Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes

Thierry DAUDÉ

Université de Cergy-Pontoise

(Joint work with FRANCOIS NICOLEAU, Université de Nantes)

CMAP, December 8, 2010

Outline of the talk

- De Sitter-Reissner-Nordström black holes:
 - Spacetime (\mathcal{M}, g) with g lorentzian metric.
 - g completely characterized by M (mass), Q (electric charge) and Λ (cosmological constant).

"Can we determine g by observing waves at infinities?"

- Massless Dirac fields in dS-RN black holes:
 - Dirac waves: $i\partial_t u = \mathbb{D}u$, \mathbb{D} Dirac operator.
 - Scattering matrix $S_g(\lambda)$, λ a fixed energy.
 - ▶ Spherical symmetry: $S_g(\lambda) \sim (S_g(\lambda, l))$ where $l \in \frac{1}{2} + \mathbb{N}$ angular momentum.
 - Stationary representation of $S_g(\lambda, l)$ in terms of Jost functions.

• Main result:

- $g \longrightarrow S_g(\lambda)$ is one-to-one for a fixed energy $\lambda \neq 0$.
- Proof: complexification of the angular momentum I

De Sitter-Reissner-Nordström Black Holes

• Spacetime (\mathcal{M},g) with

$$\mathcal{M} = \mathbb{R}_t \times \Sigma, \quad \Sigma =]r_-, r_+[r \times S^2_{\theta,\varphi}]$$

equipped with a Lorentzian metric (signature $\left(1,-1,-1,-1\right)$)

$$g=F(r)\,dt^2-F(r)^{-1}dr^2-r^2(d\theta^2+\sin^2\theta\,d\varphi^2),$$

where

$$F(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - \frac{\Lambda}{3}r^2$$

• Singularities: if $Q^2 < \frac{9}{8}M^2$ and $\Lambda M^2 << 1$, then F possesses 3 positive roots: $0 < r_c < r_- < r_+$.

$$F(r) > 0$$
 in $\{r_{-} < r < r_{+}\}$

 $\{r = r_{-}\}$: event horizon (coordinate singularity). $\{r = r_{+}\}$: cosmological horizon (coordinate singularity).

Properties of De Sitter-Reissner-Nordström black holes

• Symmetries:

- The generators of SO(3) are Killing.
- The generator of time-translation, ∂_t , is Killing.
- ∂_t timelike, $\partial_r, \partial_\theta, \partial_\varphi$ spacelike.
- \mathcal{M} is static: ∂_t globally defined timelike Killing field, \perp_g to $\Sigma_t = \{t\} \times \Sigma$ everywhere.

• Static observers: integral curves of $U = \frac{1}{\sqrt{F}} \partial_t$. Far from $\{r = r_{\pm}\}$,

 $t \propto \tau$, τ proper time.

Horizons: the null radial geodesics do not reach {r = r_±} in a finite time t. The horizons are perceived as asymptotic regions by static observers.

Regge-Wheeler variable

• Regge-Wheeler variable: $\frac{dx}{dr} = F^{-1}(r)$

$$x = \frac{1}{2\kappa_n} \ln(r - r_n) + \frac{1}{2\kappa_c} \ln(r - r_c) + \frac{1}{2\kappa_-} \ln(r - r_-) + \frac{1}{2\kappa_+} \ln(r_+ - r) + c,$$

- nstant of integrati
- Framework: $\mathcal{M} = \mathbb{R}_t \times \Sigma$, $\Sigma = \mathbb{R}_x \times S^2_{\theta_{1,0}}$,

$$g = F(r)(dt^2 - dx^2) - r^2(d\theta^2 + \sin^2\theta d\varphi^2).$$

$$\{r = r_{\pm}\} \longleftrightarrow \{x = \pm \infty\}.$$

• Null radial geodesics: $t \pm x = \text{cst.}$

Massless Dirac fields in dS-RN black holes

Hamiltonian form: $i\partial_t \psi = \mathbb{D}\psi$, $\mathbb{D} = \Gamma^1 D_x + a(x)\mathbb{D}_{S^2}$.

•
$$\psi \in \mathcal{H} = L^2(\mathbb{R}_x \times S^2, dxd\omega; \mathbb{C}^2),$$

•
$$D_x = -i\partial_x$$
,

- Dirac operator on S^2 : $\mathbb{D}_{S^2} = -i\Gamma^2(\partial_\theta + \frac{\cot\theta}{2}) \frac{i}{\sin\theta}\Gamma^3\partial_{\varphi}$,
- Dirac matrices: $\Gamma^{i}\Gamma^{j} + \Gamma^{j}\Gamma^{i} = 2\delta_{ij}\mathrm{Id}, \quad \forall i, j = 1, 2, 3.$

$$\Gamma^{1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \quad \Gamma^{2} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \Gamma^{3} = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array}\right).$$

• Potential: $a(x) = \frac{\sqrt{F(r(x))}}{r(x)}$.

$$a(x) = a_{\pm}e^{\kappa_{\pm}x} + O(e^{3\kappa_{\pm}x}), \ x \to \pm \infty,$$

$$a'(x) = a_{\pm}\kappa_{\pm}e^{\kappa_{\pm}x} + O(e^{3\kappa_{\pm}x}), \ x \to \pm \infty.$$

Spin-weighted spherical harmonics

Spin-weighted spherical harmonics: $L^2(S^2, d\omega; \mathbb{C}^2) = \bigoplus_{(I,m) \in \mathcal{L}} F_{Im}$,

$$F_{lm}(\theta,\varphi) = \begin{pmatrix} Y_{-\frac{1}{2},m}^{l}(\theta,\varphi) \\ Y_{\frac{1}{2},m}^{l}(\theta,\varphi) \end{pmatrix}, \quad (l,m) \in \mathcal{L} = \{l = \frac{1}{2} + \mathbb{N}, \ l - |m| \in \mathbb{N}\}.$$

Simplifications

•
$$\mathcal{H} = \oplus \mathcal{H}_{Im}, \quad \mathcal{H}_{Im} = L^2(\mathbb{R}_x, dx; \mathbb{C}^2) \otimes F_{Im} \simeq L^2(\mathbb{R}_x, dx; \mathbb{C}^2),$$

• \mathcal{H}_{Im} are let invariant through the action of \mathbb{D} ,

•
$$\mathbb{D}_{|\mathcal{H}_{lm}} = \mathbb{D}_{lm}, \quad \mathbb{D}_{lm} = \Gamma^1 D_x - (l + \frac{1}{2}) a(x) \Gamma^2.$$

Notations:

Spectral results

Hamiltonians of reference:

- $\mathbb{D}_0 = \Gamma^1 D_x$,
- $\mathbb{D}_n = \Gamma^1 D_x na(x)\Gamma^2$.

Lemma (Selfadjointness, spectrum)

 $(\mathbb{D}_n, \mathbb{D}_0)$ selfadjoint on $\mathcal{H} = L^2(\mathbb{R}_x, dx; \mathbb{C}^2)$ with domains $H^1(\mathbb{R}_x; \mathbb{C}^2)$. For all $n \in \mathbb{N}$,

$$\sigma(\mathbb{D}_n) = \sigma_{ac}(\mathbb{D}_n) = \mathbb{R}.$$

Lemma (Wave and scattering operators)

For all $n \in \mathbb{N}^*$, the wave operators $W_n^{\pm} = s - \lim_{t \to \pm \infty} e^{it\mathbb{D}_n} e^{-it\mathbb{D}_0}$ exist and are asymptotically complete on \mathcal{H} . The scattering operators $S_n = (W_n^+)^{-1} W_n^-$ are unitary on \mathcal{H} and commute with \mathbb{D}_0 .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

The scattering matrix

Scattering operator: at late times, a solution e^{-itDn}ψ can be compared with simpler solutions e^{-itD0}ψ[±], t→±∞:

$$\psi^{\pm} = \begin{pmatrix} \psi_1^{\pm} \\ \psi_2^{\pm} \end{pmatrix}, \quad e^{-it\mathbb{D}_0}\psi^{\pm} = \begin{pmatrix} \psi_1^{\pm}(x-t) \\ \psi_2^{\pm}(x+t) \end{pmatrix}.$$
$$S_n : \psi^- \longrightarrow \psi^+.$$

• Scattering matrix: Let $(F_0\psi)(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\Gamma^1\lambda x} \psi(x) dx$. The scattering matrix is defined by

$$S(\lambda, n)\psi(\lambda) = (F_0 S_n F_0^{-1}\psi)(\lambda).$$

For all $n \in \mathbb{N}^*$, $S(\lambda, n)$ is a 2 × 2-unitary matrix.

Stationary representation of $S(\lambda, n)$

• Stationary equation:

$$[\Gamma^1 D_x - na(x)\Gamma^2]\psi = \lambda\psi, \quad \lambda \in \mathbb{R}, \ n \in \mathbb{N}^*.$$
(1)

Jost functions: F_L(x, λ, n) and F_R(x, λ, n) are the 2 × 2 matrix-valued solutions of (1) satisfying the asymptotics:

$$\begin{array}{lll} F_L(x,\lambda,n) &=& e^{i\Gamma^1\lambda x}(I_2+o(1)), \ x\to+\infty, \\ F_R(x,\lambda,n) &=& e^{i\Gamma^1\lambda x}(I_2+o(1)), \ x\to-\infty. \end{array}$$

• F_L and F_R are fundamental matrices of (1): det $F_{L/R} = 1$. • $\exists A_L(\lambda, n) = \begin{bmatrix} a_{L1}(\lambda, n) & a_{L2}(\lambda, n) \\ a_{L3}(\lambda, n) & a_{L4}(\lambda, n) \end{bmatrix}$ such that $F_R(\lambda, n) = F_L(\lambda, n)A_L(\lambda, n)$. • Scattering matrix: $S(\lambda, n) = \begin{bmatrix} T(\lambda, n) & R(\lambda, n) \\ L(\lambda, n) & T(\lambda, n) \end{bmatrix}$, unitary, $T(\lambda, n) = a_{L1}^{-1}(\lambda, n), \quad R(\lambda, n) = -\frac{a_{L2}(\lambda, n)}{a_{L1}(\lambda, n)}, \quad L(\lambda, n) = \frac{a_{L3}(\lambda, n)}{a_{L1}(\lambda, n)}.$

Dependence on the choice of Regge-Wheeler variable

The Regge-Wheeler variable is defined up to a constant of integration. But x and $\tilde{x} = x + c$ define the same black hole.

The above definition of the scattering matrix depends on the Regge-Wheler variable, *i.e.* on the choice of the constant of integration.

The potential \tilde{a} corresponding to the choice of \tilde{x} satisfies: $\tilde{a}(\tilde{x}) = a(\tilde{x} - c)$.

$$S(\lambda, n) = e^{i\Gamma^1\lambda c} \tilde{S}(\lambda, n) e^{-i\Gamma^1\lambda c},$$

Written in components, we have

$$\begin{bmatrix} T(\lambda, n) & R(\lambda, n) \\ L(\lambda, n) & T(\lambda, n) \end{bmatrix} = \begin{bmatrix} \tilde{T}(\lambda, n) & e^{2i\lambda c}\tilde{R}(\lambda, n) \\ e^{-2i\lambda c}\tilde{L}(\lambda, n) & \tilde{T}(\lambda, n) \end{bmatrix}$$

The main result

Theorem (Daude, Nicoleau, AHP (2010))

Let (M, Q, Λ) and $(\tilde{M}, \tilde{Q}, \tilde{\Lambda})$ be the parameters of two dS-RN black holes. We denote by a(x) and $\tilde{a}(x)$ the corresponding potentials appearing in (1). Let $S(\lambda, n)$ and $\tilde{S}(\lambda, n)$ be the corresponding scattering matrices at a fixed energy $\lambda \neq 0$. Consider a subset \mathcal{L} of \mathbb{N}^* that satisfies the Müntz condition $\sum_{n \in \mathcal{L}} \frac{1}{n} = \infty$ and assume that there exists a constant $c \in \mathbb{R}$ such that one of the following conditions holds:

(i)
$$T(\lambda, n) = \tilde{T}(\lambda, n), \quad \forall n \in \mathcal{L},$$

(ii) $L(\lambda, n) = e^{-2i\lambda c} \tilde{L}(\lambda, n), \quad \forall n \in \mathcal{L},$
(iii) $R(\lambda, n) = e^{2i\lambda c} \tilde{R}(\lambda, n), \quad \forall n \in \mathcal{L}.$

Then the potentials a and \tilde{a} coincide up to translations, i.e. there exists a constant $\sigma \in \mathbb{R}$ such that $a(x) = \tilde{a}(x + \sigma)$, $\forall x \in \mathbb{R}$. As a consequence, $M = \tilde{M}, \ Q^2 = \tilde{Q}^2, \ \Lambda = \tilde{\Lambda}$.

Comments

• Zero energy: When $\lambda = 0$,

$$S(0,n) = \begin{pmatrix} \frac{1}{\cosh(An)} & i \tanh(An) \\ i \tanh(An) & \frac{1}{\cosh(An)} \end{pmatrix}, \quad \forall n \in \mathbb{N}^*,$$

where $A = \int_{\mathbb{R}} a(x) dx$.

• Re-interpretation: Let $\Sigma = \mathbb{R}_x \times S^2_{\theta,\varphi}$ equipped with the Riemanniann metric $g_0 = dx^2 + a^{-2}(x)(d\theta^2 + \sin^2\theta d\varphi^2)$ where $a \in C^{\infty}(\mathbb{R})$, a > 0 and satisfying the asymptotics

$$\begin{array}{lll} a(x) &=& a_{\pm}e^{\kappa_{\pm}x}+O(e^{3\kappa_{\pm}x}), \quad x \to \pm \infty, \\ a'(x) &=& a_{\pm}\kappa_{\pm}e^{\kappa_{\pm}x}+O(e^{3\kappa_{\pm}x}), \quad x \to \pm \infty, \end{array}$$

for some constants $a_{\pm} > 0$ and $\kappa_{+} < 0$, $\kappa_{-} > 0$. We can bring the Dirac equation on Σ under the same form as above, *i.e.*

$$i\partial_t u = \mathbb{D}_{g_0} u, \quad \mathbb{D}_{g_o} = \Gamma^1 D_x + a(x) D_{S^2}.$$

Theorem (Daudé, Nicoleau, AHP (2010))

Let $\Sigma = \mathbb{R}_x \times S^2_{\theta,\varphi}$ equipped with $g_0 = dx^2 + a^{-2}(x)(d\theta^2 + \sin^2\theta d\varphi^2)$ satisfying the previous assumptions. Consider the evolution equation $i\partial_t u = \mathbb{D}_{g_0} u$ and the corresponding scattering matrices $S(\lambda, n)$ for all $n \in \mathbb{N}^*$. Then the function a(x) (and thus the metric g_0) is uniquely determined up to translations from the knowledge of either $T(\lambda, n)$ or $R(\lambda, n)$ or $L(\lambda, n)$ for a fixed $\lambda \neq 0$ and for all $n \in \mathcal{L} \subset \mathbb{N}^*$ satisfying the Muntz condition $\sum_{n \in \mathcal{L}} \frac{1}{n} = \infty$.

References

- Asymptotically hyperbolic manifolds (without symmetry assumptions):
 - Joshi, Sa Barreto, Acta Math. [2000]: "asymptotics of the metric uniquely determined from the knowledge of S(λ) (associated to the laplacian) at a fixed energy λ ∈ ℝ⁺ outside a discret set".
 - Sa Barreto, Duke Math. J. [2005]: "metric uniquely determined from the knowledge of S(λ) (associated to the laplacian) for all λ ∈ ℝ⁺ except on a discret set of energies".
- De Sitter-Reissner-Nordström black holes:
 - ▶ Daude, Nicoleau, Rev. Math. Phys. [2010]: " M, Q^2, Λ uniquely determined by $S(\lambda)$ (associated to Dirac fields) for all $\lambda \in I$, I any open interval of \mathbb{R} ".

• • = • • = •

Ideas of the proof

- Complexification of the angular momentum $(a \in L^1(\mathbb{R})$ is enough).
 - Unphysical scattering matrix: $S(\lambda, z)$, $\lambda \in \mathbb{R}$, $z \in \mathbb{C} \setminus \{\text{poles}\}$.
 - ▶ Nevanlinna class: $\frac{1}{T(\lambda,z)}, \frac{R(\lambda,z)}{T(\lambda,z)}, \frac{L(\lambda,z)}{T(\lambda,z)} \in N(\Pi^+).$
 - $S(\lambda, z)$ is uniquely determined on $\mathbb{C} \setminus \{\text{poles}\}$.
- New radial variable: $X = \int_{-\infty}^{x} a(s) ds$, $X \in (0, A)$.
 - ► The components f_{Lj}(X) of the Jost function F_L(X) satisfy a non-selfadjoint Sturm-Liouville equation:

$$\begin{aligned} (L): \qquad u^{''} + q(X,\lambda)u &= z^2 u \\ q(X,\lambda) &= \frac{\omega^-}{X^2} + O(1), \ X \to 0, \\ q(X,\lambda) &= \frac{\omega^+}{(A-X)^2} + O(1), \ X \to A. \end{aligned}$$

- $iza_{L1}(\lambda, z) = W(f_{L1}(X), f_{R2}(X)),$ $iza_{L2}(\lambda, z) = W(f_{L2}(X), f_{R2}(X)),$ etc....
- Asymptotics of $a_{Lj}(\lambda, z)$ and of the scattering coefficients when $z \to \infty$.
- Inverse result by classical method.

Thierry DAUDÉ (UCP)

CMAP, December 8, 2010 16 / 30

Complexification of the angular momentum

• Stationary equation:

$$[\Gamma^1 D_x - za(x)\Gamma^2]\psi = \lambda\psi, \quad \lambda \in \mathbb{R}, \ z \in \mathbb{C}.$$
 (2)

 Jost functions F_L(x, λ, z) and F_R(x, λ, z): solutions of (2) satisfying the integral equations:

$$F_L(x,\lambda,z) = e^{i\Gamma^1\lambda x} - iz\Gamma^1 \int_x^{+\infty} e^{-i\Gamma^1\lambda(y-x)} a(y)\Gamma^2 F_L(y,\lambda,z) dy,$$

$$F_R(x,\lambda,z) = e^{i\Gamma^1\lambda x} + iz\Gamma^1 \int_{-\infty}^x e^{-i\Gamma^1\lambda(y-x)} a(y)\Gamma^2 F_R(y,\lambda,z) dy.$$

solvable by an iterative procedure.

• $z \longrightarrow F_L(x, \lambda, z), F_R(x, \lambda, z)$ are analytic on \mathbb{C} .

Complexification of the angular momentum

Scattering data A_L :

$$A_{L}(\lambda, z) = I_{2} - iz\Gamma^{1}\int_{\mathbb{R}} e^{-i\Gamma^{1}\lambda y} a(y)\Gamma^{2}F_{L}(y, \lambda, z)dy$$

extends analytically to \mathbb{C} as well.

Lemma

•
$$a_{Lj} \in H(\mathbb{C}), |a_{Lj}(\lambda, z)| \le e^{A|z|}, \quad A = \int_{\mathbb{R}} a(x) dx.$$

• $z \longrightarrow a_{L1}(\lambda, z), a_{L4}(\lambda, z)$ even, $z \longrightarrow a_{L2}(\lambda, z), a_{L3}(\lambda, z)$ odd.

Remark: When $\lambda = 0$, explicit calculations can be made: $a_{L1}(0, z) = a_{L4}(0, z) = \cosh(zA)$, $a_{L2}(0, z) = -a_{L3}(0, z) = -i\sinh(zA)$.

くぼう くほう くほう しほ

18 / 30

Complexification of the angular momentum

Lemma

$$|a_{Lj}(\lambda, z)| \leq e^{A|Re(z)|}.$$

Proof: The unitarity of $S(\lambda, z)$ for $z \in \mathbb{R}$ extends analytically to

$$a_{L1}(\lambda, z)\overline{a_{L1}(\lambda, \overline{z})} - a_{L3}(\lambda, z)\overline{a_{L3}(\lambda, \overline{z})} = 1, \ \forall z \in \mathbb{C}.$$

• Imaginary axis: z = it, $t \in \mathbb{R}$, $|a_{L1}(\lambda, it)|^2 + |a_{L3}(\lambda, it)|^2 = 1$. Hence

$$|a_{Lj}(\lambda, it)| \leq 1, \ \forall t \in \mathbb{R}.$$

- Real axis: $|a_{Lj}(\lambda, x)| \le e^{A|x|}, \ \forall x \in \mathbb{R}.$
- By the Phragmen-Lindelöf Thm, $|a_{Lj}(\lambda, z)| \le e^{A|Re(z)|}$.

くぼう くほう くほう しほ

Nevanlinna class

Theorem (Nevanlinna class, Uniqueness)

A function f belongs to $N(\Pi^+)$, where $\Pi^+ = \{z \in \mathbb{C} : Re(z) > 0\}$, if it is analytic on Π^+ and if

$$\sup_{0 < r < 1} \int_{-\pi}^{\pi} \ln^{+} \left| f\left(\frac{1 - re^{i\varphi}}{1 + re^{i\varphi}}\right) \right| d\varphi < \infty,$$

where $\ln^{+}(x) = \begin{cases} \ln x, & \ln x \ge 0, \\ 0, & \ln x < 0. \end{cases}$
If $f \in N(\Pi^{+})$ satisfies $f(n) = 0$ for all $n \in \mathcal{L} \subset \mathbb{N}^{*}$ such that $\sum_{n \in \mathcal{L}} \frac{1}{n} = \infty,$
then $f \equiv 0$ in Π^{+} .

A B > A B >

Nevanlinna class and applications

Lemma

Proof: Assume $|f(z)| \le e^{ARe(z)}, \ \forall z \in \Pi^+.$

$$\log^+ \left| f\left(\frac{1-re^{i\varphi}}{1+re^{i\varphi}}\right) \right| \leq A.Re\left(\frac{1-re^{i\varphi}}{1+re^{i\varphi}}\right) \leq \frac{1-r^2}{1+r^2+2r\cos\varphi}.$$

We conclude using $\int_{-\pi}^{\pi} \frac{1-r^2}{1+r^2+2r\cos\varphi} d\varphi = 2\pi$.

*週 と * ヨ と * ヨ と … ヨ

Nevanlinna class and applications

Lemma

Assume there exists $c \in \mathbb{R}$ such that $L(\lambda, n) = e^{-2i\lambda c} \tilde{L}(\lambda, n), \forall n \in \mathcal{L}$. Then, for all $z \in \mathbb{C}$,

$$\begin{aligned} \mathsf{a}_{L1}(\lambda,z) &= \tilde{\mathsf{a}}_{L1}(\lambda,z), \quad \mathsf{a}_{L2}(\lambda,z) = e^{2i\lambda c} \tilde{\mathsf{a}}_{L2}(\lambda,z), \\ \mathsf{a}_{L3}(\lambda,z) &= e^{-2i\lambda c} \tilde{\mathsf{a}}_{L3}(\lambda,z), \quad \mathsf{a}_{L4}(\lambda,z) = \tilde{\mathsf{a}}_{L4}(\lambda,z). \end{aligned}$$

Proof:

• By assumption, $a_{L3}(\lambda, n)\tilde{a}_{L1}(\lambda, n) = e^{-2i\lambda c}a_{L1}(\lambda, n)\tilde{a}_{L3}(\lambda, n), \forall n \in \mathcal{L}$. But $z \longrightarrow a_{L3}(\lambda, z)\tilde{a}_{L1}(\lambda, z) \in N$. Thus

$$a_{L3}(\lambda, z)\tilde{a}_{L1}(\lambda, z) = e^{-2i\lambda c}a_{L1}(\lambda, z)\tilde{a}_{L3}(\lambda, z), \quad \forall z \in \mathbb{C}.$$
(3)

• (Unitarity) $a_{L1}(\lambda, z)\overline{a_{L1}(\lambda, \overline{z})} = 1 - a_{L3}(\lambda, z)\overline{a_{L3}(\lambda, \overline{z})}, \forall z \in \mathbb{C}$. Thus a_{L1} and a_{L3} have no common zeros and (3) entails that a_{Lj} and \tilde{a}_{Lj} have the same zeros with the same multiplicity.

Thierry DAUDÉ (UCP)

Nevanlinna class and applications

• Recall that $a \longrightarrow a_{L1}(\lambda, z)$ even and $a_{L1}(\lambda, 0) = 1$. Hence $a_{L1}(\lambda, z) = f(z^2)$ where $f(z) \in H(\mathbb{C})$ and is of order $\frac{1}{2}$. By Hadamard's factorization Thm, we get:

$$a_{L1}(\lambda,z) = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{z_n^2}\right) = \tilde{a}_{L1}(\lambda,z).$$

Remark: The Lemma remains true if we assume one of the following

•
$$T(\lambda, n) = \tilde{T}(\lambda, n), \quad \forall n \in \mathcal{L},$$

• $R(\lambda, n) = e^{2i\lambda c} \tilde{R}(\lambda, n), \quad \forall n \in \mathcal{L}.$

A B > A B >

A first inverse result

Corollary (First inverse result)

We assume that the hypotheses of the main Thm are satisfied for all λ in an open interval I. Then the potential a(x) is uniquely determined up to translations.

Proof:

• By the previous Lemma,

$$a_{L2}(\lambda,z)=e^{2i\lambda c}\tilde{a}_{L2}(\lambda,z),\quad \forall z\in\mathbb{C},\,\,\forall\lambda\in I.$$

• We let $z \to 0$ and we look at the first term in the entire serie defining a_{L2} . Then

$$\hat{a}(2\lambda) = e^{2i\lambda c}\hat{\tilde{a}}(2\lambda), \quad \forall \lambda \in I.$$
 (4)

a(x) is exponentially decreasing. Hence, the equality (4) extends analytically to a small strip containing ℝ. Hence,
 a(x) = ã(x - c), ∀x ∈ ℝ.

24 / 30

A new radial variable

• Radial variable X: Set $A = \int_{\mathbb{R}} a(x) dx$. Define

$$g: \mathbb{R} \longrightarrow (0, A),$$

$$x \longrightarrow g(x) = X = \int_{-\infty}^{x} a(s) ds.$$

- Notations: $f_{Lj/Rj}(X,\lambda,z) := f_{Lj/Rj}(g^{-1}(X),\lambda,z).$
- The components f_{L1}(X, λ, z), f_{L2}(X, λ, z), f_{R1}(X, λ, z), f_{R2}(X, λ, z) satisfy a non-selfadjoint singular Sturm-Liouville equation:

$$\begin{bmatrix} \frac{d^2}{dX^2} + q(X,\lambda) \end{bmatrix} f(X'\lambda,z) = z^2 f(X,\lambda,z),$$
$$q(X,\lambda) = \frac{\lambda^2}{a^2(x)} + i\lambda \frac{a'(x)}{a^3(x)}.$$
$$q(X,\lambda) = \frac{\omega^-}{X^2} + O(1), \ X \to 0, \quad \omega_- = \frac{\lambda^2}{\kappa_-^2} + i\frac{\lambda}{\kappa_-},$$
$$q(X,\lambda) = \frac{\omega^+}{(A-X)^2} + O(1), \ X \to A, \quad \omega_+ = \frac{\lambda^2}{\kappa_+^2} + i\frac{\lambda}{\kappa_+}.$$

Asymptotics of the *a*_{Lj}

• Remark: The spectral data a_{Lj} are interpreted in terms of Wronskians of the $f_{Lj/Rj}(X)$, *i.e.*

$$a_{L1}(\lambda, z) = \frac{1}{iz} W(f_{L1}(X), f_{R2}(X)), a_{L2}(\lambda, z) = \frac{1}{iz} W(f_{L2}(X), f_{R2}(X)),$$

$$a_{L3}(\lambda, z) = -\frac{1}{iz} W(f_{L1}(X), f_{R1}(X)), a_{L4}(\lambda, z) = -\frac{1}{iz} W(f_{L2}(X), f_{R1}(X)),$$

• Asymptotics: The components $f_{L1}(X, \lambda, z)$, $f_{L2}(X, \lambda, z)$, $f_{R1}(X, \lambda, z)$, $f_{R2}(X, \lambda, z)$ are perturbations of modified Bessel functions whose asymptotics are well-known. Using the previous Wronskians, we get for example:

$$a_{L4}(\lambda,z) \sim \textit{Const.z}^{i\lambda\left(rac{1}{\kappa_{+}}-rac{1}{\kappa_{-}}
ight)}e^{zA}, \quad z
ightarrow +\infty.$$

• An application: Since the a_{Lj} are uniquely determined, we get:

$$\int_{\mathbb{R}} a(x) dx = A = \tilde{A} = \int_{\mathbb{R}} \tilde{a}(x) dx.$$

26 / 30

Consider two black holes with parameters (M, Q^2, Λ) and $(\tilde{M}, \tilde{Q}, \tilde{\Lambda})$. Denote by a(x) and $\tilde{a}(x)$ the corresponding potentials. We assume that

(i)
$$T(\lambda, n) = \tilde{T}(\lambda, n), \quad \forall n \in \mathcal{L},$$

(ii) $L(\lambda, n) = e^{-2i\lambda c} \tilde{L}(\lambda, n), \quad \forall n \in \mathcal{L},$
(iii) $R(\lambda, n) = e^{2i\lambda c} \tilde{R}(\lambda, n), \quad \forall n \in \mathcal{L}.$

• For simplicity, take c = 0 in the above formulae.

Introduce

• For $X \in (0, A)$, define the 2 imes 2 matrix-valued function $P(X, \lambda, z)$ by

$$P(X,\lambda,z)\tilde{F}_R(X,\lambda,z) = F_R(X,\lambda,z).$$

• By inverting $\tilde{F_R}$, we get for instance

$$P_1(X,\lambda,z) = 1 + \frac{F_{R1}(X)}{a_{L4}} (\tilde{F}_{L4}(X) - F_{L4}(X)) + \frac{F_{L2}(X)}{a_{L4}} (F_{R3}(X) - \tilde{F}_{R3}(X)),$$

$$P_2(X,\lambda,z) = \frac{1}{a_{L4}}(F_{L2}(X)\tilde{F}_{R1}(X) - \tilde{F}_{L2}(X)F_{R1}(X)).$$

- From the properties of $F_R(X, \lambda, z)$, it is easy to show that the functions $z \longrightarrow P_j(X, \lambda, z)$ belong to $H(\mathbb{C})$, are of exponential type and are bounded on $i\mathbb{R}$.
- Using simple algebraic manipulations and the previous asymptotics on the $a_{Lj}(\lambda, z), z \to \infty$, we can show that $z \longrightarrow P_j(X, \lambda, z)$ are also bounded on \mathbb{R} .

Thierry DAUDÉ (UCP)

- Phragmen-Lindelöf Thm: $z \longrightarrow P_j(X, \lambda, z)$ are bounded on \mathbb{C} .
- Liouville Thm: $P_j(X, \lambda, z) = P_j(X, \lambda, 0)$ for all $z \in \mathbb{C}$.
- In the case z = 0, explicit calculations lead to

$$P_j(X,\lambda,z)=e^{i\Gamma^1\lambda(g^{-1}(X)- ilde{g}^{-1}(X))}, \ \forall z\in\mathbb{C}.$$

• From the definition $P(X, \lambda, z)\tilde{F}_R(X, \lambda, z) = F_R(X, \lambda, z)$, we thus obtain

$$\widetilde{F}_R(X,\lambda,z) = e^{i\lambda\Gamma^1(\widetilde{g}^{-1}(X)-g^{-1}(X))}F_R(X,\lambda,z), \ j=1,2.$$

In particular,

$$\widetilde{f}_{Rj}(X,\lambda,z)=e^{i\lambda(\widetilde{g}^{-1}(X)-g^{-1}(X))}f_{Rj}(X,\lambda,z),\;j=1,2.$$

• Using that the Wronskians

$$\begin{split} &W(f_{R1}(X,\lambda,z),F_{R2}(X,\lambda,z))=iz,\\ &W(\tilde{F}_{R1}(X,\lambda,z),\tilde{F}_{R2}(X,\lambda,z))=iz, \end{split}$$

we obtain

$$e^{i\lambda(\tilde{g}^{-1}(X)-g^{-1}(X))}=1.$$

Hence, by a continuity argument

$$\tilde{g}^{-1}(X) = g^{-1}(X) + \frac{k\pi}{\lambda}, \qquad (5)$$

• Taking the derivative of (5) w.r.t X, we get:

$$rac{1}{\widetilde{a}(\widetilde{g}^{-1}(X))}=rac{1}{a(g^{-1}(X))},\quad orall X\in(0,A).$$

Equivalently, $a(x) = \tilde{a}(x + \frac{k\pi}{\lambda})$.

CMAP, December 8, 2010