Mean field limit of quantum dynamics for general bosonic states. In collaboration with F. Nier

Zied Ammari
IRMAR, Université de Rennes I

CMAP, 8 December 2010

Many body system

- Schrödinger Hamiltonian:

$$
\begin{gathered}
H_{N}=-\sum_{i=1}^{N} \frac{\hbar^{2}}{2 m} \Delta_{x_{i}}+\varepsilon(N) \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right) \\
\left(x_{1}, \cdots, x_{N}\right) \in \mathbb{R}^{3 N} \text { and } H_{N} \text { is an operator on } L_{s}^{2}\left(\mathbb{R}^{3 N}\right) .
\end{gathered}
$$

Many body system

- Schrödinger Hamiltonian:

$$
H_{N}=-\sum_{i=1}^{N} \frac{\hbar^{2}}{2 m} \Delta_{x_{i}}+\varepsilon(N) \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right)
$$

$\left(x_{1}, \cdots, x_{N}\right) \in \mathbb{R}^{3 N}$ and H_{N} is an operator on $L_{s}^{2}\left(\mathbb{R}^{3 N}\right)$.

- Potential: V is real with

$$
V(x)=V(-x), V \in L^{\infty}\left(\mathbb{R}^{3}\right)
$$

Many body system

- Schrödinger Hamiltonian:

$$
H_{N}=-\sum_{i=1}^{N} \frac{\hbar^{2}}{2 m} \Delta_{x_{i}}+\varepsilon(N) \sum_{1 \leq i<j \leq N} V\left(x_{i}-x_{j}\right)
$$

$\left(x_{1}, \cdots, x_{N}\right) \in \mathbb{R}^{3 N}$ and H_{N} is an operator on $L_{s}^{2}\left(\mathbb{R}^{3 N}\right)$.

- Potential: V is real with

$$
V(x)=V(-x), V \in L^{\infty}\left(\mathbb{R}^{3}\right)
$$

- Time-dependent Schrödinger equation:

$$
\left\{\begin{array}{l}
i \hbar \partial_{t} \psi^{N}=H_{N} \psi^{N} \tag{1}\\
\psi_{\mid t=0}^{N}=\psi_{0}^{N}
\end{array}\right.
$$

(1) admits a unique solution for any $\psi_{0}^{N} \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right)$.

Energy per particle

$\hbar=2 m=1$

- Let $\psi_{0}^{N}=\varphi_{0}^{\otimes N} \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right), \varphi_{0} \in H^{1}\left(\mathbb{R}^{3}\right),\left\|\varphi_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}=1$.

$$
\begin{aligned}
\frac{\left\langle\psi^{N}, H_{N} \psi^{N}\right\rangle}{N} & =\int_{\mathbb{R}^{3}}\left|\nabla \varphi_{0}\right|^{2}(x) d x \\
& +\varepsilon(N) \frac{N-1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} V(x-y)\left|\varphi_{0}(x)\right|^{2}\left|\varphi_{0}(y)\right|^{2} d x d y
\end{aligned}
$$

Energy per particle

$\hbar=2 m=1$

- Let $\psi_{0}^{N}=\varphi_{0}^{\otimes N} \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right), \varphi_{0} \in H^{1}\left(\mathbb{R}^{3}\right),\left\|\varphi_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}=1$.

$$
\begin{aligned}
\frac{\left\langle\psi^{N}, H_{N} \psi^{N}\right\rangle}{N} & =\int_{\mathbb{R}^{3}}\left|\nabla \varphi_{0}\right|^{2}(x) d x \\
& +\varepsilon(N) \frac{N-1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} V(x-y)\left|\varphi_{0}(x)\right|^{2}\left|\varphi_{0}(y)\right|^{2} d x d y
\end{aligned}
$$

- Mean field scaling: when $N \rightarrow \infty$, we obtain a non-trivial limit if

$$
\varepsilon(N)=\frac{1}{N}
$$

Energy per particle

$\hbar=2 m=1$

- Let $\psi_{0}^{N}=\varphi_{0}^{\otimes N} \in L_{s}^{2}\left(\mathbb{R}^{3 N}\right), \varphi_{0} \in H^{1}\left(\mathbb{R}^{3}\right),\left\|\varphi_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}=1$.

$$
\begin{aligned}
\frac{\left\langle\psi^{N}, H_{N} \psi^{N}\right\rangle}{N} & =\int_{\mathbb{R}^{3}}\left|\nabla \varphi_{0}\right|^{2}(x) d x \\
& +\varepsilon(N) \frac{N-1}{2} \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} V(x-y)\left|\varphi_{0}(x)\right|^{2}\left|\varphi_{0}(y)\right|^{2} d x d y
\end{aligned}
$$

- Mean field scaling: when $N \rightarrow \infty$, we obtain a non-trivial limit if

$$
\varepsilon(N)=\frac{1}{N}
$$

- Hartree Equation:

$$
\left\{\begin{array}{l}
i \partial_{t} \varphi=-\Delta \varphi+V *|\varphi|^{2} \varphi \quad \text { on } \mathbb{R}_{t} \times \mathbb{R}_{x}^{3} \tag{2}\\
\varphi_{\mid t=0}=\varphi_{0}
\end{array}\right.
$$

A standard result

Theorem

Let $A: L_{s}^{2}\left(\mathbb{R}^{3 k}\right) \rightarrow L_{s}^{2}\left(\mathbb{R}^{3 k}\right)$ bounded. Then for any $t \in \mathbb{R}$

$$
\lim _{N \rightarrow \infty}\left\langle\psi_{t}^{N}, A \otimes 1^{N-k} \psi_{t}^{N}\right\rangle=\left\langle\varphi_{t}^{\otimes k}, A \varphi_{t}^{\otimes k}\right\rangle
$$

where ψ_{t}^{N} is a solution of (1) with $\psi_{0}^{N}=\varphi_{0}^{\otimes N}$ and φ_{t} is a solution of (2).
Some references:

- Spohn (1980), Bardos-Golse-Mauser (2000), Erdös-Yau (2001), Erdös-Schlein-Yau... [BBGKY hierarchy, chaos states, BEC]
- Hepp (1974), Ginibre-Velo (1987) [Second quantization, coherent states]
- Fröhlich-Graffi-Schwarz (2007), Fröhlich-Knoles-Pizzo (2007)
- Pickl (2009), Knowles-Pickl (2010), Rodnianski-Schlein (2007),...
- The classical limit of the one particle Schrödinger equation

$$
i \varepsilon \frac{\partial \psi}{\partial t}=P(\varepsilon) \psi \quad \text { with } \quad P(\varepsilon)=-\frac{\varepsilon^{2}}{2} \Delta_{x}+V(x)
$$

can be handled for instance using:

- The classical limit of the one particle Schrödinger equation

$$
i \varepsilon \frac{\partial \psi}{\partial t}=P(\varepsilon) \psi \quad \text { with } \quad P(\varepsilon)=-\frac{\varepsilon^{2}}{2} \Delta_{x}+V(x)
$$

can be handled for instance using:

- Egorov's theorem:

$$
e^{i t / \varepsilon P(\varepsilon)} a^{w}\left(x, \varepsilon D_{x}\right) e^{-i t / \varepsilon P(\varepsilon)}=\left(a \circ \Phi_{t}\right)^{w}\left(x, \varepsilon D_{x}\right)+\mathcal{O}(\varepsilon)
$$

where $\Phi_{\boldsymbol{t}}$ is the classical Hamiltonian flow given by $\dot{x}=\xi, \dot{\xi}=-\nabla V(x)$.

- The classical limit of the one particle Schrödinger equation

$$
i \varepsilon \frac{\partial \psi}{\partial t}=P(\varepsilon) \psi \quad \text { with } \quad P(\varepsilon)=-\frac{\varepsilon^{2}}{2} \Delta_{x}+V(x)
$$

can be handled for instance using:

- Egorov's theorem:

$$
e^{i t / \varepsilon P(\varepsilon)} a^{w}\left(x, \varepsilon D_{x}\right) e^{-i t / \varepsilon P(\varepsilon)}=\left(a \circ \Phi_{t}\right)^{w}\left(x, \varepsilon D_{x}\right)+\mathcal{O}(\varepsilon)
$$

where $\Phi_{\boldsymbol{t}}$ is the classical Hamiltonian flow given by $\dot{x}=\xi, \dot{\xi}=-\nabla V(x)$.

- Or semi-classical measures (Wigner):

For any bounded sequence $\left(\psi_{\varepsilon}\right)$ in $L^{2}\left(\mathbb{R}^{d}\right)$, there exists a subsequence $\psi_{\varepsilon_{j}}, \varepsilon_{j} \rightarrow 0$ and a Radon measure μ on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ such that

$$
\lim _{j \rightarrow \infty}\left\langle\psi_{\varepsilon_{\boldsymbol{j}}}, a^{w}\left(x, \varepsilon_{j} D_{x}\right) \psi_{\varepsilon_{\boldsymbol{j}}}\right\rangle=\int_{\mathbb{R}^{d} \times \mathbb{R}^{\boldsymbol{d}}} a(x, \xi) d \mu
$$

- The classical limit of the one particle Schrödinger equation

$$
i \varepsilon \frac{\partial \psi}{\partial t}=P(\varepsilon) \psi \quad \text { with } \quad P(\varepsilon)=-\frac{\varepsilon^{2}}{2} \Delta_{x}+V(x)
$$

can be handled for instance using:

- Egorov's theorem:

$$
e^{i t / \varepsilon P(\varepsilon)} a^{w}\left(x, \varepsilon D_{x}\right) e^{-i t / \varepsilon P(\varepsilon)}=\left(a \circ \Phi_{t}\right)^{w}\left(x, \varepsilon D_{x}\right)+\mathcal{O}(\varepsilon)
$$

where Φ_{t} is the classical Hamiltonian flow given by $\dot{x}=\xi, \dot{\xi}=-\nabla V(x)$.

- Or semi-classical measures (Wigner):

For any bounded sequence $\left(\psi_{\varepsilon}\right)$ in $L^{2}\left(\mathbb{R}^{d}\right)$, there exists a subsequence $\psi_{\varepsilon_{j}}, \varepsilon_{j} \rightarrow 0$ and a Radon measure μ on $\mathbb{R}^{d} \times \mathbb{R}^{d}$ such that

$$
\lim _{j \rightarrow \infty}\left\langle\psi_{\varepsilon_{\boldsymbol{j}}}, a^{w}\left(x, \varepsilon_{j} D_{x}\right) \psi_{\varepsilon_{\boldsymbol{j}}}\right\rangle=\int_{\mathbb{R}^{d} \times \mathbb{R}^{\boldsymbol{d}}} a(x, \xi) d \mu
$$

- Propagation of those measures:

$$
\lim _{j \rightarrow \infty}\left\langle e^{-i \boldsymbol{t} / \varepsilon_{j} P\left(\varepsilon_{j}\right)} \psi_{\varepsilon_{j}}, a^{w}\left(x, \varepsilon_{j} D_{x}\right) e^{-i t / \varepsilon_{j} P\left(\varepsilon_{j}\right)} \psi_{\varepsilon_{j}}\right\rangle=\int_{\mathbb{R}^{d} \times \mathbb{R}^{\boldsymbol{d}}} a \circ \Phi_{t}(x, \xi) d \mu
$$

- 1-Schrödinger representation: The quantization of the canonical variables $(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ are $q_{j}=x_{j}, p_{j}=-i \partial_{x_{j}}$ acting on $L^{2}\left(\mathbb{R}^{d}, d x\right)$, and satisfying

$$
\left[q_{k}, q_{l}\right]=\left[p_{k}, p_{l}\right]=0, \quad\left[q_{k}, p_{l}\right]=i \delta_{k, l} l .
$$

- 1-Schrödinger representation: The quantization of the canonical variables $(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ are $q_{j}=x_{j}, p_{j}=-i \partial_{x_{j}}$ acting on $L^{2}\left(\mathbb{R}^{d}, d x\right)$, and satisfying

$$
\left[q_{k}, q_{l}\right]=\left[p_{k}, p_{l}\right]=0, \quad\left[q_{k}, p_{l}\right]=i \delta_{k, l} l .
$$

- Symbol-operator association:

$$
x_{j}^{\alpha} \xi_{j}^{\beta} \longrightarrow\left(\left(q_{j}^{\alpha} p_{j}^{\beta}\right)\right) \text { symmetric product }
$$

Weyl quantization

- 1-Schrödinger representation: The quantization of the canonical variables $(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ are $q_{j}=x_{j}, p_{j}=-i \partial_{x_{j}}$ acting on $L^{2}\left(\mathbb{R}^{d}, d x\right)$, and satisfying

$$
\left[q_{k}, q_{l}\right]=\left[p_{k}, p_{l}\right]=0, \quad\left[q_{k}, p_{l}\right]=i \delta_{k, l} l
$$

- Symbol-operator association:

$$
x_{j}^{\alpha} \xi_{j}^{\beta} \longrightarrow q_{j}^{\alpha} p_{j}^{\beta}
$$

qp-quantization

- 1-Schrödinger representation: The quantization of the canonical variables $(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ are $q_{j}=x_{j}, p_{j}=-i \partial_{x_{j}}$ acting on $L^{2}\left(\mathbb{R}^{d}, d x\right)$, and satisfying

$$
\left[q_{k}, q_{l}\right]=\left[p_{k}, p_{l}\right]=0, \quad\left[q_{k}, p_{l}\right]=i \delta_{k, l} l
$$

- Symbol-operator association:

$$
x_{j}^{\alpha} \xi_{j}^{\beta} \longrightarrow p_{j}^{\beta} q_{j}^{\alpha}
$$

pq-quantization

- 1-Schrödinger representation: The quantization of the canonical variables $(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ are $q_{j}=x_{j}, p_{j}=-i \partial_{x_{j}}$ acting on $L^{2}\left(\mathbb{R}^{d}, d x\right)$, and satisfying

$$
\left[q_{k}, q_{l}\right]=\left[p_{k}, p_{l}\right]=0, \quad\left[q_{k}, p_{l}\right]=i \delta_{k, l} l
$$

- Symbol-operator association:

$$
x_{j}^{\alpha} \xi_{j}^{\beta} \longrightarrow p_{j}^{\beta} q_{j}^{\alpha}
$$

pq-quantization

- Creation-annihilation operators:

$$
a_{j}^{*}=\frac{1}{\sqrt{2}}\left(q_{j}-i p_{j}\right) \quad \text { et } a_{j}=\frac{1}{\sqrt{2}}\left(q_{j}+i p_{j}\right)
$$

The vacuum: $h_{0}(x)=\frac{1}{\pi^{d / 4}} \mathrm{e}^{-|x|^{2} / 2} ;$ where $a_{j} h_{0}=0$.

- We have: $L^{2}\left(\mathbb{R}^{d}, d x\right)=\oplus_{n=0}^{\infty} \operatorname{Vect}\left\{a_{\alpha}^{*} h_{0},|\alpha|=n\right\}$, où $a_{\alpha}^{*}=a_{1}^{*^{\alpha}} \cdots a_{d}^{*^{\alpha} d}$.
- 1-Schrödinger representation: The quantization of the canonical variables $(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$ are $q_{j}=x_{j}, p_{j}=-i \partial_{x_{j}}$ acting on $L^{2}\left(\mathbb{R}^{d}, d x\right)$, and satisfying

$$
\left[q_{k}, q_{l}\right]=\left[p_{k}, p_{l}\right]=0, \quad\left[q_{k}, p_{l}\right]=i \delta_{k, l} l .
$$

- Symbol-operator association:

$$
x_{j}^{\alpha} \xi_{j}^{\beta} \longrightarrow p_{j}^{\beta} q_{j}^{\alpha}
$$

pq-quantization

- Creation-annihilation operators:

$$
a_{j}^{*}=\frac{1}{\sqrt{2}}\left(q_{j}-i p_{j}\right) \quad \text { et } a_{j}=\frac{1}{\sqrt{2}}\left(q_{j}+i p_{j}\right)
$$

The vacuum: $h_{0}(x)=\frac{1}{\pi^{d / 4}} \mathrm{e}^{-|x|^{2} / 2} ;$ where $a_{j} h_{0}=0$.

- We have: $L^{2}\left(\mathbb{R}^{d}, d x\right)=\oplus_{n=0}^{\infty} \operatorname{Vect}\left\{a_{\alpha}^{*} h_{0},|\alpha|=n\right\}$, où $a_{\alpha}^{*}=a_{1}^{*^{\alpha}} \cdots a_{d}^{*^{\alpha} d}$.
- Correspondence: Let $\left\{e_{j}\right\}$ a basis of \mathbb{C}^{d},

$$
\begin{equation*}
a_{\alpha}^{*} h_{0} \leftrightarrow e_{1}^{\alpha_{1}} \otimes_{s} \cdots \otimes_{s} e_{d}^{\alpha} d \in \otimes_{s}^{|\alpha|} \mathbb{C}^{d} \tag{3}
\end{equation*}
$$

$L^{2}\left(\mathbb{R}^{d}, d x\right) \simeq \oplus_{n=0}^{\infty} \otimes_{s}^{n} \mathbb{C}^{d}$ (Symmetric Fock space).

2- Fock representation: Let \mathcal{Z} be a separable Hilbert. The symmetric Fock space over \mathcal{Z} is

$$
\mathcal{H}=\oplus_{n=0}^{\infty} \otimes_{s}^{n} \mathcal{Z}
$$

where $\otimes_{s}^{n} \mathcal{Z}$ is the symmetric tensor of n copy of \mathcal{Z}.
Annihilation operator:

$$
a(f) f_{1} \otimes_{s} \cdots \otimes_{s} f_{n}=\sqrt{\varepsilon n} \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{\boldsymbol{n}}}\left\langle f, f_{\sigma_{\mathbf{1}}}\right\rangle f_{\sigma_{\mathbf{2}}} \otimes \cdots \otimes f_{\sigma_{\boldsymbol{n}}}
$$

Creation operator:

$$
\begin{gathered}
a^{*}(f) f_{1} \otimes_{s} \cdots \otimes_{s} f_{n}=\sqrt{\varepsilon(n+1)} f \otimes_{s} f_{1} \cdots \otimes_{s} f_{n} \\
{\left[a(f), a^{*}(g)\right]=\varepsilon\langle f, g\rangle l .}
\end{gathered}
$$

Wick operators:

$$
b_{\mid \otimes_{s} \mathcal{Z}}^{W i c k}=\frac{\sqrt{(N-p+q)!N!}}{(N-p)!} \varepsilon^{\frac{p+q}{2}} b \otimes_{s} 1^{N-p}
$$

where $b: \otimes_{s}^{p} \mathcal{Z} \rightarrow \otimes_{s}^{q} \mathcal{Z}$ is a bounded operator. For instance, the number operator is $\hat{N}=(I)^{\text {Wick }}$ with $I: \mathcal{Z} \rightarrow \mathcal{Z}$ is the identity.

Correspondence

Fock representation

$$
\begin{aligned}
a(z) & a(z)=\sum_{j} \bar{z}_{j} \frac{\sqrt{\varepsilon}\left(\partial_{x_{j}}+x_{j}\right)}{\sqrt{2}} \\
a^{*}(z) & a^{*}(z)=\sum_{j} z_{j} \frac{\sqrt{\varepsilon}\left(-\partial_{x_{j}}+x_{j}\right)}{\sqrt{2}} \\
\Phi(z)=\frac{1}{\sqrt{2}}\left(a(z)+a^{*}(z)\right) & \operatorname{Re}(z) \sqrt{\varepsilon} x+\operatorname{Im}(z) \sqrt{\varepsilon} D_{x} \\
W(z)=e^{i \Phi(z)} & \tau_{(-\sqrt{\varepsilon} \operatorname{lm}(z), \sqrt{\varepsilon} \operatorname{Re}(z))} \\
W\left(\frac{\sqrt{2}}{i \varepsilon} z\right) \Omega & \tau_{\left(\sqrt{\frac{2}{\varepsilon}} \operatorname{Re}(z), \sqrt{\frac{2}{\varepsilon}} \operatorname{lm}(z)\right)}\left(\frac{1}{\pi^{d / 4}} e^{-\frac{x^{2}}{2}}\right) \\
z^{\otimes n},|z|=1 & \varepsilon / 2-\operatorname{Hermite} \text { functions. }
\end{aligned}
$$

The mean field problem

- We consider a Wick operator

$$
H_{\varepsilon}=(A)^{\text {Wick }}+\sum_{j=2}^{r} Q_{j}^{\text {Wick }}
$$

where $Q_{j}: \otimes_{s}^{j} \mathcal{Z} \rightarrow \otimes_{s}^{j} \mathcal{Z}$ bounded and $A: D(A) \subset \mathcal{Z} \rightarrow \mathcal{Z}$ a self-adjoint operator.

The mean field problem

- We consider a Wick operator

$$
H_{\varepsilon}=(A)^{\text {Wick }}+\sum_{j=2}^{r} Q_{j}^{\text {Wick }}
$$

where $Q_{j}: \otimes_{\boldsymbol{s}}^{j} \mathcal{Z} \rightarrow \otimes_{\boldsymbol{s}}^{j} \mathcal{Z}$ bounded and $A: D(A) \subset \mathcal{Z} \rightarrow \mathcal{Z}$ a self-adjoint operator.

- If $\mathcal{Z}=L^{2}\left(\mathbb{R}^{3}\right), r=2, A=-\Delta$ and $Q_{2}=V(x-y)$, then

$$
\varepsilon^{-1} H_{\varepsilon \mid L_{s}^{2}\left(\mathbb{R}^{3 N}\right)}=H_{N} \text { with } \varepsilon=\frac{1}{N} .
$$

The mean field problem

- We consider a Wick operator

$$
H_{\varepsilon}=(A)^{\text {Wick }}+\sum_{j=2}^{r} Q_{j}^{\text {Wick }}
$$

where $Q_{j}: \otimes_{s}^{j} \mathcal{Z} \rightarrow \otimes_{s}^{j} \mathcal{Z}$ bounded and $A: D(A) \subset \mathcal{Z} \rightarrow \mathcal{Z}$ a self-adjoint operator.

- If $\mathcal{Z}=L^{2}\left(\mathbb{R}^{3}\right), r=2, A=-\Delta$ and $Q_{2}=V(x-y)$, then

$$
\varepsilon^{-1} H_{\varepsilon_{\mid L_{s}^{2}\left(\mathbb{R}^{3 N}\right)}}=H_{N} \text { with } \varepsilon=\frac{1}{N} .
$$

- The problem of convergence of the quantum dynamics in the mean field scaling can be stated as

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{Tr}\left[\rho_{\varepsilon} e^{i \frac{t}{\varepsilon} H_{\varepsilon}} \mathcal{O}_{\varepsilon} e^{-i \frac{t}{\varepsilon} H_{\varepsilon}}\right]=?
$$

where $\mathcal{O}_{\varepsilon}$ is a scaled observable (Wick, Weyl, Anti-Wick,...) on \mathcal{H} and ρ_{ε} is a family of density operators.

projective observable

We define Weyl and Anti-Wick quantized operators as projective observables on the symmetric Fock space $\mathcal{H}=\oplus_{n=0}^{\infty} \otimes_{s}^{n} \mathcal{Z}$.
We denote by \mathbb{P} the set of all orthogonal projection of finite rank on \mathcal{Z}. Let $p \in \mathbb{P}$,

Weyl quantized operator:

$$
\begin{aligned}
& \mathcal{F}[f](z)=\int_{p \mathcal{Z}} f(\xi) e^{-2 \pi i \operatorname{Re}\langle z, \xi\rangle} L_{p}(d \xi) \\
& b^{\text {Weyl }}=\int_{p \mathcal{Z}} \mathcal{F}[b](z) W(\sqrt{2} \pi z) L_{p}(d z)
\end{aligned}
$$

A-Wick quantized operator:

$$
b^{A-W i c k}=\int_{p \mathcal{Z}} \mathcal{F}[b](\xi) W(\sqrt{2} \pi \xi) e^{-\frac{\varepsilon \pi^{2}}{2}|\xi|_{p \mathcal{Z}}^{2}} L_{p}(d \xi)
$$

Wick symbolic calculus

For $b_{1} \in \mathcal{P}_{p_{1}, q_{1}}(\mathcal{Z}), b_{2} \in \mathcal{P}_{p_{2}, q_{2}}(\mathcal{Z}), k \in \mathbb{N}$ we have $\partial_{z}^{k} b_{1}(z) \in \mathcal{L}\left(\bigvee^{k} \mathcal{Z} ; \mathbb{C}\right)$ and $\partial_{\bar{z}}^{k} b_{2}(z) \in \bigvee^{k} \mathcal{Z}$. We define the Poisson multiple brackets:

$$
\begin{aligned}
& \left\{b_{1}, b_{2}\right\}^{(k)}=\partial_{z}^{k} b_{1} \cdot \partial_{\bar{z}}^{k} b_{2}-\partial_{z}^{k} b_{2} \cdot \partial_{\bar{z}}^{k} b_{1}, \quad k \in \mathbb{N} \\
& \left\{b_{1}, b_{2}\right\}=\left\{b_{1}, b_{2}\right\}^{(1)}
\end{aligned}
$$

Proposition

Let $b_{1} \in \mathcal{P}_{p_{1}, q_{1}}(\mathcal{Z})$ et $b_{2} \in \mathcal{P}_{\boldsymbol{p}_{\mathbf{2}}, q_{\mathbf{2}}}(\mathcal{Z})$.
Then for any $k \in\left\{0, \ldots, \min \left\{p_{1}, q_{2}\right\}\right\}, \partial_{z}^{k} b_{1} . \partial_{\bar{Z}}^{k} b_{2} \in \mathcal{P}_{p_{2}-k, q_{1}-k}(\mathcal{Z})$. Moreover
(i) $b_{1}^{\text {Wick }} \circ b_{2}^{\text {Wick }}=\left(\sum_{k=0}^{\min \left\{p_{1}, q_{2}\right\}} \frac{\varepsilon^{k}}{k!} \partial_{z}^{k} b_{1} . \partial_{\bar{z}}^{k} b_{2}\right)^{\text {Wick }}$,
(ii) $\quad\left[b_{1}^{\text {Wick }}, b_{2}^{\text {Wick }}\right]=\left(\sum_{k=1}^{\max \left\{\min \left\{\boldsymbol{p}_{1}, q_{2}\right\}, \min \left\{p_{2}, q_{1}\right\}\right\}} \frac{\varepsilon^{k}}{k!}\left\{b_{1}, b_{2}\right\}^{(k)}\right)^{\text {Wick }}$

Theorem

Consider a sequence of density operators $\left(\varrho_{\varepsilon_{n}}\right)_{n \in \mathbb{N}}$ with $\lim _{n} \varepsilon_{n}=0$ satisfying for some $\delta>0, \operatorname{Tr}\left[\varrho_{\varepsilon_{\boldsymbol{n}}} \hat{N}^{\delta}\right] \leq C_{\delta}<\infty$ for any $n \in \mathbb{N}$.
Then there exist a subsequence $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ and a Borel probability measure over \mathcal{Z}, such that

$$
\lim _{n \rightarrow \infty} \operatorname{Tr}\left[\varrho_{\varepsilon_{\boldsymbol{n}}} b^{W e y l}\right]=\int_{\mathcal{Z}} b(z) d \mu(z)
$$

for any $b \in \mathcal{C}_{0}^{\infty}(p \mathcal{Z}), p \in \mathbb{P}$. Moreover

$$
\int_{\mathcal{Z}}|z|^{2 \delta} d \mu(z) \leq C_{\delta}
$$

Proof:
1-Bochner theorem: characteristic function of a probability distribution iff positive definite + continuity over all finite dimensional subspaces.
2-Prokhorov criterion: a probability distribution μ on separable Hilbert space \mathcal{Z} is a Borel probability measure iff $\forall \eta>0, \exists R_{\eta}>0$ such that

$$
\forall p \in \mathbb{P}, \quad \mu\left(\left\{z \in \mathcal{Z},|p z| \leq R_{\eta}\right\}\right) \geq 1-\eta
$$

Corollaire

Let μ a Wigner measure associated to the sequence of density operators $\left(\varrho_{\varepsilon_{\boldsymbol{n}}}\right)_{n \in \mathbb{N}}$. Then for any $b \in C_{0}^{\infty}(p \mathcal{Z}), p \in \mathbb{P}$

$$
\lim _{n \rightarrow \infty} \operatorname{Tr}\left[\varrho_{\varepsilon_{n}} b^{A-W i c k}\right]=\int_{\mathcal{Z}} b(z) d \mu(z)
$$

Proposition

Let μ be a Wigner associated to the sequence of density operators $\left(\varrho_{\varepsilon_{\boldsymbol{n}}}\right)_{n \in \mathbb{N}}$ satisfying for any $s \in \mathbb{N}, \operatorname{Tr}\left[\hat{N}^{s} \varrho_{\varepsilon_{n}}\right]<\infty$. Then, for any $b \in \mathcal{L}\left(\otimes_{s}^{k} \mathcal{Z}, \otimes_{s}^{m} \mathcal{Z}\right)$ compact

$$
\lim _{n \rightarrow \infty} \operatorname{Tr}\left[\varrho_{\varepsilon_{n}} b^{W i c k}\right]=\int_{\mathcal{Z}}\left\langle z^{\otimes m}, b z^{\otimes k}\right\rangle d \mu(z)
$$

Proposition

Let μ be a Wigner associated to the sequence of density operators $\left(\varrho_{\varepsilon_{\boldsymbol{n}}}\right)_{n \in \mathbb{N}}$ satisfying for any $s \in \mathbb{N}, \operatorname{Tr}\left[\hat{N}^{s} \varrho_{\varepsilon_{n}}\right]<\infty$. Then, for any $b \in \mathcal{L}\left(\otimes_{s}^{k} \mathcal{Z}, \otimes_{s}^{m} \mathcal{Z}\right)$ compact

$$
\lim _{n \rightarrow \infty} \operatorname{Tr}\left[\varrho_{\varepsilon_{n}} b^{W i c k}\right]=\int_{\mathcal{Z}}\left\langle z^{\otimes m}, b z^{\otimes k}\right\rangle d \mu(z)
$$

Counter-example: Let

$$
\Psi_{\varepsilon}=e^{1 / \varepsilon\left[a^{*}\left(\varphi_{\varepsilon}\right)-a\left(\varphi_{\varepsilon}\right)\right]} \Omega_{0}
$$

be a family of coherent states such that $\varphi_{\varepsilon} \rightharpoonup 0,\left|\varphi_{\varepsilon}\right|=1$. Then the Wigner measure associated to $\left|\Psi_{\varepsilon}\right\rangle\left\langle\Psi_{\varepsilon}\right|$ is the Dirac measure δ_{0} however

$$
\lim _{\varepsilon \rightarrow 0}\left\langle\Psi_{\varepsilon}, b^{\text {Wick }} \Psi_{\varepsilon}\right\rangle \neq \int_{\mathcal{Z}}\left\langle z^{\otimes m}, b z^{\otimes k}\right\rangle d \delta_{0}(z)
$$

Theorem

Let $\left(\varrho_{\varepsilon}\right)_{\varepsilon \in(0, \bar{\varepsilon})}$ be a sequence of density operators with a unique Wigner measure μ_{0} such that

$$
\begin{equation*}
\forall \alpha \in \mathbb{N}, \quad \lim _{\varepsilon \rightarrow 0} \operatorname{Tr}\left[\varrho_{\varepsilon} \hat{N}^{\alpha}\right]=\int_{\mathcal{Z}}|z|^{2 \alpha} d \mu_{0}(z)<+\infty \tag{4}
\end{equation*}
$$

Then for any $t \in \mathbb{R}$, the family $\left(\varrho_{\varepsilon}(t)=e^{-i \frac{t}{\varepsilon} H_{\varepsilon}} \varrho_{\varepsilon} e^{i \frac{t}{\varepsilon} H_{\varepsilon}}\right)_{\varepsilon \in(0, \bar{\varepsilon})}$ admits a unique Wigner measure $\mu_{t}=\left(\mathbf{F}_{\boldsymbol{t}}\right)_{*} \mu_{0}$, which is the initial measure μ_{0} pushed forward by the flow of the Hartree equation (2)). Moreover, for any $b \in \mathcal{L}\left(\otimes_{s}^{k} \mathcal{Z}, \otimes_{s}^{m} \mathcal{Z}\right)$

$$
\lim _{\varepsilon \rightarrow 0} \operatorname{Tr}\left[\varrho_{\varepsilon}(t) b^{W i c k}\right]=\int_{\mathcal{Z}}\left\langle z^{\otimes m}, b z^{\otimes k}\right\rangle d \mu_{t}(z)=\int_{\mathcal{Z}} b\left(z_{t}\right) d \mu_{0}(z) .
$$

Proof: 1- Approximation by states $\varrho_{\varepsilon}^{R}$ asymptotically localized on a ball of radius $R>0$.
2- Existence of Wigner measures μ_{t}^{R} for all times associated to $e^{-i \frac{t}{\varepsilon} H_{\varepsilon}} \varrho_{\varepsilon}^{R} e^{i \frac{t}{\varepsilon} H_{\varepsilon}}$.
3- Passing from Weyl observables to Wick observables in the construction of Wigner measures.
4- Polynomial approximation of the classical Hartree flow.
5- Identification of the measures $\mu_{\boldsymbol{t}}$ as the push-forwarded measures $\mathbf{F}_{\mathbf{t} *} \mu_{0}$.

Corollaire

We consider $\left(\rho_{\varepsilon_{n}}\right)_{n \in \mathbb{N}}$ as above. Then for any $b \in C_{0}^{\infty}(p \mathcal{Z}), p \in \mathbb{P}$, we have

$$
\begin{equation*}
\lim _{\varepsilon_{n} \rightarrow 0} \operatorname{Tr}\left[\rho_{\varepsilon_{n}} e^{i \frac{t}{\varepsilon_{n}} H_{\varepsilon_{n}}} b^{A-W i c k} e^{-i \frac{t}{\varepsilon_{n}} H_{\varepsilon_{n}}}\right]=\int_{\mathcal{Z}} b\left(z_{t}\right) d \mu, \tag{5}
\end{equation*}
$$

for all $t \in \mathbb{R}$, with z_{t} solving the Hartree equation (2).

Corollaire

We consider $\left(\rho_{\varepsilon_{\boldsymbol{n}}}\right)_{n \in \mathbb{N}}$ as above. Then for any $b \in C_{0}^{\infty}(p \mathcal{Z}), p \in \mathbb{P}$, we have

$$
\begin{equation*}
\lim _{\varepsilon_{\boldsymbol{n}} \rightarrow 0} \operatorname{Tr}\left[\rho_{\varepsilon_{\boldsymbol{n}}} e^{i \frac{t}{\varepsilon_{\boldsymbol{n}}} H_{\varepsilon_{\boldsymbol{n}}}} b^{A-W i c k} e^{-i \frac{t}{\varepsilon_{\boldsymbol{n}}} H_{\varepsilon_{\boldsymbol{n}}}}\right]=\int_{\mathcal{Z}} b\left(z_{t}\right) d \mu \tag{5}
\end{equation*}
$$

for all $t \in \mathbb{R}$, with z_{t} solving the Hartree equation (2).
Remark: Let $\left(\rho_{\varepsilon_{\boldsymbol{n}}}\right)$ as before and $\mu_{\boldsymbol{t}}$ the Wigner measure associated with he sequence $e^{-i t / \varepsilon H_{\varepsilon}} \rho_{\varepsilon_{\boldsymbol{n}}} e^{i t / \varepsilon H_{\varepsilon}}$. Then the map $t \in \mathbb{R} \mapsto \mu_{\boldsymbol{t}}$ solves the following transport equation:

$$
\begin{equation*}
\mu_{t}(b)=\mu_{t}^{0}(b)+i \int_{0}^{t} \mu_{s}\left(\left\{Q, b_{t-s}\right\}\right) d s \tag{6}
\end{equation*}
$$

for any $b: \otimes_{s}^{m} \mathcal{Z} \rightarrow \otimes_{s}^{k} \mathcal{Z}$. Here $\mu_{t}^{0}(B)=\mu\left(e^{-i t A} B\right)$, for any Borel set B.

- For a density operator $\varrho_{N} \in \mathcal{L}^{1}\left(\bigvee^{N} \mathcal{Z}\right)$ with $\mathcal{Z}=L^{2}\left(\mathbb{R}^{3}\right)$, we define the reduced density matrices:

$$
\gamma_{N}^{(\boldsymbol{p})}(x, y)=\int_{\mathbb{R}^{\mathbf{6}\left(\boldsymbol{N}_{\varepsilon}-\boldsymbol{p}\right)}} \varrho_{N}(x, X, y, X) d X, \quad p \leq N
$$

Let $\gamma_{N}^{(p)}(t)$ be the reduced density matrices associated to

$$
\varrho_{N}(t)=e^{-i t H_{N}} \varrho_{N} e^{i t H_{N}}
$$

Corollaire

The convergence of the BBGKY hierarchy

$$
\lim _{N \rightarrow \infty} \gamma_{N}^{(p)}(t)=\frac{1}{\int_{\mathcal{Z}}|z|^{2 p} d \mu_{t}(z)} \int_{\mathcal{Z}}\left|z^{\otimes \boldsymbol{p}}\right\rangle\left\langle z^{\otimes \boldsymbol{p}}\right| d \mu_{t}(z)=: \gamma_{\infty}^{(p)}(t)
$$

holds in the trace norm for all $p \in \mathbb{N}$. Here $\mu_{t}=\left(\mathbf{F}_{t}\right)_{*} \mu_{0}$ and μ_{0} is the Wigner measure associated with ϱ_{N}.

The Hartree-Von Neumann limit

Let ϱ_{0} be a density operator on $L^{2}\left(\mathbb{R}^{d}\right)$ and $\varrho^{\otimes N}=\varrho \otimes \cdots \otimes \varrho$. The von Neumann equation for a N particle system is given by

$$
\left\{\begin{align*}
i \partial_{\boldsymbol{t}} \varrho_{N}(t) & =\left[\mathbb{H}_{N}, \varrho_{N}(t)\right] \tag{7}\\
\varrho_{N}(0) & =\varrho_{0}^{\otimes N}
\end{align*}\right.
$$

with $\varrho_{N}(t)$ trace class operator on $L^{2}\left(\mathbb{R}^{d N}\right)$ and \mathbb{H}_{N} is the Hamiltonian of the N particles system (without specific statistics)

$$
\mathbb{H}_{N}=-\sum_{i=1}^{N} \Delta_{x_{i}}+\frac{1}{N} \sum_{i \neq j} V\left(x_{i}-x_{j}\right)
$$

where $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ real. Using the propagation of Wigner measures, we prove

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \operatorname{Tr}\left[\varrho_{N}(t)\left(B \otimes I_{L^{2}\left(\mathbb{R}^{\boldsymbol{d}(\boldsymbol{N}-\boldsymbol{k})}\right)}\right)\right]=\operatorname{Tr}\left[\varrho(t)^{\otimes k} B\right] \tag{8}
\end{equation*}
$$

for any $t \in \mathbb{R}$ with $\varrho(t)$ a solution of the Hartree-von Neumann equation

$$
\left\{\begin{align*}
i \partial_{t} \varrho(t) & =\left[-\Delta+\left(V * n_{\varrho(t)}\right), \varrho(t)\right] \tag{9}\\
\varrho(0) & =\varrho_{0}
\end{align*}\right.
$$

where $n_{\varrho}(x, t):=\varrho(x ; x, t)$ is the charge density.

