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Introduction/1

I H = self-adjoint operator on H⇒ the localization at infinity of H is Ĥ = H/K (H)

I An ”abstract operator” which describes the behavior at infinity of H.

I Observable affiliated to the Calkin algebra C(H) := L(H)/K (H) (which is a monster).

I Operation which does not make sense at a purely Hilbertian level.

I The simplest thing one can do with it: compute the essential spectrum of H: Spess(H) = Sp(Ĥ )

I More: prove the Mourre estimate for H w.r.t. a second self-adjoint operator A.

I The main difficulty is to obtain a convenient (explicit) representation of the ”abstract” object Ĥ

i.e. to construct a new Hilbert space Ĥ and a realization of Ĥ as a self-adjoint operator on it.

I The idea is to try to find a C∗-algebra C ⊂ L(H) such that

(1) H ∈′ C (2) K (H) ⊂ C (3) Ĉ := C /K (H) is explicitly realized on some Hilbert Ĥ

I Think about representing a region of a complicated topological manifold with the help of a coordinate chart.
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Introduction/2

I What can go wrong if C is not well chosen: Let H without eigenvalues and
I C∗(H) = C∗-algebra generated by H
I C := K (H) + C∗(H) = smallest C∗-algebra to which H is affiliated and contains the compacts

I the sum C = K (H) + C∗(H) is direct hence C/K (H) = C∗(H) hence Ĥ = H and Ĥ = H so
Spess(H) = Sp(H) which is true but trivial.

I Example of good choice: in the one dimensional anisotropic case

I We are interested in H = P2 + V (x) with limx→±∞ V (x) = V±
I We take C := C(R) · C∗(R)

I We get Ĥ = (P2 + V−)⊕ (P2 + V+), Spess(H) = [min(V−,V+),∞[

I In general: instead of studying an operator H, study a C∗-algebra C .

The choice of C is determined by the algebraic structure of H: try to find the smallest algebra
to which certain ”elementary Hamiltonians” are affiliated. At the end use various affiliation
criteria to prove that the Hamiltonian which is of interest is affiliated to C .
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Notations, Definitions
I H = Hilbert space⇒ L(H) = bounded operators, K (H) = compact operators

I H ∈ L(H)⇒ Ĥ = its image in C(H) = L(H)/K (H)

I C ⊂ L(H) C∗-subalgebra with K (H) ⊂ C then Ĉ := C /K (H) = abstract C∗-algebra

I An unbounded self-adjoint operator is identifed with its C0 functional calculus. More generally:

I An observable affiliated to a C∗-algebra C is a morphism H : Co(R)→ C . Write H ∈′ C .

Thus for a usual self-adjoint operator we have to set H(θ) ≡ θ(H) for θ ∈ Co(R).

I P : C → C ′ morphism⇒ P(H) := P ◦ H observable affiliated to C ′.

I A self-adjoint operator H on H is affiliated to C if it satisfies

(H − z)−1 ∈ C for some z
(
⇐⇒ θ(H) ∈ C ∀θ ∈ C0(R)

)
I H self-adjoint onH⇒ C∗(H) = smallest C∗-algebra which contains all ϕ(H), ϕ ∈ Co(R).

I X = f.d.r. vector space: C(X) ≡ Cu
b (X) = C∗-algebra of bounded uniformly continuous functions

I Co(X) = continuous functions which tend to zero at infinity⊂ C(X)

I C∞(X) = continuous functions which have a limit at infinity = Co(X) + C ⊂ C(X)

I Y ⊂ X subspace⇒ Co(X/Y ) ⊂ C(X)
(
ϕ 7→ ϕ ◦ πY where πY : X → X/Y projection

)
I C∗(X) = group C∗-algebra = algebra generated by translations∼= Co(X∗) = {ϕ(P) | ϕ ∈ Co(X∗)}
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Hamiltonian and conjugate operator

I H,A = self-adjoint operators on H with H of class1 C1
u (A). Then

I A(H) := [H, iA] continuous sesquilinear form on D(H)

I θ ∈ Cc(R), ψ ∈ C∞c (R) and ψ(x)θ(x) = xθ(x)⇒

θ(H)∗[H, iA]θ(H) = ∂τ |τ=0
θ(H)∗e−iτA

ψ(H)eiτA
θ(H)

I ρA
H : R→]−∞,+∞] lower semicontinuous, Sp(H) = {ρ <∞}

ρA
H (λ) = sup{a ∈ R |∃θ ∈ Cc(R), θ(λ) 6= 0, such that

θ(H)∗[H, iA]θ(H) ≥ a|θ(H)|2 }

I ρ̂ A
H : R→]−∞,+∞] lower semicontinuous, Spess(H) = {ρ̂ <∞}

ρ̂ A
H (λ) = sup{a ∈ R |∃θ ∈ Cc(R), θ(λ) 6= 0, ∃K = compact,

θ(H)∗[H, iA]θ(H) ≥ a|θ(H)|2 + K }

1H ∈ C1
u (A)⇔ the map τ 7→ e−iτA(H + i)−1eiτA is norm C1
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A C*-algebra framework for the Mourre estimate

I C a C∗-algebra of operators on H such that K (H) ⊂ C

I Ĉ = C /K (H) “abstract” C∗-algebra; P : C → Ĉ natural morphism

I Uτ [S] = eτA[S] = e−iτASeiτA is a norm continuous group of automorphisms of C

I Û τ = eτÂ induced group of automorphisms of Ĉ

I H observable affiliated to C of class C1
u (A) =⇒ ρ̂ H is well defined

I Ĥ = P(H) affiliated to Ĉ of class C1
u (Â ) =⇒ ρĤ is well defined

I We have ρ̂ H = ρĤ

Remark: When Ĉ is represented on Ĥ the group of automorphisms Û τ is usually implemented by

a unitary group Û τ = eiτ Â which is simpler than the initial Uτ = eiτA.
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Exceptional eigenvalues, critical points, thresholds

Theorem: (ρ and ρ̂ coincide except at A-exceptional eigenvalues)

I λ = eigenvalue of H, ρ̂ A
H (λ) > 0⇒ λ has finite multiplicity and H has no other eigenvalues

in [λ− ε, λ+ ε] for ε small

I let εA(H) = {λ = eigenvalue of H | ρ̂ A
H (λ) > 0}, then

ρA
H (λ) =

{
0 if λ ∈ εA(H),

ρ̂ A
H (λ) if λ /∈ εA(H).

I Define

κA(H) = {ρA
H ≤ 0} = (closed) set of A-critical points of H

τA(H) = {ρ̂ A
H ≤ 0} = (closed) set of A-thresholds of H

Then
κA(H) = τA(H) t εA(H) = τA(H) ∪ { eigenvalues of H}
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Computing ρ and ρ̂ : elementary facts

I Theorem (stability under compact perturbation):

H1,H2 ∈ C1
u (A) and (H1 − i)−1 − (H2 − i)−1 ∈ K (H) =⇒ ρ̂ A

H1
= ρ̂ A

H2

I This solves the problem in the ”two-body” case: then, given H, there are compact
perturbations H0 of H which are very simple, in particular ρ̂ A

H0
is explicit.

I Theorem (direct sums): H = H1 ⊕H2

H = H1 ⊕ H2 and A = A1 ⊕ A2 ⇒ ρ = inf(ρ1, ρ2)

I Theorem (tensor products): H = H1 ⊗H2

If H = H1 ⊗ 1 + 1⊗ H2 and A = A1 ⊗ 1 + 1⊗ A2 then

ρ(λ) = inf
λ=λ1+λ2

(
ρ1(λ1) + ρ2(λ2)

)
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C*-algebras of quantum Hamiltonians

I We shall consider four examples
I One dimensional anisotropic systems (toy model)

I N-body systems

I Many-body systems

I Quantum fields

I In each case we construct C as the C∗-algebra generated by the operators which are natural
Hamiltonians in the respective physical situation.

I We shall see that these algebras are remarkable mathematical objects:

I Theorem: X = f.d.r. vector space (configuration space).

Let h : X∗ → R (kinetic energy) be continuous and divergent at infinity.

Let v : X → R (potential energy) be bounded and uniformly continuous.

Let C∗(v) be the C∗-algebra generated by the translates of v .

Let Wξ = ei(kQ+xP), ξ = (x, k).

The C∗-algebra of operators on L2(X) generated by the self-adjoint operators

W∗ξ [h(P) + λv(Q)]Wξ ≡ h(P − k) + λv(Q + x) with k ∈ X∗, x ∈ X , λ ∈ R

is the crossed product C∗(v) o X = C∗(v) · C∗(X)
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2-body systems
I 2-body algebra: algebra which is naturally represented on the same Hilbert space H as C .

More precisely: C = D + K (H) where D ⊂ L(H) is a C∗-algebra with D ∩ K (H) = 0;
then the sum is topologically direct, C is a C∗-algebra, and Ĉ ∼= D .

I As explained before, this is not a good notion.

I 2-body algebra of a vector space

I X = f.d.r. vector space,H = L2(X), K (X) = K (L2(X))

I C∞(X) = continuous functions which have a limit at infinity = Co(X) + C ⊂ C(X)

I The associated 2-body algebra:

C := C∞(X) o X = C∞(X) · C∗(X) = C · C∗(X) + Co(X) · C∗(X)

= C∗(X) + K (X)

I 2-body Hamiltonian: H = self-adjoint operator on L2(X) such that

∃h : X∗ → R continuous divergent at infinity with (H + i)−1 − (h(P) + i)−1 = compact

I (1) C = C∗(X) + K (X) onH = L2(X) ; (2) Ĉ = C∗(X) on Ĥ = H ; (3) Ĥ = h(P)

I ρ̂ A
H = ρ̂ A

h(P) = ρA
h(P) because h(P) has no eigenvalues of finite multiplicity.

I Note: H ∈ C1
u (A)⇔ [A, (H + i)−1] ∈ C
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One dimensional anisotropic systems

I ¯ = [−∞,+∞], C(R̄) = set of continuous functions which have finite limits at ±∞.

I Compute C(R̄)/Co(R): if L±(v) := limx→±∞ v(x) then L± : C(R̄)→ C are morphisms, hence

L := (L−, L+) : C(R̄)→ C⊕ C is a morphism, and clearly ker L = Co(R). Thus

C(R̄)/Co(R) ∼= C⊕ C isomorphism implemented by the morphism L : C(R)→ C⊕ C

I Hamiltonian algebra: C = C(R̄) o R = C(R̄) · C∗(R) realized on H = L2(R)

I C ⊃ K = K (L2(R)) = Co(R) · C∗(R)

I L± induce morphisms P± : C → C∗(R) by the rule P±[ϕ(Q)ψ(P)] = L±(ϕ)ψ(P)

I Ĉ = C/K ⊂ C∗(R)⊕ C∗(R) implemented by the morphism P = (P−,P+)

I Ĉ is realized on Ĥ = H⊕H

I H ∈′ C ⇒ P[H] = H− ⊕ H+ with H± = P±[H] ∈′ C∗(R).

I Spess(H) = Sp(H−) ∪ Sp(H+).

I For ”reasonable” A we get ρ̂ A
H = inf(ρA−

H−
, ρ

A+
H+

) which is quite explicit because H± are
functions of momentum
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N-body systems (ABM+VG 1991+1993)

I X = real finite dimensional vector space

I Y ⊂ X linear subspace⇒ natural embedding Co(X/Y ) ⊂ Cu
b (X) (ϕ 7→ ϕ ◦ πY )

I T = set of subspaces of X

I S = set of finite intersections of elements of T

I CX (S) :=
∑c

Y∈S C0(X/Y ) = C∗-algebra generated by
⋃

Y∈T C0(X/Y )

I The C∗-algebra of operators on L2(X) generated by the operators

h(P − k) + v(Q) with k ∈ X∗, v ∈
∑

Y∈T C
∞
c (X/Y )

is the crossed product CX = CX (S) := CX (S) o X = CX (S) · C∗(X)

I CX (S) =
∑c

Y∈S Co(X/Y ) o X ≡
∑c

Y∈S CX (Y )

I If we set CX (Y ) := Co(X/Y ) o X = Co(X/Y ) · C∗(X) then we have

I
∑

Y∈S CX (Y ) is a direct linear sum
I CX (Y )CX (Z ) ⊂ CX (Y ∩ Z )
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Lattice of partitions of a 4-body system
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C∗-algebras graded by semilattices

I Semilattice: ordered set (S,≤) such that σ ∧ τ exists ∀σ, τ

I C = S-graded C∗-algebra if a linearly independent family of C∗-subalgebras {C (σ)}σ∈S of
C is given such that

I
∑c
σ∈S C (σ) = C

I C (σ)C (τ) ⊂ C (σ ∧ τ) ∀σ, τ

I C≥σ :=
∑c
τ≥σ C (τ) (graded) C∗-subalgebra

I C 6≥σ :=
∑c
τ 6≥σ C (τ) (graded) ideal

I C = C≥σ + C6≥σ linear direct sum

I P≥σ : C → C≥σ projection determined by this direct sum decomposition

I P≥σ is a morphism
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Abstract HVZ Theorem

S is atomic if ∃ o ≡ minS and each σ 6= o is minorated by an atom; P(S) = set of atoms of S.

Theorem
If S is atomic then PT = (P≥αT )α∈P(S) defines a morphism

P : C →
∏
α∈P(S)C≥α such that ker P = C (o)

This gives us a canonical embedding

C /C (o) ⊂
∏
α∈P(S)C≥α

Corollary (Abstract HVZ Theorem)

Assume that C ⊂ L(H) and C (o) = K (H). If H ∈′ C and if we set Hα = Pα(H) then

Spess(H) =
⋃
α∈P(S)Sp(Hα)
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Many-body systems (M.Damak, VG: Spectral analysis of many-body systems JFA 259 (2010) 618–689)

I S = set of finite dimensional compatible real vector spaces equipped with translation invariant
measures and such that: X ,Y ∈ S =⇒ X ∩ Y ∈ S (compatible⇔ subspaces of a real vector space)

I X ∈ S is the configuration spaces of an N-body system: SX = {Y ∈ S | Y ⊂ X}

I If O = {0} ∈ S then H(O) = C = vacuum state space

I The formalism will provide a mathematical framework for the description of the system
obtained by coupling these subsystems

I The Hilbert space of the X system is: H(X) ≡ L2(X)

I Hilbert space of the total system: H ≡ HS = ⊕XH(X)

I LXY = L(H(Y ),H(X)), KXY = K (H(Y ),H(X))

I LX = LXX , KX = KXX

I T ∈ L(H)⇒ T ∼= (TXY )X ,Y∈S with TXY ∈ LXY
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Man-body Hamiltonian algebra

I Let X ,Y ∈ S. If Z is a space with X ∪ Y ⊂ Z and ϕ ∈ Cc(Z ) then

(TXY (ϕ)u)(x) =

∫
Y
ϕ(x − y)u(y)dy

defines a continuous operator TXY (ϕ) : H(Y )→H(X).

I TXY = closure in LXY of the set of operators TXY (ϕ)

This space is independent of the choice of Z and

TXX ≡ C∗(X) = group C∗-algebra of X .

I T = (TXY )X ,Y∈S ⊂ L(H) closed self-adjoint subspace (closure of finite submatrices).

I Theorem: C = T 2 is a C∗-algebra

I Definition: C is the Hamiltonian algebra of the system.

I Theorem
I Assume that the ambient space is a real Hilbert space
I Denote X/Y = X 	 (X ∩ Y ) and KX/Z,Y/Z = K (H(Y/Z ),H(X/Z ))

I Then CXY = CX∩Y ⊗KX/Y ,Y/X
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N-body → Many-body

I For each X we have an N-body algebra on H(X):

CX := CX · C∗(X) =
∑c

Y⊂X CX (Y ) with CX (Y ) = Co(X/Y ) · C∗(X)

I These algebras are on the diagonal of C i.e. CXX = CX

I The non-diagonal spaces CXY = CX · TXY are Hilbert (CX ,CY )-bimodules

I If S has a largest element X : C = imprimitivity algebra of a graded full Hilbert CX -module

I The components of the quotient CX/CX (O) live and are non-degenerate algebras on H(X);
this is why you do not see a change of Hilbert space in the N-body case

I Not for the many-body system: C≥X lives (non-degenerate) on H≥X = ⊕Y⊃XH(Y ) ( H
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Elementary many-body Hamiltonians: Pauli-Fierz

I Here assume that S is finite and for each Y ⊂ X choose a complement X/Y in X

I X = X/Y ⊕ Y ⇒H(X) = H(X/Y )⊗H(Y )

I θ ∈ H(X/Y )⇒ a∗(θ) : H(Y )→H(X) defined by u 7→ θ ⊗ u

I ΦXY ⊂ LXY the set of such operators

I ΦXY := Φ∗YX if Y ⊃ X and ΦXY := 0 if X ,Y not comparable

I ΦXY · C∗(Y ) = C∗(X) · ΦXY = CXY if X ,Y are comparable

I Φ = (ΦXY )X ,Y∈S ⊂ L(H) closed self-adjoint subspace

I Pauli-Fierz Hamiltonian: H = K + φ with K ∈ ⊕X hX (P) pure kinetic energy and φ ∈ Φ
symmetric ”field operator”

Theorem: The C∗-algebra generated by the Pauli-Fierz operators coincides with C
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Non-relativistic many-body Hamiltonians

I Tensor factorizations:

I The ambient space is Hilbert, i.e. the X are equipped with compatible Euclidean structures

I X ∈ S ⇒ S/X = {Y/X | Y ⊃ X} is a semilattice of subspaces of the same Hilbert space

I So CS/X may be constructed and is similar to C but it lives on the smaller Hilbert spaceH≥X

I H≥X = H(X)⊗HS/X and C≥X = C∗(X)⊗ CS/X

I Non-relativistic many-body Hamiltonian of type S: (S finite)

I self-adjoint bounded from below operator onH (strictly) affiliated to C = CS

I ∀X ∃HS/X onH≥X s.t. H≥X ≡P≥X (H) = ∆X ⊗ 1 + 1⊗ HS/X

I X = maxS ⇒ HS/X = 0 (Remark: HS/maxS = H(O) = C)

I Example: K = ⊕X ∆X and IXY (Z ) = 1⊗ IZ
XY

(CNRS / University of Cergy-Pontoise) Localizations at infinity December 5, 2010 20 / 43



Non-relativistic many-body: Mourre estimate
I Conjugate operator:

I D = ⊕X DX , DX = (QX · PX + PX · QX )/4

I Uτ = eıτD (the dilation group)⇒ U∗τCUτ = C

I H = non-relativistic⇒ τ(H) :=
⋃

X 6=Oev(HS/X ) threshold set

I A ⊂ R⇒ NA(λ) := sup{x ∈ A | x ≤ λ}. Thus NA : R→ [−∞,+∞[

Theorem: H = non-relativistic many-body Hamiltonian with [D, (H + i)−1] ∈ C . Then:

τ(H) is a closed countable set and ρ̂ (λ) = λ−Nτ(H)(λ). Hence ρ̂ (λ) > 0 outside τ(H).

Sketch of proof: Write X = σ, H≥X = Hσ , ρσ = ρHσ , P = set of atoms of S

I Ĉ ⊂
⊕
σ∈P Cσ Ĥ =

⊕
σ∈P Hσ ρ̂ H = infσ∈P ρσ

I Hσ = ∆X ⊗ 1 + 1⊗ HS/σ ρσ(λ) = infµ(ρ∆X (µ) + ρS/σ(λ− µ)

I ρ∆X (µ) = +∞ if µ < 0 and ρ∆X (µ) = µ if µ ≥ 0

I ρ = l.s.c. Hence for σ > o: ρσ(λ) = 0⇔ ρS/σ(λ)⇔ λ ∈ τHS/σ (induction hypothesis)

I Thus ρ̂ H (λ) = 0⇔ ∃σ ∈ P such that λ ∈ τHS/σ
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Quantum fields (VG: Spectral analysis of quantum field Hamiltonians JFA 245 (2007) 89–143)

I H = complex Hilbert space (one particle space)

I Γ(H) = symmetric or antisymmetric Fock space

I O ⊂ L(H) abelian C∗-algebra with Os∩ K (H)={0}
(h = h∗ ∈′ O one-particle kinetic energy operators; dΓ(h) kinetic energy operators of the field)

I The algebra of QFH determined by O:

F (O)=C∗(eiφ(u)Γ(A) |u∈H,A∈O, ‖A‖<1)

Remark: K (H) ≡ K (Γ(H)) ⊂ F (O)

Theorem: There is a unique morphism P : F (O) → O ⊗ F (O) such that
for all u ∈ H and A ∈ O with ‖A‖ < 1

P
(

eiφ(u)Γ(A)
)

= A⊗
(

eiφ(u)Γ(A)
)
.

We have kerP = K (H), so F̂ (O) ≡ F (O)/K (H) ↪→ O⊗F (O)
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Quantum fields: Elementary and Standard Hamiltonians

I Kinetic energy of the field: dΓ(h) if the one-particle kinetic energy is h = h∗ ∈′ O

I Elementary QFI: V = V∗ =
∫
H eiφ(u)dµ(u), µ = bounded measure

I Elementary QFH: H = dΓ(h) + V with h ≥ m > 0, h−1 ∈ O; V = elementary QFI

Proposition: If O is non-degenerate on H then F (O) is the C∗-algebra
generated by the elementary QFH and the “canonical morphism” P is
characterized by:

H = dΓ(h) + V elementary ⇒ P(H) = h ⊗ 1 + 1⊗ H

Or, equivalently: P(e−H ) = e−h ⊗ e−H .

I Standard QF Hamiltonian: H = H∗ on Γ(H) is a SQFH if:

I H is bounded from below and affiliated to F (O)

I ∃ h ∈′ O self-adjoint onH with inf h = m > 0 such that P(H) = h ⊗ 1 + 1⊗ H
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Quantum fields: essential spectrum of QFH

I QFH of type O := observable H affiliated to F (O) =⇒

I Ĥ := P(H) observable affiliated to O ⊗F (O) ∼= C0(Sp(O); F (O)) =⇒

I Ĥ ∼= {Ĥ (k)}k∈Sp(O) with Ĥ (k) sadj ops on Γ(H)

I Proposition: Then Spess(H) = Sp(P(H)) =
⋃

k Sp(Ĥ (k))

I Proposition: If H is a SQFH with one particle kinetic energy h:

(i) Spess(H) = Sp(h) + Sp(H)
(

Hence Spess(H) = [m + inf H,∞[ if Sp(h) = [m,∞[
)

(ii) inf H is an eigenvalue of H of finite multiplicity and isolated from the rest of the spectrum.
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Quantum fields: Mourre estimate, framework

One particle conjugate operator: a = a∗ on H such that:

I e−iτaOeiτa = O ∀τ

I τ 7→ e−iτaSeiτa is norm continuous ∀S ∈ O

Field conjugate operator: A = dΓ(a) so eiτA = Γ(eiτa). Then:

I e−iτAF (O)eiτA = F (O)

I τ 7→ e−iτAT eiτA is norm continuous for all T ∈ F (O).

I if Â ≡ a⊗ 1 + 1⊗ A on H⊗ Γ(H) then for all T ∈ F (O)

P(e−iτAT eiτA) = e−iτ ÂP(T )eiτ Â

I Thus in the general formalism we have:

C = F (O), Uτ is implemented by eiτA, Û τ is implemented by eiτ Â
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Quantum fields: Mourre estimate, sketch of proof

I H ∈′ F (O), H ≥ 0, Ĥ = h ⊗ 1 + 1⊗ H, h ≥ m > 0

I ρ̂ H = ρĤ and ρh(x)=∞ if x<m and ρH (x)=∞ if x<0

ρ̂ H (λ) = inf0≤µ≤λ−m

(
ρh(λ− µ) + ρH (µ)

)
I Corollary: If ρh ≥ 0 then ρH ≥ 0 hence τ(H) = κ(h) + κ(H)

I Recall: κ(H) = τ(H) ∪ σp(H). Clearly: κ(h) = τ(h).

I Conclusion: we get an equation for the unknown set τ(H):

τ(H) = [τ(h) + σp(H)]
⋃

[τ(h) + τ(H)]

I Solve by iteration and by using X + Y ∪ Z = [X + Y ] ∪ [X + Z ]
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Quantum fields: Mourre estimate for Standard QFH

Theorem: H = SQFH of type O with one particle kinetic energy h such that

I h is of class C1
u (a) and [h, ia] ≥ 0

I H is of class C1
u (A)

Denote τn(h) = τ(h) + · · ·+ τ(h). Then: τ(H) =
[⋃∞

n=1τ
n(h)

]
+ σp(H)

Remarks:

I H0 = dΓ(h)⇒ τ(H0) =
⋃∞

n=1τ
n(h)

I τ(H) = τ(H0) + σp(H)
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Graded Weyl algebra (ABM+VG 1993 and VG+AI 2001)

I This covers N-body systems (with magnetic fields) and quantum fields.

I Introduced in

ABM+VG ”Graded C∗-algebras associated to symplectic spaces and spectral analysis of many channel
Hamiltonians” (1993)

VG+AI ”C∗-algebras of energy observables: II. Graded symplectic algebras and magnetic Hamiltonians”
(2001)

I Independently considered (for different reasons) in

Buchholz+Grundlingen ”The resolvent algebra: new approach to canonical quantum systems” (JFA 2008)

I (Ξ, σ) finite dimensional symplectic space (the passage to infinite dimensions is trivial for this
algebra). Let (W ,H) be a representation of the CCR: W (ξ)W (η) = eiσ(ξ,η)/2W (ξ + η)

I For each integrable Borel measure on Ξ set W (µ) =
∫

Ξ W (ξ)µ(dξ)

I For each subspace E ⊂ Ξ let C (E) be the norm closure of the space of W (µ) such that
suppµ ⊂ E and µ is E-absolutely continuous. Then

I C (E) is a C∗-algebra
I C (E)C (F ) ⊂ C (E + F )

I {C (E)}E⊂Ξ is linearly independent

I Thus the graded Weyl algebra CΞ =
∑c

E⊂Ξ C (E) is a C∗-algebra graded by the set of all
subspaces of Ξ equipped with the order relation E ≤ F ⇔ E ⊃ F .
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Complements

Examples of operators affiliated to the Hamiltonian algebras:

(1) N-body systems

(2) Many-body systems

(3) Quantum fields
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Affiliattion criteria

I C ⊂ L(H) C∗-subalgebra

I A self-adjoint operator H on H is affiliated to C if it satisfies

(H − z)−1 ∈ C for some z
(
⇐⇒ θ(H) ∈ C ∀θ ∈ C0(R)

)
I Affiliation criteria: Let H0 ≥ 1 self-adjoint affiliated to C

I V quadratic form with −aH0 − b ≤ V ≤ bH0 for some a < 1 and b > 0

I H = H0 + V (form sum) is a self-adjoint operator and

I ∃α > 1/2 such that H−α0 VH−1/2
0 ∈ C =⇒ H affiliated to C .

I V self-adjoint bounded from below such that H = H0 + V is self-adjoint on D(H0) ∩ D(V )

e−tH0 e−2tV e−tH0 ∈ C ∀t > 0 =⇒ H is affiliated to C .

I A norm resolvent limit of self-adjoint operators affiliated to C is affiliated to C .
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N-body system - physical setting

I N “elementary particles” with masses m1, . . . ,mN

I Configuration space (center of mass ref. system, no external forces)

X = {x = (x1, . . . , xN ) ∈ (Rd )N |
∑

k mk xk = 0}

I 〈x |y〉 =
∑N

k=1 2mk xk yk such that ∆X ∼
∑

k
1

2mk
P2

k

I Hamiltonian: H = ∆X +
∑

i<k Vik (xi − xk ) on L2(X)

I Cluster decomposition ≡ partition σ of the set {1, . . . ,N}
I |σ| = number of elements of σ
I Cluster ≡ element of the partition σ

≡ “composite particle” of mass ma =
∑

k∈a mk .

I Think of σ as a system of |σ| particles with masses ma
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N-body subsystems

I Configuration space of the σ system:

Xσ = {x = (xa)a∈σ ∈ (Rd )|σ| |
∑

amaxa = 0}
∼= {x ∈ X | xi = xj if i, j belong to the same cluster of σ}

gives an embedding Xσ ↪→ X

I Equip Xσ with the scalar product induced by X :

〈x |y〉 =
∑

a∈σ 2maxaya then ∆Xσ ∼
∑

a
1

2ma
P2

a

I The set S of partitions is ordered and lower bounds exist:
I σ ≤ τ ⇐⇒ τ is finer than σ

I σ ≤ τ ⇐⇒ Xσ ⊂ Xτ

I Xσ ∩ Xτ = Xσ∧τ

I S ∼= S = {Xσ | σ ∈ S} semilattice of subspaces of X
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The N-body C∗-algebra: physical translation invariant case

I H = ∆X +
∑

i<k Vik (xi − xk )

I X 3 x 7→ xi − xk ∈ Rd is surjective and has X(ik) as kernel
I H = ∆X +

∑
σ∈S2

Vσ ◦ πσ with Vσ : X/Xσ → R
I CX (Xσ) := Co(X/Xσ) ⊂ Cu

b (X)⇒ H = ∆X +
∑
σ∈S2

Vσ
I CX :=

∑
σ CX (Xσ) sum over all partitions σ

I C∗(X) := the group C∗-algebra (C0 functions of PX = −i∇X )

Theorem
The C∗-algebra generated by the operators V∗k HVk , i.e. by

(PX + k)2 +
∑
σ∈S2

Vσ with Vσ ∈ CX (Xσ), k ∈ X∗

is CX = CX · C∗(X) =
∑
σ CX (Xσ) · C∗(X) =:

∑
σ CX (Xσ)
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N-body Hamiltonians: examples

I h : X → R continuous with c′|x |2s ≤ h(x) ≤ c′′|x |2s (some s > 0 and |x | large)

I H(maxS) = h(P) self-adjoint on H and D(|H(X)|1/2) = Hs (Sobolev space)

I If σ 6= maxS let H(σ) : Hs →H−s symmetric, H(σ) ≥ −µσh(P)− ν, µσ ≥ 0,
∑
µσ < 1

I Then H =
∑
τ H(τ) and H≥σ =

∑
τ≥σ H(τ) are self-adjoint operators on H.

I Let t > s and ‖ · ‖s,t the norm in L(Hs,H−t ). Assume:

(1) U∗x H(σ)Ux = H(σ) if x ∈ Xσ ;
(

Ux = translation by x
)

(2) ‖V∗k H(σ)Vk − H(σ)‖s,t → 0 if k → 0 in Xσ ;
(

Vk (x) = ei〈k,x〉
)

(3) ‖(Vk − 1)H(σ)‖s,t → 0 if k → 0 in X⊥σ .

I Then H is affiliated to CX and H≥σ = P≥σ(H)
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Unfolding an N-body system

Want to allow an N-body system to make transitions to one of its subsystems in finite time and to
allow transitions between different subsystem by creation-annihilation processes as in field theory.

I Hilbert state space of the system H := ⊕σH(Xσ).

I State u ∈ H(Xσ)⇒ we have |σ| particles of masses ma.

I σ = minS = {{1, . . . ,N}} ⇒ get one particle with mass M = m1 + · · ·+ mN .
There are no external fields⇒ we are in the vacuum state: H(Xmin S) = C.

I Would like to treat usual inter-cluster interactions associated e.g. to potentials defined on
Xσ = X/Xσ but also interactions which force the system to make a transition from a “phase”
σ to a “phase” τ

I a system of |σ| particles with masses (ma)a∈σ is tranformed into a system of |τ | particles with
masses (mb)b∈τ

I thus the number of particles varies from 1 to N but the total mass existing in the “universe” is constant
and equal to M.
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Many-body Hamiltonian: formal structure

I H = (HXY )X ,Y∈S where HXY : D(HXY ) ⊂ H(Y )→H(X) and H∗XY = HYX

I H = K + I ⇒ HXY = KXY + IXY (K = kinetic energy and I = interaction)

I K diagonal: KXY = 0 if X 6= Y and KXX ≡ KX (kinetic energy of system X )

I KX = hX (P) with hX : X∗ → R continuous and |hX (k)| → ∞ if k →∞

I If S is infinite we need limX infk |hX (k)| =∞ (non-zero mass in QFT)

I IXY =
∑

Z⊂X∩Y IXY (Z ) will reflect the N-body structures of X ,Y

I HXX = KX + IXX Hamiltonian of system X , N-body type (N depends on X )

I HXY = IXY for X 6= Y is the interaction between the systems X and Y

I Simplest interaction: I ∈ M(C ). Then H = K + I is strictly affiliated to C and
P≥X (H) = K≥X + P≥X (I) where K≥X = ⊕Y≥X KY
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Many-body Hamiltonian: example

I Hs(X) usual Sobolev spaces

I Assume: D(|KX |1/2) = Hs(X) and D(|KY |1/2) = Ht (Y )

I Define IXY (Z ) by the relation

FZ IXY (Z )F−1
Z ≡

∫ ⊕
Z

IZ
XY (k)dk

where IZ
XY : Z → L(Ht (Y/Z ),H−s(X/Z )) is continuous and

supk ‖(1 + |k |+ |PX/Z |)−s IZ
XY (k)(1 + |k |+ |PY/Z |)−t‖ <∞.

I The operators IZ
XY (k) must decay in a weak sense at infinity: ∃ε > 0

IZ
XY (k) : Ht (Y/Z )→H−s−ε(X/Z ) is compact

I Particular case: IXY (Z ) = 1Z ⊗ IZ
XY with IZ

XY : Ht (Y/Z )→H−s(X/Z ) compact
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Many-body Hamiltonian: more on the definition of H

I K = ⊕X KX total kinetic energy⇒ G = D(|K |1/2) its form domain

I The matrix I(Z ) = (IXY (Z ))X ,Y∈S can be realized as a linear operator Go → G∗o where Go is
the algebraic direct sum of the spaces G(X). We require that this extend to a continuous map
I(Z ) : G → G∗

I I(Z ) is norm limit in L(G,G∗) of its finite sub-matrices (IXY (Z ))X ,Y∈T

I There are µZ ≥ 0 and a ≥ 0 with
∑

Z µZ < 1 such that I(Z ) ≥ −µZ |K + ia| ∀Z

I The series
∑

Z I(Z ) ≡ I is norm summable in L(G,G∗).

Then the Hamiltonian defined as a form sum H = K + I is a self-adjoint operator strictly affiliated
to C , we have H≥X = K≥X +

∑
Z≥X I(Z ), and the essential spectrum of H is given by

Spess(H) =
⋃

X∈P(S)Sp(H≥X )

Remark:The set of self-adjoint operators affiliated to C is stable under norm resolvent limits. The
formula is valid for all such operators (H≥X less explicit).

(CNRS / University of Cergy-Pontoise) Localizations at infinity December 5, 2010 39 / 43



Many-body: short range many-body forces

I H = ⊕X ∆X + (IXY )X ,Y∈S and IXY =
∑

Z⊂X∩Y IXY (Z )

I Z ⊂ X ∩ Y ⇒ X = Z ⊕ (X/Z ) and Y = Z ⊕ (Y/Z ) hence

H(X) = H(Z )⊗H(X/Z ) and H(Y ) = H(Z )⊗H(Y/Z )

I IXY (Z ) = 1Z ⊗ IZ
XY with IZ

XY : H2(Y/Z )→H(X/Z )

I E = (X ∩ Y )/Z =⇒ Y/Z = E ⊕ (Y/X) and X/Z = E ⊕ (X/Y )

I (IZ
XY u)(x ′) =

∫
Y/X IZ

XY (x ′, y ′)u(y ′)dy ′

I X � Y = X/Y × Y/X ⇒ IZ
XY : X � Y → K (H2(E),H(E)) ≡ K 2(E)

I Suffices to have IZ
XY ∈ L2(X � Y ; K 2(E)) for the affiliation to C

I Short-range assumption which implies everything:(
〈x ′〉r + 〈y ′〉r

)
‖IZ

XY (x ′, y ′)‖K 2(E) + ‖〈QE 〉r IZ
XY (x ′, y ′)‖K 2(E)

is integrable for some r > 1.
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Quantum fields: P(ϕ)2 models

I Here we consider only the bosonic case.
I E ⊂ H is isotropic if it is a real linear subspace and =(u, v) = 0 for all u, v ∈ E . A maximal

isotropic subspace is called Lagrangian. Fix such a space.
I W (E) = Von Neumann algebra generated by the φ(u) with u ∈ E
I W (E) is maximal abelian and Ω is a cyclic and separating vector. So 〈T 〉 = 〈Ω|T Ω〉 defines a

faithful state on W

I Lp(E) associated to the couple W , 〈·〉. These are spaces of unbounded operators on Γ(H)
such that W (E) = L∞(E) ⊂ L2(E) = Γ(H) ⊂ L1(E)

Theorem: Assume

I H0 = dΓ(h) where h ∈′ O with inf h > 0 and h−1E ⊂ E
I V ∈

⋂
p<∞ Lp(E) self-adjoint (hence affiliated to W (E))

I There is a sequence of operators Vn ∈
⋂

p<∞ Lp(E) which are bounded
from below, and there is q > 2 such that:

supn ‖e−Vn‖Lq <∞, ‖Vn − V‖Lq → 0.

Then H0 + V is essentially self-adjoint on D(H0) ∩ D(V ) and its closure H is a
SQFH of type O with one particle kinetic energy h.
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Coupled systems

I C1,C2 nuclear on H1,H2 and K (Hk ) ⊂ Ck

I H = H1 ⊗H2 =⇒ C = C1 ⊗ C2 ⊂ L(H) and K (H) = K (H1)⊗ K (H2)

I Pk : Ck → Ĉk ≡ Ck/K (Hk ) the canonical surjection

I P ′1 = P1 ⊗ idC2 : C → Ĉ1 ⊗ C2 P ′2 = idC1 ⊗ P2 : C → C1 ⊗ Ĉ2

I Then the kernel of the next morphism is equal to K (H):

P := P ′1 ⊕ P
′
2 : C →

(
Ĉ1 ⊗ C2

)
⊕
(
C1 ⊗ Ĉ2

)
I H ∈′ C =⇒ Ĥ 1 = P ′1(H) ∈′ Ĉ1 ⊗ C2 and Ĥ 2 = P ′2(H) ∈′ C1 ⊗ Ĉ2

I Spess(H) = Sp(Ĥ 1) ∪ Sp(Ĥ 2)

I Example: Field coupled with a “confined system” (e.g. Pauli-Fierz model):

n = 2, C2 = K (H2), P ′2 = 0 =⇒ Spess(H) = Sp(Ĥ 1)
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Quantum fields: Positive mass Pauli-Fierz model

I L = Hilbert space of the confined system, K (L ) = its Hamiltonian algebra
I H = Γ(H)⊗L = Hilbert space of the total system
I F (O,L ) = F (O)⊗ K (L ) = Hamiltonian algebra of the coupled system:

F (O,L )/K (H) ↪→ O⊗F (O,L )

I H = dΓ(h)⊗ 1 + 1⊗ L + φ(v) ≡ H0 + φ(v) total Hamiltonian such that:

(1) h ∈′ O with inf h > 0 (2) L positive with purely discrete spectrum

(3) v : D(L1/2)→ D(h1/2)∗ ⊗L with limr→∞ ‖(h−1/2 ⊗ 1)v(L + r)−1/2‖ < 1.

(4) (h + L)−αv(L + 1)−1/2 and (h + L)−1/2v(L + 1)−α are compact if α > 1/2.

(1) H ∈′ F (O,L ) and is a standard QFH with h as one particle kinetic energy
(2) σess(H) = σ(h) + σ(H)

(3) A = dΓ(a)⊗ 1; H of class C1
u (A) and h of class C1

u (a) with [h, ia] ≥ 0 =⇒
τ(H) =

[⋃∞
n=1τ

n(h)
]

+ σp(H)
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