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Many body system

o Schrodinger Hamiltonian:

N hz
H == 5 Bx +e(N) ) Y V(6 —x)
i=1 1<i<j<N
(x1, - ,xn) € R?N and Hy is an operator on L2(R3M).

o Potential: V is real with
V(x) = V(—x),V € L™(R?)
o Time-dependent Schrédinger equation:

{ iRdep" = Hyy
Ple—o = V0 -

(1) admits a unique solution for any ¥’ € L2(R3").
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@ Mean field scaling: when N — oo, we obtain a non-trivial limit if

@ Hartree Equation:

{ iOvp = —Dp+Vx|pPp onR, xRS
Plt=0 = ¥o -
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A standard result

Let A: [2(R%*) — L2(R3*) bounded. Then for any t € R
Jim @, A 1N Hl) = (of%, ApE*)

where Y is a solution of (1) with ' = &V and . is a solution of (2).

Some references:

- Spohn (1980), Bardos-Golse-Mauser (2000), Erdés-Yau (2001),
Erdos-Schlein-Yau... [BBGKY hierarchy, chaos states, BEC]

- Hepp (1974), Ginibre-Velo (1987) [Second quantization, coherent states]
- Frohlich-Graffi-Schwarz (2007), Fréhlich-Knoles-Pizzo (2007)

- Pickl (2009), Knowles-Pickl (2010), Rodnianski-Schlein (2007),...
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can be handled for instance using:
@ Egorov's theorem:
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where ®, is the classical Hamiltonian flow given by x = ¢, € = —VV/(x).
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@ Egorov's theorem:
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Analogy with the finite dimension case

@ The classical limit of the one particle Schrédinger equation

i peyw with  P() = — S AL+ V(x)
ot o2
can be handled for instance using:

@ Egorov's theorem:
/=P 3% (x,eD,)e /P = (a0 d,)"(x,eDy) + O(€)

where ®, is the classical Hamiltonian flow given by x = ¢, € = —VV/(x).

@ Or semi-classical measures (Wigner):
For any bounded sequence (t.) in L2(R9), there exists a subsequence
te;,€j — 0 and a Radon measure ;1 on R? x R? such that

Woea™ (DY) = [ alx€)dp.

lim
j—oo
e Propagation of those measures:

j—oo

lim (e */<iPCDy . a¥(x,e;D,)e /Py ) = / a0 ®(x,8)du.
R xRd
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[ax, a1l = [Pk, Pl = 0, [Gk, pi] = ik yl.
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o 1-Schrédinger representation: The quantization of the canonical variables
(x,€) € R? x R? are q; = xj, pj = —iy; acting on L*(R?, dx), and
satisfying

[qk7 q/] = [kapl] = 07 [qkap/] = iék,IL
@ Symbol-operator association:
X&) — plqf
pg-quantization
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Schradinger representation

o 1-Schrédinger representation: The quantization of the canonical variables
(x,€) € R? x R? are q; = xj, pj = —iy; acting on L*(R?, dx), and
satisfying

lak, a1l = [P, ] =0, [qu, pr] = 0kl

Symbol-operator association:
X&) — plqf
pg-quantization
o Creation-annihilation operators :

" 1 . 1 .
aj = ﬁ(qj —ipj) etaj= ﬁ(qj' + ipj)-

The vacuum: ho(x) = ﬁe_‘xwz; where ajhg = 0.

o We have: LZ(]R"7 dx) = @52oVect{ag ho, |a| = n}, ou a}, = ™ ---aza'l
o Correspondence: Let {ej} a basis of C?,
anho — ef* @ - @, 65 € @M. 3)

[2(R?, dx) ~ &, ®7 C? (Symmetric Fock space).



Second quantization
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Fock representation

2- Fock representation: Let Z be a separable Hilbert . The symmetric Fock
space over Z is

where ®7Z is the symmetric tensor of n copy of Z.

Annihilation operator:

1
A(f)f @ @sfo=vEn — 3 (ffon) oy @ ® o,
" 0EG,

Creation operator:
3*(f)f1 Rs - Rs fn: \/5(n+1) f®s fl"'®sfn»
[a(f), " (g)] = =(f. &)/
Wick operators:

Wick __ (N_p+q)|N| pig N—p
bawz= "y °° bel
where b : ®EZ - ®IZisa bounded operator. For instance, the number
operator is N = (1)K with | : Z — Z is the identity.
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0®000
Fock representation

Correspondence

Fock representation

Schrodinger representation R?
55505 +%)
alz) = Z;
( ) J \/§

e(—0x; + Xxj
a*(z) = sz%

Re(z)\/ex + Im(z)/=Dx

i

T(—/eIm(z),/=Re(2))
1 _x
T(\/E?Re(z),\/glm(z))( pryr e )

¢/2 — Hermite functions.
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@ We consider a Wick operator

where Q; : ®.Z — ®LZ bounded and A: D(A) C Z — Z a self-adjoint
operator.



Second quantization
00e00
Fock representation

The mean field problem

@ We consider a Wick operator

where Q; : ®.Z — ®LZ bounded and A: D(A) C Z — Z a self-adjoint
operator.

o If Z= L2(R3), r=2,A=—Aand @ = V(x — y), then

e 'H

“lLZ @3N

. 1
):HNW|thE—N



Second quantization
00e00
Fock representation

The mean field problem

@ We consider a Wick operator

where Q; : ®.Z — ®LZ bounded and A: D(A) C Z — Z a self-adjoint
operator.
o lf Z=L1*(R?®),r=2 A=—Aand Q= V(x —y), then
e 'H,

. 1
“zgeny = H with e = &

N
@ The problem of convergence of the quantum dynamics in the mean field
scaling can be stated as

. itH —itH
||m0Tr[pE et O, e | =2
E—

where O, is a scaled observable (Wick, Weyl, Anti-Wick,...) on H and p.
is a family of density operators.
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Fock representation

projective observable

We define Weyl and Anti-Wick quantized operators as projective observables
on the symmetric Fock space H = @72y Q7 Z

We denote by IP the set of all orthogonal projection of finite rank on Z. Let
peP,

Wey!| quantized operator:

A = [ #©) eM Ly(do),
pver = / Flbl(z) W(V2rz) Lp(dz).

A-Wick quantized operator:

BT / FIBI(E) W(Vare) e F b= Ly(de).
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Fock representation

Wick symbolic calculus

For by € Ppy.a1(Z), b2 € Ppy.aa(Z), k € N we have 85by(z) € £L(\V/* Z;C) and
O%by(z) € \/* Z. We define the Poisson multiple brackets:

{b1, b }¥) = 0kby.05by — 05by.05b1, k€N,
(b1, b2} = {b, b2}

Proposition

Let by € Ppy g1 (Z) et b2 € Py, q,(Z) .
Then for any k € {0,...,min{p1,q2}}, OXb1.05bs € Pp, k.q,k(Z). Moreover

Wick
min{p1,92}
. Wick Wick ZPI “ ek k k
(I) bl o b2 = F 32 bl.ai b2 5

k=0

max{min{p1,a2} ,min{pz,a1}} k Wik
(ir) [br"", b3V ] = {b1, b2}

k=1
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Wigner measures

Theorem

Consider a sequence of density operators (e, )ncn with lim, e, = 0 satisfying
for some § > 0, Tr [QE" N‘S] < Cs < oo for any n € N.

Then there exist a subsequence (¢n)nen and a Borel probability measure over
Z, such that

lim Tr [Qs,, bweyl] :/z b(z) du(z)

n—oo

for any b € C§°(pZ), p € P. Moreover

/M”wms&.
Z

Proof:

1-Bochner theorem: characteristic function of a probability distribution iff
positive definite + continuity over all finite dimensional subspaces.
2-Prokhorov criterion: a probability distribution u on separable Hilbert space Z
is a Borel probability measure iff ¥ > 0, 3R,, > 0 such that

VpeP, p({zeZ, |pz| <Ry}) 21-n.
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Wigner measures

Corollaire

Let  a Wigner measure associated to the sequence of density operators
(0epn)nen. Then for any b € C5°(pZ), p € P

n— oo

lim Tr [QE" bA_WiCk] :/2 b(z) du(z)
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Wigner measures

Proposition

Let i be a Wigner associateq to the sequence of density operators (9c,)ncn
satisfying for any s € N, Tr[N°o.,] < co. Then, for any b € L(®XZ, @M Z)
compact

n— oo

lim Tr [Qe,. bWiCk] :/ <z®m,bz®k) du(z).
z
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Wigner measures

Proposition

Let i be a Wigner associateq to the sequence of density operators (9c,)ncn
satisfying for any s € N, Tr[N°o.,] < co. Then, for any b € L(®XZ, @M Z)
compact

n— oo

lim Tr [Qe,. bWiCk] :/ <z®m,bz®k) du(z).
z

Counter-example: Let

W, = el/ele pe)-aleell

be a family of coherent states such that ¢. — 0, |p-| = 1. Then the
Wigner measure associated to |W.)(W.| is the Dirac measure do however

|im0<ws,bW"°kw8>¢/ (2™ bz®%) ddo(z).
e Jz
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Propagation of Wigner measures

Theorem

Let (0c)cc(o0,z) be a sequence of density operators with a unique Wigner
measure jip such that

Vo € N, IimOTr[geNo‘] = / |z** duo(z) < +o0. (4)
E—> =z
Then for any t € R, the family (o-(t) = g icHe gge"éHE)Ee(oﬁ—) admits a unique

Wigner measure p: = (F:)« 0, which is the initial measure po pushed forward
by the flow of the Hartree equation (2)). Moreover, for any b € L(®R¥Z, T Z)

i o087 - |

zZ

(2™, bz®%) dpue(z) = /Z b(ze) dyuo(z).

Proof: 1- Approximation by states of asymptotically localized on a ball of
radius R > 0.

2- Existence of Wigner measures uf for all times associated to e iEHe pReiEHe
3- Passing from Weyl observables to Wick observables in the construction of
Wigner measures.

4- Polynomial approximation of the classical Hartree flow.

5- Identification of the measures . as the push-forwarded measures Fy, pio.
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Propagation of Wigner measures

Corollaire

We consider (pe,)ncn as above. Then for any b € Cs°(pZ), p € P, we have
|im0TI‘[ps,, eiiHE" pA—Wick efiiHs,.] :/ b(z:) du, (5)
En— Z

for all t € R, with z, solving the Hartree equation (2).
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Propagation of Wigner measures

Corollaire

We consider (pe,)ncn as above. Then for any b € Cs°(pZ), p € P, we have
|im0TI‘[ps,, eing,, pA—Wick efiiHe,.] :/ b(z:) du, (5)
En— Z

for all t € R, with z, solving the Hartree equation (2).

Remark: Let (p.,) as before and p: the Wigner measure associated with
he sequence e~ "/¢He p_ et/=He  Then the map t € R — p. solves the
following transport equation:

pe(6) = 2(8) + i [ (1)) (6)

forany b: @7 Z — @¥Z. Here u2(B) = u(e " B), for any Borel set B.
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Propagation of Wigner measures

o For a density operator on € £L1(\/" Z) with Z = L2(R?), we define the
reduced density matrices:

2P (%, y) =/ on(, X,y X) dX, p<N,

R6(Ne —p)

Let fy,(\f)(t) be the reduced density matrices associated to

—itHpy

on(t)=e one

itHy

Corollaire

The convergence of the BBGKY hierarchy
im AP = o [ 129 dud() =2 2(0),
N—oo Iz 1277 due(2) J2

holds in the trace norm for all p € N. Here us = (F¢)«po and po is the Wigner
measure associated with op.
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Propagation of Wigner measures

The Hartree-Von Neumann limit

Let go be a density operator on L2(R9) and ¢®*N = p® --- ® o. The von
Neumann equation for a N particle system is given by

iOron(t) = [Hw, on(t)]
{ e ¢ (7)

on(0) = of",

with on(t) trace class operator on L2(R?N) and Hiy is the Hamiltonian of the
N particles system (without specific statistics)

ZAX,+ ZV(X, i),

i#j

where V € L°(R?) real. Using the propagation of Wigner measures, we prove

Jim Tr [on(£)(B © lya gan-n)| = Trle(£)**B] (8)
for any t € R with p(t) a solution of the Hartree-von Neumann equation
[ = L0V ) o) o)
o(0) = oo,

where n,(x, t) := o(x; x, t) is the charge density.
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