9.5], Pachucki [1999, Table I]		

Most important contributions 1

Diagram	Value (in meV)	Name & order	References]		Shift to poppy the
	205.0074(1)	leading order VP $[\alpha(Z\alpha)^2]$	Galanin and Pomeranchuk [1952], Pachucki [1999, Table I], Eides et al. [2001, Eq. (208)]			CODATA radius:
-	-3.862(108)	$\begin{array}{l} \text{leading nuclear size} \\ \text{contribution} \\ [(Z\alpha)^4 m_{\mathrm{r}}^3 \langle r^2 \rangle] \end{array}$	Eides et al. [2001, § 9.6], Pachucki [1999, Table I]			➡-0.327 meV
-0-0-*	1.5079(1)	$\frac{\tan 2 \log \text{EVT}}{[\alpha^2 (Z\alpha)^2 m]}$	Di Giscomo [1060], Pashuchi [1999, Table I], Eides et al. [2001, Eq. (213)]		Ð	Strategy: check all
	-0.6677(1)	muon VP	Pachucki [1999, Table I], Eides et al. [2001, § 9.5]			ומו אב רחוונו והתנוחוופ
-0-*	0.1509(1)	double EVP $[\alpha^2(Z\alpha)^2]$	Pachucki [1999, Tabl013268 Eides et al. [2001, Eq. (215)], Pachucki [1996, Eq. (31)]			
9	0.0594(1)	rel. corr. to EVP $[\alpha(Z\alpha)^4]$	Pachucki [1996], Pachucki [1999, Table I], Eides et al. [2001, Eq. (223)]			
	0.0575(1)	recoil of order α^4 [α^4]	Barker and Glover [1955], Pachucki [1999, Table I], Eides et al. [2001, Table 11]			
	-0.0440(1)	recoil corrections of order $(Z\alpha)^n \frac{m}{M}m$	Eides et al. [2001, § 9.5], Pachucki [1999, Table I]			

J∕LLKB

Most important contributions 2

	0.03(3)	light by light electron-loop contribution of order $\alpha^2 (Z\alpha)^3 m$ $[\alpha^2 (Z\alpha)^3 m]$	Pachucki [1996, p. 2095], Eides et al. [2001, § 9.3.2]	
×	0.0232(15)	nuclear size correction of order $(Z\alpha)^5$ $[(Z\alpha)^5m_{\tau}^2\langle r^3\rangle_{(2)}m]$	Pachucki [1996], Faustov and Martynenko [2000], Eides et al. [2001, Eq. (256)], Pachucki [1999]]
2	-0.0126(1)	(part of the) EVP with finite size $[\alpha(Z\alpha)^4m_r^3\langle r^2\rangle]$	Pachucki [1996], Pachucki [1999, Table I], Eides et al. [2001, Eq. (268)]	
	0.012(2)	proton polarizability $[(Z\alpha)^5m]$	Startsev et al. [1976], Rosenfelder [2000], Faustov and Martynenko [2000], Pachucki [1999, Table I], Eides et al. [2001, Eq. (261)]	
*	0.0108(4)	$\begin{array}{l} \text{hadronic} \\ \text{polarization, order} \\ \alpha(Z\alpha)^4m \\ [\alpha(Z\alpha)^4m] \end{array}$	Folomeshkin [1974], Friar et al. [1999], Faustov and Martynenko [1999], Eides et al. [2001, Eq. (252)], Pachucki [1999, Table I]	268
	-0.0099(1)	proton self-energy	Pachucki [1999, Table I]	200
	-0.0095(1)	radiative-recoil corrections of order $\alpha(Z\alpha)^n \frac{m}{M}m$	Eides et al. [2001, § 9.5]	
•••	-0.0083(1)	(part of the) EVP with finite size $[\alpha(Z\alpha)^4m_t^3(r^2)]$	Friar [1979a], Friar [1981], Pachucki [1996], Pachucki [1999, Table I], Eides et al. [2001, Eq. (266)]	
-0-	-0.006(1)	muon self-energy with electron VP $[\alpha^2(Z\alpha)^4]$	Pachucki [1996, Eqs. (40) and (45)], Pachucki [1999, Table I], Eides et al. [2001, Eq. (237)]	
-000-	0.0053(1)	three-loop electron polarization contribution, order $\alpha^3 (Z\alpha)^2$ $[\alpha^3 (Z\alpha)^2 m]$	Kinoshita and Nio [1999], Eides et al. [2001, Eq. (214)], Pachucki [1999, Table I]	ober 14

• No term looks large enough to be able to explain the difference in size

_ _ _ _

_**∕**_LKB

Most important contributions 2

_ _ _ _

	0.03(3)	light by light electron-loop contribution of order $\alpha^2 (Z\alpha)^3 m$ $[\alpha^2 (Z\alpha)^3 m]$	Pachucki [1996, p. 2095], Eides et al. [2001, § 9.3.2]	
×	0.0232(15)	nuclear size correction of order $(Z\alpha)^5$ $[(Z\alpha)^5 m_7^3 \langle r^3 \rangle_{(2)} m]$	Pachucki [1996], Faustov and Martynenko [2000], Eides et al. [2001, Eq. (256)], Pachucki [1999]	
2	-0.0126(1)	(part of the) EVP with finite size $[\alpha(Z\alpha)^4m_t^3\langle r^2\rangle]$	Pachucki [1996], Pachucki [1999, Table I], Eides et al. [2001, Eq. (268)]	
	0.012(2)	proton polarizability $[(Z\alpha)^5m]$	Startsev et al. [1976], Rosenfelder [2000], Faustov and Martynenko [2000], Pachucki [1999, Table I], Eides et al. [2001, Eq. (261)]	
-	0.0108(4)	hadronic polarization, order $\alpha(Z\alpha)^4m$ $[\alpha(Z\alpha)^4m]$	Folomeshkin [1974], Friar et al. [1999], Faustov and Martynenko [1999], Eides et al. [2001, Eq. (252)], Pachucki [1999, Table I]	268
	-0.0099(1)	proton self-energy	Pachucki [1999, Table I]	200
	-0.0095(1)	radiative-recoil corrections of order $\alpha(Z\alpha)^n \frac{m}{M}m$	Eides et al. [2001, § 9.5]	
•0•	-0.0083(1)	(part of the) EVP with finite size $[\alpha(Z\alpha)^4m_r^3(r^2)]$	Friar [1979a], Friar [1981], Pachucki [1996], Pachucki [1999, Table I], Eides et al. [2001, Eq. (266)]]
-0-*	-0.006(1)	muon self-energy with electron VP $[\alpha^2(Z\alpha)^4]$	Pachucki [1996, Eqs. (40) and (45)], Pachucki [1999, Table I], Eides et al. [2001, Eq. (237)]	
-000-*	0.0053(1)	three-loop electron polarization contribution, order $\alpha^3(Z\alpha)^2$ $[\alpha^3(Z\alpha)^2m]$	Kinoshita and Nio [1999], Eides et al. [2001, Eq. (214)], Pachucki [1999, Table I]	ober 14,

samedi 11 décembre 2010

64

LKB

Most important contributions 2

	0.03(3)	light by light electron-loop contribution of order $\alpha^2(Z\alpha)^3m$ $[\alpha^2(Z\alpha)^3m]$ nuclear size	Pachucki [1996, p. 2095], Eides et al. [2001, § 9.3.2] Pachucki [1996], Faustov and	
	0.0232(15)	correction of order $(Z\alpha)^5$ $[(Z\alpha)^5m_r^3\langle r^3\rangle_{(2)}m]$	Martynenko [2000], Edes et al. [2001, Eq. (256)], Pachucki [1999]	
2	-0.0126(1)	(part of the) EVP with finite size $[\alpha(Z\alpha)^4m_r^3\langle r^2\rangle]$	Pachucki [1996], Pachucki [1999, Table I], Eides et al. [2001, Eq. (268)]	
	0.012(2)	proton polarizability $[(Z\alpha)^5m]$	Startsev et al. [1976], Rosenfelder [2000], Faustov and Martynenko [2000], Pachucki [1999, Table I], Eides et al. [2001, Eq. (261)]	
*	0.0108(4)	$\begin{array}{l} \text{hadronic} \\ \text{polarization, order} \\ \alpha(Z\alpha)^4m \\ [\alpha(Z\alpha)^4m] \end{array}$	Folomeshkin [1974], Friar et al. [1999], Faustov and Martynenko [1999], Eides et al. [2001, Eq. (252)], Pachucki [1999, Table I]	268
	-0.0099(1)	proton self-energy	Pachucki [1999, Table I]	200
	-0.0095(1)	radiative-recoil corrections of order $\alpha(Z\alpha)^n \frac{m}{M}m$	Eides et al. [2001, § 9.5]	
•0•	-0.0083(1)	(part of the) EVP with finite size $[\alpha(Z\alpha)^4m_r^3(r^2)]$	Friar [1979a], Friar [1981], Pachucki [1996], Pachucki [1999, Table I], Eides et al. [2001, Eq. (266)]	
-0-	-0.006(1)	muon self-energy with electron VP $[\alpha^2(Z\alpha)^4]$	Pachucki [1996, Eqs. (40) and (45)], Pachucki [1999, Table I], Eides et al. [2001, Eq. (237)]	
+000	0.0053(1)	three-loop electron polarization contribution, order $\alpha^3(Z\alpha)^2$ $[\alpha^3(Z\alpha)^2m]$	Kinoshita and Nio [1999], Eides et al. [2001, Eq. (214)], Pachucki [1999, Table I]	ober

New calculation: S. G. Karshenboim, V. G. Ivanov, E. Y. Korzinin, et al., Phys. Rev. A 81, 060501 (2010) and 1 S. Karshenboim, E. Korzinin, V. Ivanov, et al., JETP Letters 92, 8 (2010). 0.00115(1) meV

ober 14,

Check point nucleus

Non relativistic

Pachucki 1996 calculation	205.006
Pachucki 1999 calculation	205.0074
Numerical calc with Pachucki data	205.007385
Numerical calc with CODATA 2006 data	205.007359
Relativistic	
Borie calc with ? data	205.0282
PI calc with CODATA 2006 data	205.02820

PM calc with CODATA 2006 data

Energies in meV

23/06/2010

Mathematical Aspects of Quantum Electrodynamics $205.028\,201$

_**∕**_LKB

Comparison of charge densities

[1] QED is not endangered by the proton's size, A. De Rújula. Physics Letters B 693, 555-558 (2010).

08/12/2010

Comparison of charge densities

[1] QED is not endangered by the proton's size, A. De Rújula. Physics Letters B 693, 555-558 (2010).

08/12/2010

_**∕**_LKB

Comparison of charge densities

[1] QED is not endangered by the proton's size, A. De Rújula. Physics Letters B 693, 555-558 (2010).

08/12/2010

_**∕**_lkb

[1] QED is not endangered by the proton's size, A. De Rújula. Physics Letters B 693, 555-558 (2010).

08/12/2010

_∕∕_lkb

Charge radius dependence Coul.+VP

Fig. 3. Dependence of $\frac{\Delta E_{V11FN}}{R^2}$ as a function of *R* in meV/fm² for different charge distribution models.

08/12/2010

Model	$a ({\rm meV/fm^2})$	$b ({\rm meV/fm^3})$
Uniform	-5.2284	0.0313
Dipole	-5.2271	0.0353
Fermi	-5.2271	0.0324
Gauss	-5.2265	0.0328
Ref.[34], Dip.	-5.2248	0.0347
Ref.[32]	-5.225	0.0347
Ref.[34], Gauss	-5.2248	0.0317

08/12/2010

Källen and Sabry

$\Delta E = aR^2 + bR^3 + cR^4$

Model	Uniform	Exponential	Fermi	Gaussian
а	-0.0002145	-0.0002145	-0.0002146	-0.0002145
b	0.0000078	0.0000086	0.0000082	0.000083
С	-0.000008	-0.0000009	-0.000008	-0.0000009

08/12/2010

_**∕**_lkb

Finite size correction on muon self-energy

All-orders calculations

z

$$E_{SE-NS} = \left(4\ln 2 - \frac{23}{4}\right)\alpha(Z\alpha)\mathcal{E}_{NS}$$

$$\mathcal{E}_{NS} = \frac{2}{3} \left(\frac{\mu_r}{m_{\mu}}\right)^3 \frac{(Z\alpha)^2}{n^3} m_{\mu} \left(\frac{Z\alpha < r >}{\mathcal{X}_C}\right)^2$$

$$E_{SE-NS} = -0.000824 < r^2 >$$

(All-orders calculations- $E_{SE-NS} < r^2 >$)/Z⁵ < $r^3 >$ 1.8±1 x 10⁻⁵

Dyson: the expansion in α of QED has zero convergence radius... e+-e, plus d'état lié!

Divergence of Perturbation Theory in Quantum Electrodynamics, F.J. Dyson. Physical Review 85, 631–632 (1952).

10/11/2010

10/11/2010

Example of unsolved problems

$$V_{\rm VP\infty}(k^2) = \frac{1}{k^2} \left[1 + \Pi(k^2) + \Pi(k^2) \frac{1}{k^2} \Pi(k^2) + \Pi(k^2) \frac{1}{k^2} \Pi(k^2) \frac{1}{k^2} \Pi(k^2) + \cdots \right]$$
$$= \frac{\Pi(k^2)}{1 - \Pi(k^2)}$$

$$\Pi\left(k^{2}\right) = \frac{2\alpha k^{2}}{3\pi} \int_{1}^{\infty} dz \frac{1}{z} \left(\frac{1}{z} + \frac{1}{2z^{3}}\right) \frac{\sqrt{z^{2} - 1}}{4m_{e}^{2}z^{2} + k^{2}}.$$

Singularity at $k_0 = e^{\frac{3\pi}{2\alpha} + \frac{5}{6}} \approx 6.53 \times 10^{280}$ huge momenta = very short distances S. Brodsky, P. J. Mohr, P. Indelicato

10/11/2010

Taille du proton 2010

Results

Nonrelativistic contributions of order to the Lamb shift in muonic hydrogen and deuterium, and in the muonic helium ion, S.G. Karshenboim, V.G. Ivanov, E.Y. Korzinin *et al.* Phys. Rev. A **81**, 060501 (2010).

Light by light diagrams

206.05329710 -5.227310 <r²> + 0.03489 <r³>+0.000043 <r⁴>

R = 0.84130 fm in place of 0.84184(67) fm

From hydrogen (CODATA) : 0.8768(69) fm

08/12/2010

Où on retrouve le vide

http://www.physics.adelaide.edu.au/~dleinweb/VisualQCD/QCDvacuum/welcome.html

08/12/2010

Interaction avec un proton

A new regime for QED

08/12/2010

Mathematical models of Quantum Field Theory

74

J∕LLKB

Critical- and Super-Critical Fields

_∕∕_lkb

Critical- and Super-Critical Fields

08/12/2010

_**∕**_lkb

Critical- and Super-Critical Fields

08/12/2010

Collision times in the sub-attosecond regime $(10^{-22} \text{ s} < t < 10^{-18} \text{s})$

Electromagnetic Phenomena under Extreme & Unusual Conditions

08/12/2010

Mathematical models of Quantum Field Theory

Collision times in the sub-attosecond regime $(10^{-22} \text{ s} < t < 10^{-18} \text{s})$

Electromagnetic Phenomena under Extreme & Unusual Conditions

08/12/2010

Mathematical models of Quantum Field Theory

23/06/2010

Mathematical Aspects of Quantum Electrodynamics

77

23/06/2010

Mathematical Aspects of Quantum Electrodynamics

_**↓**LKB

QED and other corrections in outer shells

The presence of outer shell electrons does not change critical Z (173) What would be a neutral atom when the 1s shell is in the continuum What happens to QED

08/12/2010

_**∕**_LKB

Figure 2. The energy of 1σ states in U_2^{183+} as a function of internuclear distance. The solid and dashed lines correspond to finite-size and point-like nuclei, respectively. The dash-dotted line represents the energy of the 1s state in spherically symmetrical monopole approximation, centred at the middle point of the inter-nuclear axis.

samedi 11 décembre 2010

08

Atoms near critical Z

Z	171	172	173			
total binding energy						
[Rn] $5f^{14}6d^{10}7s^27p^68s^28p^67d^{10}5g^{18}6f^{14}$	$9s^29p, J = 1/2$	$9s^29p^2, J = 2$	$9s^29p^3, J = 3/2$			
Coulomb	-6052798	-6229026	-6409504			
Magnetic	24012	24820	25636			
Retardation	-1369	-1413	-1459			
Higher order ret.	-437	233	284			
S.E.&F.N.	28719	29398	30087			
Welt. Scr.	-1073	-1093	-1113			
Uehling Vac. Pol.	-53303	-55764	-58259			
Muon Vac. Pol.	-70	-74	-78			
Uelhing corr to elec. Inter.	313	331	350			
Wichmann and Kroll VP	4522	4767	5019			
Kàllén and Sabry VP	-400	-420	-439			
Two-loop SE	-516	-536	-557			
SEVP terms	546	579	615			
S[VP]E terms	141	150	160			
Total	-6051712	-6228047	-6409259			

- We do not know how to treat in a general and systematic way a 2 or more body problem (recoil in exotic atoms for example)
- Complex atoms (more than 3 electrons or one open shell) cannot be calculated
- Higher-order diagrams are beyond our grasp
- Even the relativistic treatment of few or many electron atoms is beyond what we know how to do (no relativistic hamiltonian...)

23/06/2010

Mathematical Aspects of Quantum Electrodynamics

- Hydrogen and exotic hydrogen will be again a very intense field of research
- New developments will involve both few-body atomic and nuclear physics (nuclear polarization in muonic D, He...) as well as QCD
- A new generation of experiments are leading to very accurate results at medium and high-Z
- More general techniques for the many-body case needed...
- New methods for the resummation of classes of diagrams to allorders required