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Introduction Second quantization Wigner measures and propagation

Quantum Dynamics

Many body system

Schrödinger Hamiltonian:

HN = −
N∑
i=1

~2

2m
∆xi + ε(N)

∑
1≤i<j≤N

V (xi − xj )

(x1, · · · , xN) ∈ R3N and HN is an operator on L2s (R3N).

Potential: V is real with

V (x) = V (−x),V ∈ L∞(R3)

Time-dependent Schrödinger equation:{
i~∂tψN = HNψ

N

ψN
|t=0 = ψN

0 .
(1)

(1) admits a unique solution for any ψN
0 ∈ L2s (R3N).



Introduction Second quantization Wigner measures and propagation

Quantum Dynamics

Many body system

Schrödinger Hamiltonian:

HN = −
N∑
i=1

~2

2m
∆xi + ε(N)

∑
1≤i<j≤N

V (xi − xj )

(x1, · · · , xN) ∈ R3N and HN is an operator on L2s (R3N).

Potential: V is real with

V (x) = V (−x),V ∈ L∞(R3)

Time-dependent Schrödinger equation:{
i~∂tψN = HNψ

N

ψN
|t=0 = ψN

0 .
(1)

(1) admits a unique solution for any ψN
0 ∈ L2s (R3N).



Introduction Second quantization Wigner measures and propagation

Quantum Dynamics

Many body system

Schrödinger Hamiltonian:

HN = −
N∑
i=1

~2

2m
∆xi + ε(N)

∑
1≤i<j≤N

V (xi − xj )

(x1, · · · , xN) ∈ R3N and HN is an operator on L2s (R3N).

Potential: V is real with

V (x) = V (−x),V ∈ L∞(R3)

Time-dependent Schrödinger equation:{
i~∂tψN = HNψ

N

ψN
|t=0 = ψN

0 .
(1)

(1) admits a unique solution for any ψN
0 ∈ L2s (R3N).



Introduction Second quantization Wigner measures and propagation

Mean �eld approximation

Energy per particle

~ = 2m = 1

Let ψN
0 = ϕ⊗N

0
∈ L2s (R3N), ϕ0 ∈ H1(R3), ||ϕ0||L2(R3) = 1.

〈ψN ,HNψ
N〉

N
=

∫
R3
|∇ϕ0|2(x) dx

+ ε(N)
N − 1

2

∫
R3

∫
R3

V (x − y)|ϕ0(x)|2 |ϕ0(y)|2 dx dy

Mean �eld scaling: when N →∞, we obtain a non-trivial limit if

ε(N) =
1

N

Hartree Equation:{
i∂tϕ = −∆ϕ+ V ∗ |ϕ|2 ϕ on Rt × R3

x

ϕ|t=0 = ϕ0 .
(2)
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Convergence

A standard result

Theorem

Let A : L2s (R3k)→ L2s (R3k) bounded. Then for any t ∈ R

lim
N→∞

〈ψN
t ,A⊗ 1N−kψN

t 〉 = 〈ϕ⊗kt ,Aϕ⊗kt 〉

where ψN
t is a solution of (1) with ψN

0 = ϕ⊗N
0

and ϕt is a solution of (2).

Some references:
- Spohn (1980), Bardos-Golse-Mauser (2000), Erdös-Yau (2001),
Erdös-Schlein-Yau... [BBGKY hierarchy, chaos states, BEC]

- Hepp (1974), Ginibre-Velo (1987) [Second quantization, coherent states]

- Fröhlich-Gra�-Schwarz (2007), Fröhlich-Knoles-Pizzo (2007)

- Pickl (2009), Knowles-Pickl (2010), Rodnianski-Schlein (2007),...
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Analogy with the �nite dimension case

The classical limit of the one particle Schrödinger equation

iε
∂ψ

∂t
= P(ε)ψ with P(ε) = −ε

2

2
∆x + V (x)

can be handled for instance using:

Egorov's theorem:

e it/εP(ε)aw (x , εDx)e−it/εP(ε) = (a ◦ Φt)
w (x , εDx) +O(ε)

where Φt is the classical Hamiltonian �ow given by ẋ = ξ, ξ̇ = −∇V (x).

Or semi-classical measures (Wigner):
For any bounded sequence (ψε) in L2(Rd ), there exists a subsequence
ψεj , εj → 0 and a Radon measure µ on Rd × Rd such that

lim
j→∞
〈ψεj , a

w (x , εjDx)ψεj 〉 =

∫
Rd×Rd

a(x , ξ)dµ .

Propagation of those measures:

lim
j→∞
〈e−it/εjP(εj )ψεj , a

w (x , εjDx)e−it/εjP(εj )ψεj 〉 =

∫
Rd×Rd

a ◦ Φt(x , ξ)dµ .
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Or semi-classical measures (Wigner):
For any bounded sequence (ψε) in L2(Rd ), there exists a subsequence
ψεj , εj → 0 and a Radon measure µ on Rd × Rd such that

lim
j→∞
〈ψεj , a

w (x , εjDx)ψεj 〉 =

∫
Rd×Rd

a(x , ξ)dµ .

Propagation of those measures:

lim
j→∞
〈e−it/εjP(εj )ψεj , a

w (x , εjDx)e−it/εjP(εj )ψεj 〉 =

∫
Rd×Rd

a ◦ Φt(x , ξ)dµ .



Introduction Second quantization Wigner measures and propagation

Analogy with the �nite dimension case

The classical limit of the one particle Schrödinger equation

iε
∂ψ

∂t
= P(ε)ψ with P(ε) = −ε

2

2
∆x + V (x)

can be handled for instance using:

Egorov's theorem:

e it/εP(ε)aw (x , εDx)e−it/εP(ε) = (a ◦ Φt)
w (x , εDx) +O(ε)

where Φt is the classical Hamiltonian �ow given by ẋ = ξ, ξ̇ = −∇V (x).
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Schrödinger representation

1-Schrödinger representation: The quantization of the canonical variables

(x , ξ) ∈ Rd × Rd are qj = xj , pj = −i∂xj acting on L2(Rd , dx), and
satisfying

[qk , ql ] = [pk , pl ] = 0, [qk , pl ] = iδk,l I .

Symbol-operator association:

xαj ξ
β
j −→

Creation-annihilation operators :

a∗j =
1√
2

(qj − ipj ) et aj =
1√
2

(qj + ipj ).

The vacuum: h0(x) = 1

πd/4
e
−|x|2/2; where ajh0 = 0.

We have: L2(Rd , dx) = ⊕∞n=0Vect{a∗αh0, |α| = n}, où a∗α = a∗
α1

1 · · · a∗
αd

d .

Correspondence: Let {ej} a basis of Cd ,

a∗αh0 ↔ eα11 ⊗s · · · ⊗s e
αd
d ∈ ⊗|α|s Cd . (3)

L2(Rd , dx) ' ⊕∞n=0 ⊗n
s Cd (Symmetric Fock space).
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Fock representation

2- Fock representation: Let Z be a separable Hilbert . The symmetric Fock
space over Z is

H = ⊕∞n=0 ⊗n
s Z .

where ⊗n
sZ is the symmetric tensor of n copy of Z.

Annihilation operator:

a(f )f1 ⊗s · · · ⊗s fn =
√
εn

1

n!

∑
σ∈Sn

〈f , fσ1〉 fσ2 ⊗ · · · ⊗ fσn ,

Creation operator:

a∗(f )f1 ⊗s · · · ⊗s fn =
√
ε(n + 1) f ⊗s f1 · · · ⊗s fn.

[a(f ), a∗(g)] = ε〈f , g〉I .

Wick operators:

bWick
|⊗N

s Z
=

√
(N − p + q)!N!

(N − p)!
ε
p+q
2 b ⊗s 1

N−p

where b : ⊗p
sZ → ⊗q

sZ is a bounded operator. For instance, the number
operator is N̂ = (I )Wick with I : Z → Z is the identity.
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Fock representation

Correspondence

Fock representation Schrödinger representation Rd

a(z) a(z) =
∑
j

zj

√
ε(∂xj + xj )√

2

a∗(z) a∗(z) =
∑
j

zj

√
ε(−∂xj + xj )√

2

Φ(z) =
1√
2

(a(z) + a∗(z)) Re(z)
√
εx + Im(z)

√
εDx

W (z) = e iΦ(z) τ(−
√
εIm(z),

√
εRe(z))

W (

√
2

iε
z)Ω τ

(
√

2
ε
Re(z),

√
2
ε
Im(z))

(
1

πd/4
e−

x2

2 )

z⊗n, |z | = 1 ε/2− Hermite functions.
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Fock representation

The mean �eld problem

We consider a Wick operator

Hε = (A)Wick +
r∑

j=2

QWick
j

where Qj : ⊗j
sZ → ⊗j

sZ bounded and A : D(A) ⊂ Z → Z a self-adjoint
operator.

If Z = L2(R3), r = 2, A = −∆ and Q2 = V (x − y), then

ε−1Hε|L2s (R3N )
= HN with ε =

1

N
.

The problem of convergence of the quantum dynamics in the mean �eld
scaling can be stated as

lim
ε→0

Tr

[
ρε e

i t
ε
Hε Oε e−i

t
ε
Hε
]

=?

where Oε is a scaled observable (Wick, Weyl, Anti-Wick,. . . ) on H and ρε
is a family of density operators.
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Fock representation

projective observable

We de�ne Weyl and Anti-Wick quantized operators as projective observables
on the symmetric Fock space H = ⊕∞n=0 ⊗n

s Z.
We denote by P the set of all orthogonal projection of �nite rank on Z. Let
p ∈ P,

Weyl quantized operator:

F [f ](z) =

∫
pZ

f (ξ) e−2πi Re〈z,ξ〉 Lp(dξ),

bWeyl =

∫
pZ
F [b](z) W (

√
2πz) Lp(dz) .

A-Wick quantized operator:

bA−Wick =

∫
pZ
F [b](ξ) W (

√
2πξ) e−

επ2

2 |ξ|
2
pZ Lp(dξ) .
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Fock representation

Wick symbolic calculus

For b1 ∈ Pp1,q1(Z), b2 ∈ Pp2,q2(Z), k ∈ N we have ∂kz b1(z) ∈ L(
∨k Z; C) and

∂kz̄ b2(z) ∈
∨k Z. We de�ne the Poisson multiple brackets:

{b1, b2}(k) = ∂kz b1.∂
k
z̄ b2 − ∂kz b2.∂

k
z̄ b1, k ∈ N ,

{b1, b2} = {b1, b2}(1).

Proposition

Let b1 ∈ Pp1,q1(Z) et b2 ∈ Pp2,q2(Z) .
Then for any k ∈ {0, . . . ,min {p1, q2}}, ∂kz b1.∂kz̄ b2 ∈ Pp2−k,q1−k(Z). Moreover

(i) bWick
1 ◦ bWick

2 =

min{p1,q2}∑
k=0

εk

k!
∂kz b1.∂

k
z̄ b2

Wick

,

(ii) [bWick
1 , bWick

2 ] =

max{min{p1,q2} ,min{p2,q1}}∑
k=1

εk

k!
{b1, b2}(k)

Wick

.



Introduction Second quantization Wigner measures and propagation

Wigner measures

Theorem

Consider a sequence of density operators (%εn )n∈N with limn εn = 0 satisfying

for some δ > 0, Tr
[
%εn N̂

δ
]
≤ Cδ <∞ for any n ∈ N.

Then there exist a subsequence (εn)n∈N and a Borel probability measure over
Z, such that

lim
n→∞

Tr

[
%εn b

Weyl
]

=

∫
Z
b(z) dµ(z)

for any b ∈ C∞0 (pZ), p ∈ P. Moreover∫
Z
|z |2δ dµ(z) ≤ Cδ .

Proof:
1-Bochner theorem: characteristic function of a probability distribution i�
positive de�nite + continuity over all �nite dimensional subspaces.
2-Prokhorov criterion: a probability distribution µ on separable Hilbert space Z
is a Borel probability measure i� ∀η > 0, ∃Rη > 0 such that

∀p ∈ P, µ ({z ∈ Z, |pz | ≤ Rη}) ≥ 1− η .

.
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Wigner measures

Corollaire

Let µ a Wigner measure associated to the sequence of density operators
(%εn )n∈N. Then for any b ∈ C∞0 (pZ), p ∈ P

lim
n→∞

Tr

[
%εn b

A−Wick
]

=

∫
Z
b(z) dµ(z)
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Wigner measures

Proposition

Let µ be a Wigner associated to the sequence of density operators (%εn )n∈N
satisfying for any s ∈ N, Tr[N̂s%εn ] <∞. Then, for any b ∈ L(⊗k

sZ,⊗m
s Z)

compact

lim
n→∞

Tr

[
%εn b

Wick
]

=

∫
Z
〈z⊗m, bz⊗k〉 dµ(z) .

Counter-example: Let

Ψε = e1/ε[a∗(ϕε)−a(ϕε)]Ω0

be a family of coherent states such that ϕε ⇀ 0, |ϕε| = 1. Then the
Wigner measure associated to |Ψε〉〈Ψε| is the Dirac measure δ0 however

lim
ε→0
〈Ψε, b

WickΨε〉 6=
∫
Z
〈z⊗m, bz⊗k〉 dδ0(z) .
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Propagation of Wigner measures

Theorem

Let (%ε)ε∈(0,ε̄) be a sequence of density operators with a unique Wigner
measure µ0 such that

∀α ∈ N, lim
ε→0

Tr[%εN̂
α] =

∫
Z
|z |2α dµ0(z) < +∞ . (4)

Then for any t ∈ R, the family (%ε(t) = e−i
t
ε
Hε%εe

i t
ε
Hε)ε∈(0,ε̄) admits a unique

Wigner measure µt = (Ft)∗µ0, which is the initial measure µ0 pushed forward
by the �ow of the Hartree equation (2)). Moreover, for any b ∈ L(⊗k

sZ,⊗m
s Z)

lim
ε→0

Tr

[
%ε(t)bWick

]
=

∫
Z
〈z⊗m, bz⊗k〉 dµt(z) =

∫
Z
b(zt) dµ0(z) .

Proof: 1- Approximation by states %Rε asymptotically localized on a ball of
radius R > 0.
2- Existence of Wigner measures µRt for all times associated to e−i

t
ε
Hε%Rε e

i t
ε
Hε .

3- Passing from Weyl observables to Wick observables in the construction of
Wigner measures.
4- Polynomial approximation of the classical Hartree �ow.
5- Identi�cation of the measures µt as the push-forwarded measures Ft∗µ0.
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Propagation of Wigner measures

Corollaire

We consider (ρεn )n∈N as above. Then for any b ∈ C∞0 (pZ), p ∈ P, we have

lim
εn→0

Tr[ρεn e
i t
εn

Hεn bA−Wick e
−i t
εn

Hεn ] =

∫
Z
b(zt) dµ , (5)

for all t ∈ R, with zt solving the Hartree equation (2).

Remark: Let (ρεn ) as before and µt the Wigner measure associated with
he sequence e−it/εHερεne

it/εHε . Then the map t ∈ R 7→ µt solves the
following transport equation:

µt(b) = µ0t (b) + i

∫ t

0

µs({Q, bt−s}) ds , (6)

for any b : ⊗m
s Z → ⊗k

sZ. Here µ0t (B) = µ(e−itAB), for any Borel set B .
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Propagation of Wigner measures

For a density operator %N ∈ L1(
∨N Z) with Z = L2(R3), we de�ne the

reduced density matrices:

γ
(p)
N (x , y) =

∫
R6(Nε−p)

%N(x ,X , y ,X ) dX , p ≤ N ,

Let γ
(p)
N (t) be the reduced density matrices associated to

%N(t) = e−itHN%Ne
itHN .

Corollaire

The convergence of the BBGKY hierarchy

lim
N→∞

γ
(p)
N (t) =

1∫
Z |z |2p dµt(z)

∫
Z
|z⊗p〉〈z⊗p| dµt(z) =: γ(p)

∞ (t) ,

holds in the trace norm for all p ∈ N . Here µt = (Ft)∗µ0 and µ0 is the Wigner
measure associated with %N .
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Propagation of Wigner measures

The Hartree-Von Neumann limit

Let %0 be a density operator on L2(Rd ) and %⊗N = %⊗ · · · ⊗ %. The von
Neumann equation for a N particle system is given by{

i∂t%N(t) = [HN , %N(t)]

%N(0) = %⊗N
0
,

(7)

with %N(t) trace class operator on L2(RdN) and HN is the Hamiltonian of the
N particles system (without speci�c statistics)

HN = −
N∑
i=1

∆xi +
1

N

∑
i 6=j

V (xi − xj ) ,

where V ∈ L∞(Rd ) real. Using the propagation of Wigner measures, we prove

lim
N→∞

Tr

[
%N(t)(B ⊗ I

L2(Rd (N−k))
)
]

= Tr[%(t)⊗kB] (8)

for any t ∈ R with %(t) a solution of the Hartree-von Neumann equation{
i∂t%(t) = [−∆ + (V ∗ n%(t)), %(t)]
%(0) = %0 ,

(9)

where n%(x , t) := %(x ; x , t) is the charge density.
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