Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes

Thierry DAUDÉ

Université de Cergy-Pontoise
(Joint work with FRANCOIS NICOLEAU, Université de Nantes)
CMAP, December 8, 2010

Outline of the talk

- De Sitter-Reissner-Nordström black holes:
- Spacetime (\mathcal{M}, g) with g lorentzian metric.
- g completely characterized by M (mass), Q (electric charge) and Λ (cosmological constant).
"Can we determine g by observing waves at infinities?"
- Massless Dirac fields in dS-RN black holes:
- Dirac waves: $i \partial_{t} u=\mathbb{D} u, \mathbb{D}$ Dirac operator.
- Scattering matrix $S_{g}(\lambda), \lambda$ a fixed energy.
- Spherical symmetry: $S_{g}(\lambda) \sim\left(S_{g}(\lambda, I)\right)$ where $I \in \frac{1}{2}+\mathbb{N}$ angular momentum.
- Stationary representation of $S_{g}(\lambda, I)$ in terms of Jost functions.
- Main result:
- $g \longrightarrow S_{g}(\lambda)$ is one-to-one for a fixed energy $\lambda \neq 0$.
- Proof: complexification of the angular momentum /

De Sitter-Reissner-Nordström Black Holes

- Spacetime (\mathcal{M}, g) with

$$
\left.\mathcal{M}=\mathbb{R}_{t} \times \Sigma, \quad \Sigma=\right] r_{-}, r_{+}\left[r \times S_{\theta, \varphi}^{2}\right.
$$

equipped with a Lorentzian metric (signature ($1,-1,-1,-1$))

$$
g=F(r) d t^{2}-F(r)^{-1} d r^{2}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

where

$$
F(r)=1-\frac{2 M}{r}+\frac{Q^{2}}{r^{2}}-\frac{\Lambda}{3} r^{2}
$$

- Singularities: if $Q^{2}<\frac{9}{8} M^{2}$ and $\Lambda M^{2} \ll 1$, then F possesses 3 positive roots: $0<r_{c}<r_{-}<r_{+}$.

$$
F(r)>0 \text { in }\left\{r_{-}<r<r_{+}\right\}
$$

$\left\{r=r_{-}\right\}$: event horizon (coordinate singularity).
$\left\{r=r_{+}\right\}$: cosmological horizon (coordinate singularity).

Properties of De Sitter-Reissner-Nordström black holes

- Symmetries:
- The generators of $S O(3)$ are Killing.
- The generator of time-translation, ∂_{t}, is Killing.
- ∂_{t} timelike, $\partial_{r}, \partial_{\theta}, \partial_{\varphi}$ spacelike.
- \mathcal{M} is static: ∂_{t} globally defined timelike Killing field, \perp_{g} to $\Sigma_{t}=\{t\} \times \Sigma$ everywhere.
- Static observers: integral curves of $U=\frac{1}{\sqrt{F}} \partial_{t}$. Far from $\left\{r=r_{ \pm}\right\}$,

$$
t \propto \tau, \quad \tau \text { proper time }
$$

- Horizons: the null radial geodesics do not reach $\left\{r=r_{ \pm}\right\}$in a finite time t. The horizons are perceived as asymptotic regions by static observers.

Regge-Wheeler variable

- Regge-Wheeler variable: $\frac{d x}{d r}=F^{-1}(r)$

$$
x=\frac{1}{2 \kappa_{n}} \ln \left(r-r_{n}\right)+\frac{1}{2 \kappa_{c}} \ln \left(r-r_{c}\right)+\frac{1}{2 \kappa_{-}} \ln \left(r-r_{-}\right)+\frac{1}{2 \kappa_{+}} \ln \left(r_{+}-r\right)+c
$$

- $r_{n}<0<r_{c}<r_{-}<r_{+}$: roots of $F(r)$,
- $\kappa_{j}=\frac{1}{2} F^{\prime}\left(r_{j}\right), j=n, c,-,+$ and $\kappa_{ \pm}$surface gravities of $\left\{r=r_{ \pm}\right\}$,
- c any constant of integration.
- Framework: $\mathcal{M}=\mathbb{R}_{t} \times \Sigma, \quad \Sigma=\mathbb{R}_{x} \times S_{\theta, \varphi}^{2}$,

$$
g=F(r)\left(d t^{2}-d x^{2}\right)-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

- $\left\{r=r_{ \pm}\right\} \longleftrightarrow\{x= \pm \infty\}$.
- Null radial geodesics: $t \pm x=$ cst.

Massless Dirac fields in dS-RN black holes

Hamiltonian form: $i \partial_{t} \psi=\mathbb{D} \psi, \quad \mathbb{D}=\Gamma^{1} D_{x}+a(x) \mathbb{D}_{S^{2}}$.

- $\psi \in \mathcal{H}=L^{2}\left(\mathbb{R}_{x} \times S^{2}, d x d \omega ; \mathbb{C}^{2}\right)$,
- $D_{x}=-i \partial_{x}$,
- Dirac operator on $S^{2}: \mathbb{D}_{S^{2}}=-i \Gamma^{2}\left(\partial_{\theta}+\frac{\cot \theta}{2}\right)-\frac{i}{\sin \theta} \Gamma^{3} \partial_{\varphi}$,
- Dirac matrices: $\Gamma^{i} \Gamma^{j}+\Gamma^{j} \Gamma^{i}=2 \delta_{i j} \mathrm{Id}, \quad \forall i, j=1,2,3$.

$$
\Gamma^{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \Gamma^{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \Gamma^{3}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) .
$$

- Potential: $a(x)=\frac{\sqrt{F(r(x))}}{r(x)}$.

$$
\begin{gathered}
a(x)=a_{ \pm} e^{\kappa_{ \pm} x}+O\left(e^{3 \kappa_{ \pm x}}\right), x \rightarrow \pm \infty \\
a^{\prime}(x)=a_{ \pm} \kappa_{ \pm} e^{\kappa_{ \pm} x}+O\left(e^{3 \kappa_{ \pm} x}\right), x \rightarrow \pm \infty
\end{gathered}
$$

Spin-weighted spherical harmonics

Spin-weighted spherical harmonics: $L^{2}\left(S^{2}, d \omega ; \mathbb{C}^{2}\right)=\oplus_{(I, m) \in \mathcal{L}} F_{l m}$,
$F_{l m}(\theta, \varphi)=\binom{Y_{-\frac{1}{2}, m}^{\prime}(\theta, \varphi)}{Y_{\frac{1}{2}, m}^{I}(\theta, \varphi)}, \quad(I, m) \in \mathcal{L}=\left\{I=\frac{1}{2}+\mathbb{N}, I-|m| \in \mathbb{N}\right\}$.
Simplifications

- $\mathcal{H}=\oplus \mathcal{H}_{l m}, \quad \mathcal{H}_{l m}=L^{2}\left(\mathbb{R}_{x}, d x ; \mathbb{C}^{2}\right) \otimes F_{l m} \simeq L^{2}\left(\mathbb{R}_{x}, d x ; \mathbb{C}^{2}\right)$,
- $\mathcal{H}_{l m}$ are let invariant through the action of \mathbb{D},
- $\mathbb{D}_{\mid \mathcal{H}_{l m}}=\mathbb{D}_{l m}, \quad \mathbb{D}_{l m}=\Gamma^{1} D_{x}-\left(I+\frac{1}{2}\right) a(x) \Gamma^{2}$.

Notations:

- $n=I+\frac{1}{2} \in \mathbb{N}^{*}$ angular momentum.
- $\mathbb{D}_{n}=\Gamma^{1} D_{x}-n a(x) \Gamma^{2}$.

Spectral results

Hamiltonians of reference:

- $\mathbb{D}_{0}=\Gamma^{1} D_{x}$,
- $\mathbb{D}_{n}=\Gamma^{1} D_{x}-n a(x) \Gamma^{2}$.

Lemma (Selfadjointness, spectrum)

$\left(\mathbb{D}_{n}, \mathbb{D}_{0}\right)$ selfadjoint on $\mathcal{H}=L^{2}\left(\mathbb{R}_{x}, d x ; \mathbb{C}^{2}\right)$ with domains $H^{1}\left(\mathbb{R}_{x} ; \mathbb{C}^{2}\right)$. For all $n \in \mathbb{N}$,

$$
\sigma\left(\mathbb{D}_{n}\right)=\sigma_{\text {ac }}\left(\mathbb{D}_{n}\right)=\mathbb{R}
$$

Lemma (Wave and scattering operators)

For all $n \in \mathbb{N}^{*}$, the wave operators $W_{n}^{ \pm}=s-\lim _{t \rightarrow \pm \infty} e^{i t \mathbb{D}_{n}} e^{-i t \mathbb{D}_{0}}$ exist and are asymptotically complete on \mathcal{H}. The scattering operators $S_{n}=\left(W_{n}^{+}\right)^{-1} W_{n}^{-}$are unitary on \mathcal{H} and commute with \mathbb{D}_{0}.

The scattering matrix

- Scattering operator: at late times, a solution $e^{-i t \mathbb{D}_{n}} \psi$ can be compared with simpler solutions $e^{-i t \mathbb{D}_{0}} \psi^{ \pm}, t \rightarrow \pm \infty$:

$$
\begin{gathered}
\psi^{ \pm}=\binom{\psi_{1}^{ \pm}}{\psi_{2}^{ \pm}}, \quad e^{-i t \mathbb{D}_{0}} \psi^{ \pm}=\binom{\psi_{1}^{ \pm}(x-t)}{\psi_{2}^{ \pm}(x+t)} \\
S_{n}: \psi^{-} \longrightarrow \psi^{+}
\end{gathered}
$$

- Scattering matrix: Let $\left(F_{0} \psi\right)(\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-i \Gamma^{1} \lambda x} \psi(x) d x$. The scattering matrix is defined by

$$
S(\lambda, n) \psi(\lambda)=\left(F_{0} S_{n} F_{0}^{-1} \psi\right)(\lambda)
$$

For all $n \in \mathbb{N}^{*}, S(\lambda, n)$ is a 2×2-unitary matrix.

Stationary representation of $S(\lambda, n)$

- Stationary equation:

$$
\begin{equation*}
\left[\Gamma^{1} D_{x}-n a(x) \Gamma^{2}\right] \psi=\lambda \psi, \quad \lambda \in \mathbb{R}, n \in \mathbb{N}^{*} \tag{1}
\end{equation*}
$$

- Jost functions: $F_{L}(x, \lambda, n)$ and $F_{R}(x, \lambda, n)$ are the 2×2 matrix-valued solutions of (1) satisfying the asymptotics:

$$
\begin{aligned}
F_{L}(x, \lambda, n) & =e^{i \Gamma^{1} \lambda x}\left(I_{2}+o(1)\right), x \rightarrow+\infty \\
F_{R}(x, \lambda, n) & =e^{i \Gamma^{1} \lambda x}\left(I_{2}+o(1)\right), x \rightarrow-\infty .
\end{aligned}
$$

- F_{L} and F_{R} are fundamental matrices of (1): $\operatorname{det} F_{L / R}=1$.
- $\exists A_{L}(\lambda, n)=\left[\begin{array}{ll}a_{L 1}(\lambda, n) & a_{L 2}(\lambda, n) \\ a_{L 3}(\lambda, n) & a_{L 4}(\lambda, n)\end{array}\right]$ such that
$F_{R}(\lambda, n)=F_{L}(\lambda, n) A_{L}(\lambda, n)$.
- Scattering matrix: $S(\lambda, n)=\left[\begin{array}{cc}T(\lambda, n) & R(\lambda, n) \\ L(\lambda, n) & T(\lambda, n)\end{array}\right]$, unitary,

$$
T(\lambda, n)=a_{L 1}^{-1}(\lambda, n), \quad R(\lambda, n)=-\frac{a_{L 2}(\lambda, n)}{a_{L 1}(\lambda, n)}, \quad L(\lambda, n)=\frac{a_{L 3}(\lambda, n)}{a_{L 1}(\lambda, n)} .
$$

Dependence on the choice of Regge-Wheeler variable

The Regge-Wheeler variable is defined up to a constant of integration. But x and $\tilde{x}=x+c$ define the same black hole.

The above definition of the scattering matrix depends on the Regge-Wheler variable, i.e. on the choice of the constant of integration.

The potential \tilde{a} corresponding to the choice of \tilde{x} satisfies: $\tilde{a}(\tilde{x})=a(\tilde{x}-c)$.

$$
S(\lambda, n)=e^{i \Gamma^{1} \lambda c} \tilde{S}(\lambda, n) e^{-i \Gamma^{1} \lambda c}
$$

Written in components, we have

$$
\left[\begin{array}{cc}
T(\lambda, n) & R(\lambda, n) \\
L(\lambda, n) & T(\lambda, n)
\end{array}\right]=\left[\begin{array}{cc}
\tilde{T}(\lambda, n) & e^{2 i \lambda c} \tilde{R}(\lambda, n) \\
e^{-2 i \lambda c} \tilde{L}(\lambda, n) & \tilde{T}(\lambda, n)
\end{array}\right] .
$$

The main result

Theorem (Daude, Nicoleau, AHP (2010))

Let (M, Q, Λ) and ($\tilde{M}, \tilde{Q}, \tilde{\Lambda})$ be the parameters of two $d S$-RN black holes. We denote by $a(x)$ and $\tilde{a}(x)$ the corresponding potentials appearing in (1). Let $S(\lambda, n)$ and $\tilde{S}(\lambda, n)$ be the corresponding scattering matrices at a fixed energy $\lambda \neq 0$. Consider a subset \mathcal{L} of \mathbb{N}^{*} that satisfies the Müntz condition $\sum_{n \in \mathcal{L}} \frac{1}{n}=\infty$ and assume that there exists a constant $c \in \mathbb{R}$ such that one of the following conditions holds:
(i) $\quad T(\lambda, n)=\tilde{T}(\lambda, n), \quad \forall n \in \mathcal{L}$,
(ii) $L(\lambda, n)=e^{-2 i \lambda c} \tilde{L}(\lambda, n), \quad \forall n \in \mathcal{L}$,
(iii) $\quad R(\lambda, n)=e^{2 i \lambda c} \tilde{R}(\lambda, n), \quad \forall n \in \mathcal{L}$.

Then the potentials a and ã coincide up to translations, i.e. there exists a constant $\sigma \in \mathbb{R}$ such that $a(x)=\tilde{a}(x+\sigma), \forall x \in \mathbb{R}$. As a consequence, $M=\tilde{M}, Q^{2}=\tilde{Q}^{2}, \Lambda=\tilde{\Lambda}$.

Comments

- Zero energy: When $\lambda=0$,

$$
S(0, n)=\left(\begin{array}{cc}
\frac{1}{\cosh (A n)} & i \tanh (A n) \\
i \tanh (A n) & \frac{1}{\cosh (A n)}
\end{array}\right), \quad \forall n \in \mathbb{N}^{*},
$$

where $A=\int_{\mathbb{R}} a(x) d x$.

- Re-interpretation: Let $\Sigma=\mathbb{R}_{x} \times S_{\theta, \varphi}^{2}$ equipped with the Riemanniann metric $g_{0}=d x^{2}+a^{-2}(x)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)$ where $a \in C^{\infty}(\mathbb{R})$, $a>0$ and satisfying the asymptotics

$$
\begin{aligned}
a(x) & =a_{ \pm} e^{\kappa_{ \pm} x}+O\left(e^{3 \kappa_{ \pm} x}\right), \quad x \rightarrow \pm \infty \\
a^{\prime}(x) & =a_{ \pm} \kappa_{ \pm} e^{\kappa_{ \pm} x}+O\left(e^{3 \kappa_{ \pm} x}\right), \quad x \rightarrow \pm \infty
\end{aligned}
$$

for some constants $a_{ \pm}>0$ and $\kappa_{+}<0, \kappa_{-}>0$. We can bring the Dirac equation on Σ under the same form as above, i.e.

$$
i \partial_{t} u=\mathbb{D}_{g_{0}} u, \quad \mathbb{D}_{g_{o}}=\Gamma^{1} D_{x}+a(x) D_{S^{2}}
$$

Main result revisited

Theorem (Daudé, Nicoleau, AHP (2010))

Let $\Sigma=\mathbb{R}_{x} \times S_{\theta, \varphi}^{2}$ equipped with $g_{0}=d x^{2}+a^{-2}(x)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)$ satisfying the previous assumptions. Consider the evolution equation $i \partial_{t} u=\mathbb{D}_{g_{0}} u$ and the corresponding scattering matrices $S(\lambda, n)$ for all $n \in \mathbb{N}^{*}$. Then the function $a(x)$ (and thus the metric g_{0}) is uniquely determined up to translations from the knowledge of either $T(\lambda, n)$ or $R(\lambda, n)$ or $L(\lambda, n)$ for a fixed $\lambda \neq 0$ and for all $n \in \mathcal{L} \subset \mathbb{N}^{*}$ satisfying the Muntz condition $\sum_{n \in \mathcal{L}} \frac{1}{n}=\infty$.

References

- Asymptotically hyperbolic manifolds (without symmetry assumptions):
- Joshi, Sa Barreto, Acta Math. [2000]: "asymptotics of the metric uniquely determined from the knowledge of $S(\lambda)$ (associated to the laplacian) at a fixed energy $\lambda \in \mathbb{R}^{+}$outside a discret set".
- Sa Barreto, Duke Math. J. [2005]: "metric uniquely determined from the knowledge of $S(\lambda)$ (associated to the laplacian) for all $\lambda \in \mathbb{R}^{+}$ except on a discret set of energies".
- De Sitter-Reissner-Nordström black holes:
- Daude, Nicoleau, Rev. Math. Phys. [2010]: " M, Q^{2}, Λ uniquely determined by $S(\lambda)$ (associated to Dirac fields) for all $\lambda \in I$, I any open interval of \mathbb{R} ".

Ideas of the proof

- Complexification of the angular momentum $\left(a \in L^{1}(\mathbb{R})\right.$ is enough).
- Unphysical scattering matrix: $S(\lambda, z), \lambda \in \mathbb{R}, z \in \mathbb{C} \backslash\{$ poles $\}$.
- Nevanlinna class: $\frac{1}{T(\lambda, z)}, \frac{R(\lambda, z)}{T(\lambda, z)}, \frac{L(\lambda, z)}{T(\lambda, z)} \in N\left(\Pi^{+}\right)$.
- $S(\lambda, z)$ is uniquely determined on $\mathbb{C} \backslash\{$ poles $\}$.
- New radial variable: $X=\int_{-\infty}^{x} a(s) d s, \quad X \in(0, A)$.
- The components $f_{L j}(X)$ of the Jost function $F_{L}(X)$ satisfy a non-selfadjoint Sturm-Liouville equation:

$$
\begin{gathered}
(L): \quad u^{\prime \prime}+q(X, \lambda) u=z^{2} u \\
q(X, \lambda)=\frac{\omega^{-}}{X^{2}}+O(1), X \rightarrow 0, \\
\\
q(X, \lambda)=\frac{\omega^{+}}{(A-X)^{2}}+O(1), X \rightarrow A .
\end{gathered}
$$

- iza $a_{L 1}(\lambda, z)=W\left(f_{L 1}(X), f_{R 2}(X)\right)$, $i z a \operatorname{L2}(\lambda, z)=W\left(f_{L 2}(X), f_{R 2}(X)\right)$, etc. \ldots
- Asymptotics of $a_{L j}(\lambda, z)$ and of the scattering coefficients when $z \rightarrow \infty$.
- Inverse result by classical method.

Complexification of the angular momentum

- Stationary equation:

$$
\begin{equation*}
\left[\Gamma^{1} D_{x}-z a(x) \Gamma^{2}\right] \psi=\lambda \psi, \quad \lambda \in \mathbb{R}, \quad z \in \mathbb{C} \tag{2}
\end{equation*}
$$

- Jost functions $F_{L}(x, \lambda, z)$ and $F_{R}(x, \lambda, z)$: solutions of (2) satisfying the integral equations:

$$
\begin{aligned}
F_{L}(x, \lambda, z) & =e^{i \Gamma^{1} \lambda x}-i z \Gamma^{1} \int_{x}^{+\infty} e^{-i \Gamma^{1} \lambda(y-x)} a(y) \Gamma^{2} F_{L}(y, \lambda, z) d y \\
F_{R}(x, \lambda, z) & =e^{i \Gamma^{1} \lambda x}+i z \Gamma^{1} \int_{-\infty}^{x} e^{-i \Gamma^{1} \lambda(y-x)} a(y) \Gamma^{2} F_{R}(y, \lambda, z) d y
\end{aligned}
$$

- solvable by an iterative procedure.
- $z \longrightarrow F_{L}(x, \lambda, z), F_{R}(x, \lambda, z)$ are analytic on \mathbb{C}.

Complexification of the angular momentum

Scattering data A_{L} :

$$
A_{L}(\lambda, z)=I_{2}-i z \Gamma^{1} \int_{\mathbb{R}} e^{-i \Gamma^{1} \lambda y} a(y) \Gamma^{2} F_{L}(y, \lambda, z) d y
$$

extends analytically to \mathbb{C} as well.

Lemma

- $a_{L j} \in H(\mathbb{C}), \quad\left|a_{L j}(\lambda, z)\right| \leq e^{A|z|}, \quad A=\int_{\mathbb{R}} a(x) d x$.
- $z \longrightarrow a_{L 1}(\lambda, z), a_{L 4}(\lambda, z)$ even, $\quad z \longrightarrow a_{L 2}(\lambda, z), a_{L 3}(\lambda, z)$ odd.

Remark: When $\lambda=0$, explicit calculations can be made:
$a_{L 1}(0, z)=a_{L 4}(0, z)=\cosh (z A), \quad a_{L 2}(0, z)=-a_{L 3}(0, z)=-i \sinh (z A)$.

Complexification of the angular momentum

Lemma

$$
\left|a_{L j}(\lambda, z)\right| \leq e^{A|\operatorname{Re}(z)|} .
$$

Proof: The unitarity of $S(\lambda, z)$ for $z \in \mathbb{R}$ extends analytically to

$$
a_{L 1}(\lambda, z) \overline{a_{L 1}(\lambda, \bar{z})}-a_{L 3}(\lambda, z) \overline{a_{L 3}(\lambda, \bar{z})}=1, \forall z \in \mathbb{C} .
$$

- Imaginary axis: $z=i t, t \in \mathbb{R},\left|a_{L 1}(\lambda, i t)\right|^{2}+\left|a_{L 3}(\lambda, i t)\right|^{2}=1$. Hence

$$
\left|a_{L j}(\lambda, i t)\right| \leq 1, \forall t \in \mathbb{R}
$$

- Real axis: $\left|a_{L j}(\lambda, x)\right| \leq e^{A|x|}, \forall x \in \mathbb{R}$.
- By the Phragmen-Lindelöf Thm, $\left|a_{L j}(\lambda, z)\right| \leq e^{A|\operatorname{Re}(z)|}$.

Nevanlinna class

Theorem (Nevanlinna class, Uniqueness)

A function f belongs to $N\left(\Pi^{+}\right)$, where $\Pi^{+}=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$, if it is analytic on Π^{+}and if

$$
\sup _{0<r<1} \int_{-\pi}^{\pi} \ln ^{+}\left|f\left(\frac{1-r e^{i \varphi}}{1+r e^{i \varphi}}\right)\right| d \varphi<\infty,
$$

where $\ln ^{+}(x)=\left\{\begin{array}{cc}\ln x, & \ln x \geq 0, \\ 0, & \ln x<0 .\end{array}\right.$
If $f \in N\left(\Pi^{+}\right)$satisfies $f(n)=0$ for all $n \in \mathcal{L} \subset \mathbb{N}^{*}$ such that $\sum_{n \in \mathcal{L}} \frac{1}{n}=\infty$, then $f \equiv 0$ in Π^{+}.

Nevanlinna class and applications

Lemma

- $a_{\llcorner j}(\lambda, z)_{\Pi^{+}} \in N\left(\Pi^{+}\right)$.
- If $a_{L j}(\lambda, n)=\tilde{a}_{L j}(\lambda, n), \forall n \in \mathcal{L}$, then

$$
a_{L j}(\lambda, z)=\tilde{a}_{L j}(\lambda, z), \forall z \in \mathbb{C} .
$$

Proof: Assume $|f(z)| \leq e^{A R e(z)}, \forall z \in \Pi^{+}$.

$$
\log ^{+}\left|f\left(\frac{1-r e^{i \varphi}}{1+r e^{i \varphi}}\right)\right| \leq A \cdot \operatorname{Re}\left(\frac{1-r e^{i \varphi}}{1+r e^{i \varphi}}\right) \leq \frac{1-r^{2}}{1+r^{2}+2 r \cos \varphi} .
$$

We conclude using $\int_{-\pi}^{\pi} \frac{1-r^{2}}{1+r^{2}+2 r \cos \varphi} d \varphi=2 \pi$.

Nevanlinna class and applications

Lemma

Assume there exists $c \in \mathbb{R}$ such that $L(\lambda, n)=e^{-2 i \lambda c} \tilde{L}(\lambda, n), \forall n \in \mathcal{L}$.
Then, for all $z \in \mathbb{C}$,

$$
\begin{gathered}
a_{L 1}(\lambda, z)=\tilde{a}_{L 1}(\lambda, z), \quad a_{L 2}(\lambda, z)=e^{2 i \lambda c} \tilde{a}_{L 2}(\lambda, z), \\
a_{L 3}(\lambda, z)=e^{-2 i \lambda c} \tilde{a}_{L 3}(\lambda, z), \quad a_{L 4}(\lambda, z)=\tilde{a}_{L 4}(\lambda, z) .
\end{gathered}
$$

Proof:

- By assumption, $a_{L 3}(\lambda, n) \tilde{a}_{L 1}(\lambda, n)=e^{-2 i \lambda c} a_{L 1}(\lambda, n) \tilde{a}_{L 3}(\lambda, n), \forall n \in \mathcal{L}$. But $z \longrightarrow a_{L 3}(\lambda, z) \tilde{a}_{L 1}(\lambda, z) \in N$. Thus

$$
\begin{equation*}
a_{L 3}(\lambda, z) \tilde{a}_{L 1}(\lambda, z)=e^{-2 i \lambda c} a_{L 1}(\lambda, z) \tilde{a}_{L 3}(\lambda, z), \quad \forall z \in \mathbb{C} . \tag{3}
\end{equation*}
$$

- (Unitarity) $a_{L 1}(\lambda, z) \overline{a_{L 1}(\lambda, \bar{z})}=1-a_{L 3}(\lambda, z) \overline{a_{L 3}(\lambda, \bar{z})}, \forall z \in \mathbb{C}$. Thus $a_{L 1}$ and $a_{L 3}$ have no common zeros and (3) entails that $a_{L j}$ and $\tilde{a}_{L j}$ have the same zeros with the same multiplicity.

Nevanlinna class and applications

- Recall that $a \longrightarrow a_{L 1}(\lambda, z)$ even and $a_{L 1}(\lambda, 0)=1$. Hence $a_{L 1}(\lambda, z)=f\left(z^{2}\right)$ where $f(z) \in H(\mathbb{C})$ and is of order $\frac{1}{2}$. By Hadamard's factorization Thm, we get:

$$
a_{L 1}(\lambda, z)=\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{z_{n}^{2}}\right)=\tilde{a}_{L 1}(\lambda, z)
$$

Remark: The Lemma remains true if we assume one of the following

- $T(\lambda, n)=\tilde{T}(\lambda, n), \quad \forall n \in \mathcal{L}$,
- $R(\lambda, n)=e^{2 i \lambda c} \tilde{R}(\lambda, n), \quad \forall n \in \mathcal{L}$.

A first inverse result

Corollary (First inverse result)

We assume that the hypotheses of the main Thm are satisfied for all λ in an open interval I. Then the potential $a(x)$ is uniquely determined up to translations.

Proof:

- By the previous Lemma,

$$
a_{L 2}(\lambda, z)=e^{2 i \lambda c} \tilde{a}_{L 2}(\lambda, z), \quad \forall z \in \mathbb{C}, \quad \forall \lambda \in I .
$$

- We let $z \rightarrow 0$ and we look at the first term in the entire serie defining $a_{L 2}$. Then

$$
\begin{equation*}
\hat{a}(2 \lambda)=e^{2 i \lambda c \hat{\tilde{a}}(2 \lambda), \quad \forall \lambda \in I . ~} \tag{4}
\end{equation*}
$$

- $a(x)$ is exponentially decreasing. Hence, the equality (4) extends analytically to a small strip containing \mathbb{R}. Hence, $a(x)=\tilde{a}(x-c), \forall x \in \mathbb{R}$.

A new radial variable

- Radial variable X : Set $A=\int_{\mathbb{R}} a(x) d x$. Define

$$
\begin{aligned}
g: & \mathbb{R} \longrightarrow(0, A), \\
& x \longrightarrow g(x)=X=\int_{-\infty}^{x} a(s) d s .
\end{aligned}
$$

- Notations: $f_{L j / R j}(X, \lambda, z):=f_{L j / R j}\left(g^{-1}(X), \lambda, z\right)$.
- The components $f_{L 1}(X, \lambda, z), f_{L 2}(X, \lambda, z), f_{R 1}(X, \lambda, z), f_{R 2}(X, \lambda, z)$ satisfy a non-selfadjoint singular Sturm-Liouville equation:

$$
\begin{gathered}
{\left[\frac{d^{2}}{d X^{2}}+q(X, \lambda)\right] f\left(X^{\prime} \lambda, z\right)=z^{2} f(X, \lambda, z),} \\
q(X, \lambda)=\frac{\lambda^{2}}{a^{2}(x)}+i \lambda \frac{a^{\prime}(x)}{a^{3}(x)} . \\
q(X, \lambda)=\frac{\omega^{-}}{X^{2}}+O(1), X \rightarrow 0, \quad \omega_{-}=\frac{\lambda^{2}}{\kappa_{-}^{2}}+i \frac{\lambda}{\kappa_{-}}, \\
q(X, \lambda)=\frac{\omega^{+}}{(A-X)^{2}}+O(1), X \rightarrow A, \quad \omega_{+}=\frac{\lambda^{2}}{\kappa_{+}^{2}}+i \frac{\lambda}{\kappa_{+}} .
\end{gathered}
$$

Asymptotics of the $a_{L j}$

- Remark: The spectral data $a_{L j}$ are interpreted in terms of Wronskians of the $f_{L j / R j}(X)$, i.e.

$$
\begin{gathered}
a_{L 1}(\lambda, z)=\frac{1}{i z} W\left(f_{L 1}(X), f_{R 2}(X)\right), a_{L 2}(\lambda, z)=\frac{1}{i z} W\left(f_{L 2}(X), f_{R 2}(X)\right), \\
a_{L 3}(\lambda, z)=-\frac{1}{i z} W\left(f_{L 1}(X), f_{R 1}(X)\right), a_{L 4}(\lambda, z)=-\frac{1}{i z} W\left(f_{L 2}(X), f_{R 1}(X)\right)
\end{gathered}
$$

- Asymptotics: The components $f_{L 1}(X, \lambda, z), f_{L 2}(X, \lambda, z)$, $f_{R 1}(X, \lambda, z), f_{R 2}(X, \lambda, z)$ are perturbations of modified Bessel functions whose asymptotics are well-known. Using the previous Wronskians, we get for example:

$$
a_{L 4}(\lambda, z) \sim \text { Const. } z^{i \lambda\left(\frac{1}{\kappa_{+}}-\frac{1}{\kappa_{-}}\right)} e^{z A}, \quad z \rightarrow+\infty
$$

- An application: Since the $a_{L j}$ are uniquely determined, we get:

$$
\int_{\mathbb{R}} a(x) d x=A=\tilde{A}=\int_{\mathbb{R}} \tilde{a}(x) d x
$$

Application to the inverse problem

Consider two black holes with parameters $\left(M, Q^{2}, \Lambda\right)$ and $(\tilde{M}, \tilde{Q}, \tilde{\Lambda})$. Denote by $a(x)$ and $\tilde{a}(x)$ the corresponding potentials. We assume that

$$
\begin{gathered}
\text { (i) } \quad T(\lambda, n)=\tilde{T}(\lambda, n), \quad \forall n \in \mathcal{L}, \\
\text { (ii) } \\
\text { Liii) } \quad R(\lambda, n)=e^{-2 i \lambda c} \tilde{L}(\lambda, n)=e^{2 i \lambda c} \tilde{R}(\lambda, n), \quad \forall n \in \mathcal{L},
\end{gathered}
$$

- For simplicity, take $c=0$ in the above formulae.
- Introduce

$$
\begin{array}{lll}
g: & \mathbb{R} \longrightarrow(0, A), \\
& x \longrightarrow g(x)=\int_{-\infty}^{x} a(s) d s ., \quad \tilde{g}: & \mathbb{R} \longrightarrow(0, \tilde{A}), \\
& x \longrightarrow \tilde{g}(x)=\int_{-\infty}^{x} \tilde{a}(s) d s .
\end{array}
$$

- Since $A=\tilde{A}$, set $X \in(0, A)$ and

$$
F_{R}(X, \lambda, z)=F_{R}\left(g^{-1}(X), \lambda, z\right), \quad \tilde{F_{R}}(X, \lambda, z)=\tilde{F_{R}}\left(\tilde{g}^{-1}(X), \lambda, z\right)
$$

Application to the inverse problem

- For $X \in(0, A)$, define the 2×2 matrix-valued function $P(X, \lambda, z)$ by

$$
P(X, \lambda, z) \tilde{F_{R}}(X, \lambda, z)=F_{R}(X, \lambda, z)
$$

- By inverting $\tilde{F_{R}}$, we get for instance

$$
\begin{gathered}
P_{1}(X, \lambda, z)=1+\frac{F_{R 1}(X)}{a_{L 4}}\left(\tilde{F}_{L 4}(X)-F_{L 4}(X)\right)+\frac{F_{L 2}(X)}{a_{L 4}}\left(F_{R 3}(X)-\tilde{F}_{R 3}(X)\right) \\
P_{2}(X, \lambda, z)=\frac{1}{a_{L 4}}\left(F_{L 2}(X) \tilde{F}_{R 1}(X)-\tilde{F}_{L 2}(X) F_{R 1}(X)\right)
\end{gathered}
$$

- From the properties of $F_{R}(X, \lambda, z)$, it is easy to show that the functions $z \longrightarrow P_{j}(X, \lambda, z)$ belong to $H(\mathbb{C})$, are of exponential type and are bounded on $i \mathbb{R}$.
- Using simple algebraic manipulations and the previous asymptotics on the $a_{L j}(\lambda, z), z \rightarrow \infty$, we can show that $z \longrightarrow P_{j}(X, \lambda, z)$ are also bounded on \mathbb{R}.

Application to the inverse problem

- Phragmen-Lindelöf Thm: $z \longrightarrow P_{j}(X, \lambda, z)$ are bounded on \mathbb{C}.
- Liouville Thm: $P_{j}(X, \lambda, z)=P_{j}(X, \lambda, 0)$ for all $z \in \mathbb{C}$.
- In the case $z=0$, explicit calculations lead to

$$
P_{j}(X, \lambda, z)=e^{i \Gamma^{1} \lambda\left(g^{-1}(X)-\tilde{g}^{-1}(X)\right)}, \forall z \in \mathbb{C}
$$

- From the definition $P(X, \lambda, z) \tilde{F_{R}}(X, \lambda, z)=F_{R}(X, \lambda, z)$, we thus obtain

$$
\tilde{F}_{R}(X, \lambda, z)=e^{i \lambda \Gamma^{1}\left(\tilde{g}^{-1}(X)-g^{-1}(X)\right)} F_{R}(X, \lambda, z), j=1,2
$$

In particular,

$$
\tilde{f}_{R j}(X, \lambda, z)=e^{i \lambda\left(\tilde{g}^{-1}(X)-g^{-1}(X)\right)} f_{R j}(X, \lambda, z), j=1,2
$$

Application to the inverse problem

- Using that the Wronskians

$$
\begin{aligned}
& W\left(f_{R 1}(X, \lambda, z), F_{R 2}(X, \lambda, z)\right)=i z \\
& W\left(\tilde{F}_{R 1}(X, \lambda, z), \tilde{F}_{R 2}(X, \lambda, z)\right)=i z
\end{aligned}
$$

we obtain

$$
e^{i \lambda\left(\tilde{g}^{-1}(X)-g^{-1}(X)\right)}=1
$$

Hence, by a continuity argument

$$
\begin{equation*}
\tilde{g}^{-1}(X)=g^{-1}(X)+\frac{k \pi}{\lambda} \tag{5}
\end{equation*}
$$

- Taking the derivative of (5) w.r.t X, we get:

$$
\frac{1}{\tilde{a}\left(\tilde{g}^{-1}(X)\right)}=\frac{1}{a\left(g^{-1}(X)\right)}, \quad \forall X \in(0, A) .
$$

Equivalently, $a(x)=\tilde{a}\left(x+\frac{k \pi}{\lambda}\right)$.

