Inverse problems for aerospace applications
From experience feedback to a generic approach

V. SRITHAMMAVANH, N.RACHDI & F.MANGEANT
PICOF 2012 conference - Ecole Polytechnique, Palaiseau
April, 4th 2012
Summary

1. Why is a generic approach valuable?
2. Illustration on some aerospace applications
 i. Adjoint computation
 ii. Noisy measurements
 iii. Uncertainties
 iv. Surrogate models
3. Conclusion & perspectives
Inverse problem in industry

- **Inverse problem**: search for the causes of observed or desired effects

- Only 3 ingredients…
 - Governing equations?
 - Discretization?
 - Implementation?
 - Criterion?
 - Ill-posedness?
 - Linear or non linear IP?
 - Observed data accuracy?
 - Regularization?
 - Solution interpretation?
 - ….

- But, many questions addressing many underlying research or industrial topics
 - Governing equations?
 - Discretization?
 - Implementation?
 - Criterion?
 - Ill-posedness?
 - Linear or non linear IP?
 - Observed data accuracy?
 - Regularization?
 - Solution interpretation?
 - ….

- Measurement devices
- Software availability
- Computing resources
- Uncertainties
- Numerical analysis
- HPC
- Optimization
- Surrogates
- Physics

© EADS 2011
Towards a generic approach

• **A structuring approach is valuable**
 - **Step 1**: industrial context / parameter / observables / sources of uncertainties
 - **Step 2**: governing equations / criterion / forward model
 - **Step 3**: implementation (forward model / optimization)
 - **Step 4**: sensitivity & robustness analysis

• **Should help to deal with the real difficulties**
 - Define the problem with BUs
 - Establish dialog between experts and field engineers
 - Assess models/data availability
 - Solution analysis
Inverse problem & Adjoint computation by Lagrangian approach (1/2)

- **Industrial context**:
 - Identification of shock levels along cutting line from acceleration measurements

- **Forward model**: equations of mechanics (ODE) - M, B, K computed by FEM
 \[M\ddot{q}(t) + B\dot{q}(t) + Kq(t) = g(t) \]

- **Criterion**: least-squares problem subject to the ODE constraint
 \[
 \text{Min } J(g) = J(g, \ddot{q}) = \frac{1}{2} \int_0^T \| \ddot{q}(g(t)) - \ddot{q}_{\text{mes}}(t) \|^2 \, dt
 \]
 \[s.t. \quad F(g, \ddot{q}) = 0 \]

 \[
 \Rightarrow \text{ solved by a Lagrangian approach}
 \]

- **Lagrangian function**:
 \[L(g, \ddot{q}, \lambda) = J(g, \ddot{q}) + \int_0^T \lambda(t) < F(g, \ddot{q}) > dt \]

- **Optimality conditions on L**: Adjoint equations
 \[
 \frac{\partial L}{\partial \ddot{q}} = 0 \Rightarrow M\ddot{\lambda}(t) + B\dot{\lambda}(t) + K\lambda(t) = -[\ddot{q}(t) - \ddot{q}_{\text{mes}}(t)]
 \]

- **Gradient of J deduced from adjoint state \(\lambda \)**
 \[
 \nabla_g J = -\ddot{\lambda}
 \]

 \[
 \Rightarrow \text{Gradient-based descent algorithm (Quasi-newton)}
 \]
Inverse problem & Adjoint computation by Lagrangian approach (2/2)

- Good results with discrete adjoint approach
- But requires to create the adjoint program: not straightforward
- Promising technology: Automatic Differentiation
Inverse problem & Adjoint computation by Automatic differentiation (1/2)

- Industrial context:
 - identification of aerodynamic coefficients from in-flight measurement
 - improvement of existing tables

- Forward model: equations of 3D dynamics (ODE)
 \[
 \begin{align*}
 m \frac{dV}{dt} &= \sum F_{ext} \\
 \frac{dH}{dt} &= \sum M_{applied}
 \end{align*}
 \]
 Drag, Lift: \(D = C_D \cdot Q \cdot S \)
 \(L = C_L \cdot Q \cdot S \)

- Criterion: least-squares problem subject to an ODE constraint
 \[
 \min_{p \in \mathbb{P}} J(p) = \int_0^T \left\| O(p,t) - O^{met} \right\|^2 dt \\
 \text{s.t. } F(O(p,t), p) = 0
 \]

- Optimization & industrial constraints
 - Existing discretized forward model (FORTRAN 90)

⇒ Gradient computed by AD (TAPENADE) / 2 modes: Tangent & Reverse

⇒ Quasi-Newton algorithm
Inverse problem & Adjoint computation by Automatic differentiation (2/2)

- Good results with Automatic Differentiation (Tangent mode)
- Reverse mode more relevant for adjoint computation: generates automatically the adjoint of the discretized problem
- Many potential applications: aerodynamics, structural optimization, control, …
Inverse problem & Combinatorial optimization (1/2)

- **Industrial context**: optimal positioning of microphones for robust identification of sources

- **Forward model**: acoustic waves equation (Helmholtz)

 \[
 \alpha \rightarrow \text{ACTIPOLE} \rightarrow u
 \]

 Parameter
 modal sources

 Observables
 pressure at microphones

- **Criterion**: least-squares problem - Robustness = minimization of the relative error on source reconstruction

 \[
 J(\alpha) = \frac{1}{2} \| T \cdot \alpha - u^{\text{mes}} \|^2
 \]

 \[
 \frac{\| \Delta \alpha \|}{\| \alpha^{\text{exact}} \|} \leq \text{cond}(T) \cdot \frac{\| \Delta u \|}{\| u^{\text{exact}} \|}
 \]

- **Optimization problem**: optimal positioning \(p \) searched on a discrete grid

 \[
 p^* = \arg \min_p \text{cond } T(p)
 \]

 - Global optimization, many minima
 - Gradient methods not adapted
 - Use of Operational Research technics (TABU)
Inverse problem & Combinatorial optimization (2/2)

8 microphones / 8 sources / 100 possible locations on semi-sphere

- How to handle with measurement errors on microphones?
- How to handle situations where \(N_{src} \gg N_{mic} \)?

Some questions remain:

- How to handle with measurement errors on microphones?
- How to handle situations where \(N_{src} \gg N_{mic} \)?
Inverse Problems with Noisy Observations (1/2)

- **Probabilistic Modelling:**

 \[U = U_{obs} \text{ is noised} \quad \Rightarrow \quad U_{obs} = U^* + \varepsilon \quad \text{with} \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_{Nmic} \end{pmatrix} \]

 \[U^* = T \cdot \alpha \]

 \[U_{obs} = T \cdot \alpha + \varepsilon \]

- **Probabilistic Inverse Problem:**

 Noise minimization

 \[\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \| T \cdot \alpha - u_{obs} \|^2 \]

 Computationally, **YES** ... **BUT**... the solution \(\hat{\alpha} = \hat{\alpha}(\varepsilon) \) is **random**!

 How to quantify the random error ?...
Inverse Problems with Noisy Observations (2/2)

Error Quantification:

\[\text{Var}(\hat{\alpha}(\mathbf{e})) = \sigma^2 (TT)^{-1} \]

How to reduce?

(At fixed \(\sigma^2 \)) Find microphone positions \(\hat{p} \) satisfying

\[\hat{p} = \text{Argmin}_p \text{Det Var}(\hat{\alpha}(\mathbf{e})) = \text{Argmin}_p \text{Det} [(TT)^{-1}] \]

Overdetermined Problem -- \(N_{src} >> N_{mic} \):

Penalized procedures

\[\hat{\alpha} = \arg\min_\alpha \frac{1}{2} \| T \cdot \alpha - u \|^2 + \lambda \text{pen}(\alpha) \]

To be tuned …
(cross validation etc.)

\[\text{Combinatorial methods: } \text{TABU search etc.} \]
Inverse problems with Uncertainties

Gas Turbine Performance application

- **Objective:**

 To guarantee the engine performances along its service

- **Data:**

 Fuel mass consumptions in the cruise phase at time T, for a given line between 2 fixed countries

- **Engine Software:**

 - $X = $ Uncertain variables (cruise speed, L/D)
 - $SFC = $ to be identified!

<table>
<thead>
<tr>
<th>Reference Fuel Masses [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7918</td>
</tr>
<tr>
<td>7872</td>
</tr>
<tr>
<td>7755</td>
</tr>
<tr>
<td>8058</td>
</tr>
</tbody>
</table>
Inverse Problems with Uncertainties

Inverse Problem: From experimental fuel mass consumptions, identify the Specific Fuel Consumption (SFC) = $\hat{\theta}$ of the engines.

Given by observations

$$\hat{\theta} = \underset{\theta=SFC}{\text{Argmin}} D(\text{distrib.}(\text{mass_fuel}), \text{distrib.}(\text{Soft}(X, \theta)))$$

where D is some «measure of distance» between density distributions.

Optimisation algorithm

Highly Non-Linear problem

Computed with Quasi-Newton (BFGS) method

Computation of the distribution of SFC

Error of reconstruction due to

- Limited data M_fuel (=32)
- Model error of Software
- Possibly noised observations

N. Rachdi, J-C. Fort and T. Klein, *Stochastic Inverse Problem with Noisy Simulator*, AFST (accepted)
Inverse Problems using Surrogate Models

Cabin Comfort Application

- **Objective**: Maximize the *comfort* in the cabin through a « comfort function » C_f (to be minimized).

$$C_f = C_f \circ H(\theta)$$

θ = Control parameters (flow, temperature…)

- **Inverse problem**: Compute $\hat{\theta}$ such that

$$\hat{\theta} = \text{Argmin}_{\theta} C_f(H(\theta))$$

Optimisation bottleneck

1 run of H = ~ 5 hours!
Inverse problems using surrogate models

- Alternative:

 Replace H by a surrogate model H_{surr}

 - Radial Basis Functions
 - Polynomial Regression
 - Kriging
 - Neural Network
 - Etc.

- Intermediate Inverse Problem:

 Construction of H_{surr} leads to an inverse problem = parameters fitting

- Approximated Inverse Problem:

 $\hat{\theta}_{surr} = \text{Argmin}_\theta C_f(H_{surr}(\theta))$

 Robustness Study of $\hat{\theta}_{surr}$

 Not deterministic! …
Conclusion & Perspectives

- A structuring methodology: more than valuable in our industrial context
- Filling the gap between engineers and experts: fruitful collaboration on long-term
- Classifying by research topics: synergy, new highlights on problem of interest
- Some challenging perspectives (among many others) !!!!!
 - Automatic differentiation
 - Tools implementing efficiently the reverse mode
 - Optimization
 - Large scale linear and non linear programming
 - Noisy objective function & constraints
 - Uncertainties
 - Work on “noise” assumptions (distribution, correlation, ...) and impact
 - Surrogate modelling
 - Adapt surrogate models for optimisation problems
THANK YOU FOR YOUR ATTENTION !!!