The heat equation in a non-cylindrical domain governed by a subdifferential inclusion

José Alberto Murillo Hernández
Universidad Politécnica de Cartagena
Spain
Outline

1 The heat equation in time-varying domains.
2 Morphological shape equations: a way to describe evolving sets.
3 The heat equation in a time-varying domain described by a subdifferential inclusion.
4 Conclusions.
The heat equation in time-varying domains.

Morphological shape equations: a way to describe evolving sets.

The heat equation in a time-varying domain described by a subdifferential inclusion.

Conclusions.
1. The heat equation in time-varying domains.

2. Morphological shape equations: a way to describe evolving sets.

3. The heat equation in a time-varying domain described by a subdifferential inclusion.

1. The heat equation in time-varying domains.

2. Morphological shape equations: a way to describe evolving sets.

3. The heat equation in a time-varying domain described by a subdifferential inclusion.

1. The heat equation in time-varying domains.
2. Morphological shape equations: a way to describe evolving sets.
3. The heat equation in a time-varying domain described by a subdifferential inclusion.
Cylindrical problems

\[u_t(x, t) - \text{div} \left(a(x) \nabla u(x, t) \right) = f(x, t), \quad \text{in } Q \]
\[u = 0, \quad \text{on } \Sigma \]
\[u(x, 0) = u_0(x), \quad x \in \Omega \]

(CP)

where
Cylindrical problems

\[
\begin{align*}
 u_t(x, t) - \text{div} \left(a(x) \nabla u(x, t) \right) &= f(x, t), & \text{in } Q \\
 u &= 0, & \text{on } \Sigma \\
 u(x, 0) &= u_0(x), & x \in \Omega
\end{align*}
\]

where

\[
Q = \Omega \times \mathbb{R}^{N+1}, \ T[\subset \mathbb{R}^{N+1}
\]
Cylindrical problems

\[u_t(x, t) - \text{div} \ (a(x) \nabla u(x, t)) = f(x, t), \quad \text{in } Q \]
\[u = 0, \quad \text{on } \Sigma \]
\[u(x, 0) = u_0(x), \quad x \in \Omega \]

where

- \(Q = \Omega \times]0, T[\subset \mathbb{R}^{N+1} \)
- \(\Omega \subset \mathbb{R}^N \) spatial domain
Cylindrical problems

\[u_t(x, t) - \text{div} \left(a(x) \nabla u(x, t) \right) = f(x, t), \quad \text{in } Q \]
\[u = 0, \quad \text{on } \Sigma \]
\[u(x, 0) = u_0(x), \quad x \in \Omega \]

where

- \(Q = \Omega \times]0, T[\subset \mathbb{R}^{N+1} \)
- \(\Omega \subset \mathbb{R}^N \) spatial domain
- \(\Sigma = \{(x, t) : 0 \leq t < T, \ x \in \Gamma\} \)
Non-cylindrical problems

\[u_t(x, t) - \text{div}(a(x)\nabla u(x, t)) = f(x, t), \quad \text{in } Q \]
\[u = 0, \quad \text{on } \Sigma \]
\[u(x, 0) = u_0(x), \quad x \in \Omega_0 \]

where
Non-cylindrical problems

\[u_t(x, t) - \text{div} \left(a(x) \nabla u(x, t) \right) = f(x, t), \quad \text{in } Q \]
\[u = 0, \quad \text{on } \Sigma \]
\[u(x, 0) = u_0(x), \quad \text{x } \in \Omega_0 \]

where
\[Q = \{ (x, t) : 0 < t < T, \ x \in \Omega_t \} \subset \mathbb{R}^{N+1} \]
Non-cylindrical problems

\[u_t(x, t) - \text{div} \left(a(x) \nabla u(x, t) \right) = f(x, t), \quad \text{in } Q \]
\[u = 0, \quad \text{on } \Sigma \]
\[u(x, 0) = u_0(x), \quad x \in \Omega_0 \]

where

- \(Q = \{(x, t) : 0 < t < T, x \in \Omega_t\} \subset \mathbb{R}^{N+1} \)
- \(\Omega_t \subset \mathbb{R}^N \), spatial domain changing along time
Non-cylindrical problems

\[u_t(x, t) - \text{div} \left(a(x) \nabla u(x, t) \right) = f(x, t), \quad \text{in } Q \]

\[u = 0, \quad \text{on } \Sigma \]

\[u(x, 0) = u_0(x), \quad x \in \Omega_0 \]

(NCP)

where

- \(Q = \{(x, t) : 0 < t < T, \ x \in \Omega_t \} \subset \mathbb{R}^{N+1} \)
- \(\Omega_t \subset \mathbb{R}^N \), spatial domain changing along time
- \(\Sigma = \{(x, t) : 0 \leq t < T, \ x \in \Gamma_t \} \)
Cylindrical and non-cylindrical domains

\[Q \subset \mathbb{R}^{N+1} \] spatio-temporal domain
Cylindrical and non-cylindrical domains

\[Q \subset \mathbb{R}^{N+1} \] spatio-temporal domain

Cylindrical case
Cylindrical and non-cylindrical domains

\[Q \subset \mathbb{R}^{N+1} \] spatio-temporal domain

Cylindrical case

Non-cylindrical case
Describing the evolution of \(\Omega_t \): Velocity method

Usually \(\Omega_t \) is assumed to be generated by the flow of a nonautonomous vector field

\[
V : [0, T] \times \mathbb{R}^N \rightarrow \mathbb{R}^N
\]
Describing the evolution of Ω_t: Velocity method

Usually Ω_t is assumed to be generated by the flow of a nonautonomous vector field

$$V : [0, T] \times \mathbb{R}^N \longrightarrow \mathbb{R}^N$$

That is $\Omega_t = T_t(\Omega_0)$, where

$$\frac{\partial T_t(x)}{\partial t} = V(t, T_t(x))$$

$$T_0(x) = x$$
Describing the evolution of Ω_t: Velocity method

Usually Ω_t is assumed to be generated by the flow of a nonautonomous vector field

$$\mathbf{V} : [0, T] \times \mathbb{R}^N \rightarrow \mathbb{R}^N$$

That is $\Omega_t = T_t(\Omega_0)$, where

$$\begin{aligned}
\frac{\partial T_t(x)}{\partial t} &= \mathbf{V}(t, T_t(x)) \\
T_0(x) &= x
\end{aligned}$$

Cannarsa, Da Prato & Zolésio (1989, 1990)
Zolésio (2004)
Burdzy, Chen & Sylvester (2004)

etc…
Describing the evolution of Ω_t: Velocity method

$\Omega_0 \rightarrow \Omega_t = T_t(\Omega_0)$

$T_t(x)$

\mathbf{V}
The classical procedure to solve (NCP) is:

✓ Show that T_t is a diffeomorphism for any t, Lipschitz w.r. to t.
✓ Use T_t to transform the heat equation into a parabolic one with variable coefficients defined in the reference cylinder $\Omega_0 \times]0, T[$.
✓ Establish the existence of solution $\omega(x, t)$ of the parabolic problem.
✓ The map $u(x, t) = \omega(T_t^{-1}(x), t)$ provides the solution of the original non-cylindrical problem.
Solving (NCP)

The classical procedure to solve (NCP) is:

✓ Show that \(T_t\) is a diffeomorphism for any \(t\), Lipschitz w.r. to \(t\).
✓ Use \(T_t\) to transform the heat equation into a parabolic one with variable coefficients defined in the reference cylinder \(\Omega_0 \times]0, T[\).
✓ Establish the existence of solution \(\omega(x, t)\) of the parabolic problem.
✓ The map \(u(x, t) = \omega(T_t^{-1}(x), t)\) provides the solution of the original non-cylindrical problem.
Solving (NCP)

The classical procedure to solve (NCP) is:

✓ Show that T_t is a diffeomorphism for any t, Lipschitz w.r. to t.

✓ Use T_t to transform the heat equation into a parabolic one with variable coefficients defined in the reference cylinder $\Omega_0 \times]0, T[$.

✓ Establish the existence of solution $\omega(x, t)$ of the parabolic problem.

✓ The map $u(x, t) = \omega(T_t^{-1}(x), t)$ provides the solution of the original non-cylindrical problem.
Solving (NCP)

The classical procedure to solve (NCP) is:

✓ Show that T_t is a diffeomorphism for any t, Lipschitz w.r. to t.
✓ Use T_t to transform the heat equation into a parabolic one with variable coefficients defined in the reference cylinder $\Omega_0 \times]0, T[.$
✓ Establish the existence of solution $\omega(x, t)$ of the parabolic problem.
✓ The map $u(x, t) = \omega(T_t^{-1}(x), t)$ provides the solution of the original non-cylindrical problem.
Solving (NCP)

The classical procedure to solve (NCP) is:

✓ Show that T_t is a diffeomorphism for any t, Lipschitz w.r. to t.
✓ Use T_t to transform the heat equation into a parabolic one with variable coefficients defined in the reference cylinder $\Omega_0 \times]0, T[$.
✓ Establish the existence of solution $\omega(x, t)$ of the parabolic problem.
✓ The map $u(x, t) = \omega(T_t^{-1}(x), t)$ provides the solution of the original non-cylindrical problem.
Solving (NCP)

The classical procedure to solve (NCP) is:

✓ Show that T_t is a diffeomorphism for any t, Lipschitz w.r. to t.
✓ Use T_t to transform the heat equation into a parabolic one with variable coefficients defined in the reference cylinder $\Omega_0 \times]0, T[$.
✓ Establish the existence of solution $\omega(x, t)$ of the parabolic problem.
✓ The map $u(x, t) = \omega(T_t^{-1}(x), t)$ provides the solution of the original non-cylindrical problem.

Límaco, Medeiros & Zuazua (2002)
Aim

Focussing on the evolution of the spatial domain:

- Can we consider non-cylindrical problems for domains evolving in a more general way?
- Is it possible to solve problems where the velocity (in some sense) of the domain depends on its global shape?
- Perturbations involving subdifferential inclusions could be allowed?
Aim

Focussing on the evolution of the spatial domain:

- Can we consider non-cylindrical problems for domains evolving in a more general way?
- Is it possible to solve problems where the velocity (in some sense) of the domain depends on its global shape?
- Perturbations involving subdifferential inclusions could be allowed?
Aim

Focussing on the evolution of the spatial domain:

- Can we consider non-cylindrical problems for domains evolving in a more general way?
- Is it possible to solve problems where the *velocity* (in some sense) of the domain depends on its global shape?
- Perturbations involving subdifferential inclusions could be allowed?
Aim

Focussing on the evolution of the spatial domain:

- Can we consider non-cylindrical problems for domains evolving in a more general way?
- Is it possible to solve problems where the *velocity* (in some sense) of the domain depends on its global shape?
- Perturbations involving subdifferential inclusions could be allowed?
Focussing on the evolution of the spatial domain:

- Can we consider non-cylindrical problems for domains evolving in a more general way?
- Is it possible to solve problems where the *velocity* (in some sense) of the domain depends on its global shape?
- Perturbations involving subdifferential inclusions could be allowed?
Outline

1. The heat equation in time-varying domains.

2. Morphological shape equations: a way to describe evolving sets.

3. The heat equation in a time-varying domain described by a subdifferential inclusion.

Let \mathbb{R}^N be endowed with the usual (Euclidean) norm $| \cdot |$ and let $\mathcal{K}(\mathbb{R}^N)$ be the family of all its nonempty compact subsets.

Equipped with the Hausdorff distance,

$$d_H(K, M) := \max \left(\sup_{x \in K} d_M(x), \sup_{z \in M} d_K(z) \right),$$

$\mathcal{K}(\mathbb{R}^N)$ is a complete separable metric space, also satisfying that closed balls are compact. However, $\mathcal{K}(\mathbb{R}^N)$ has not a linear (vector) structure at all!
Morphological Analysis: some basic concepts

✓ Let \mathbb{R}^N be endowed with the usual (Euclidean) norm $| \cdot |$ and let $\mathcal{K}(\mathbb{R}^N)$ be the family of all its nonempty compact subsets.

✓ Equipped with the Hausdorff distance,

$$d_{\mathcal{H}}(K, M) := \max \left(\sup_{x \in K} d_M(x), \sup_{z \in M} d_K(z) \right),$$

$\mathcal{K}(\mathbb{R}^N)$ is a complete separable metric space, also satisfying that closed balls are compact. However, $\mathcal{K}(\mathbb{R}^N)$ has not a linear (vector) structure at all!
Morphological Analysis: some basic concepts

Let \mathbb{R}^N be endowed with the usual (Euclidean) norm $| \cdot |$ and let $\mathcal{K}(\mathbb{R}^N)$ be the family of all its nonempty compact subsets.

Equipped with the Hausdorff distance,

$$d_{\mathcal{H}}(K, M) := \max \left(\sup_{x \in K} d_M(x), \sup_{z \in M} d_K(z) \right),$$

$\mathcal{K}(\mathbb{R}^N)$ is a complete separable metric space, also satisfying that closed balls are compact. However, $\mathcal{K}(\mathbb{R}^N)$ has not a linear (vector) structure at all!
Morphological Analysis: some basic concepts

✓ Let \mathbb{R}^N be endowed with the usual (Euclidean) norm $| \cdot |$ and let $\mathcal{K}(\mathbb{R}^N)$ be the family of all its nonempty compact subsets.

✓ Equipped with the Hausdorff distance,

$$d_{\mathcal{H}}(K, M) := \max \left(\sup_{x \in K} d_M(x), \sup_{z \in M} d_K(z) \right),$$

$\mathcal{K}(\mathbb{R}^N)$ is a complete separable metric space, also satisfying that closed balls are compact. However, $\mathcal{K}(\mathbb{R}^N)$ has not a linear (vector) structure at all!

Aubin (1999)
Delfour & Zolésio (2001)
Lorenz (2010)
Let $C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ be the family of all Lipschitz vector fields.

For $V \in C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$, $\vartheta_V(t, K) = \{ T_t(x) : x \in K \}$ is the reachable set at time t associated to the solutions

$$\frac{\partial T_t(x)}{\partial t} = V(T_t(x)), \quad T_0(x) = x$$

starting from $K \subset \mathbb{R}^N$.

The map $h \mapsto \vartheta_V(h, K)$ provides a curve (a shape transition) on $\mathcal{K}(\mathbb{R}^N)$. These transitions will play the role of “directions” in $\mathcal{K}(\mathbb{R}^N)$.

Since

$$\frac{d_H(\vartheta_V(t + h, K), \vartheta_V(h, \vartheta_V(t, K)))}{h} \to 0, \quad \text{as } h \to 0,$$

we can see the field V as the “velocity at time t” of the tube $\vartheta_V(\cdot, K)$.
Shape mutations: a tool to define the evolving velocity of sets

✓ Let $C^{0,1}(\mathbb{R}^N;\mathbb{R}^N)$ be the family of all Lipschitz vector fields.

✓ For $V \in C^{0,1}(\mathbb{R}^N;\mathbb{R}^N)$, $\vartheta_V(t,K) = \{ T_t(x) : x \in K \}$ is the reachable set at time t associated to the solutions

$$\frac{\partial T_t(x)}{\partial t} = V(T_t(x)), \quad T_0(x) = x$$

starting from $K \subset \mathbb{R}^N$.

✓ The map $h \mapsto \vartheta_V(h,K)$ provides a curve (a shape transition) on $\mathcal{K}(\mathbb{R}^N)$. These transitions will play the role of "directions" in $\mathcal{K}(\mathbb{R}^N)$.

✓ Since

$$\frac{d_H(\vartheta_V(t+h,K),\vartheta_V(h,\vartheta_V(t,K)))}{h} \rightarrow 0, \text{ as } h \rightarrow 0,$$

we can see the field V as the "velocity at time t" of the tube $\vartheta_V(\cdot,K)$.
Shape mutations: a tool to define the evolving velocity of sets

Let $C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ be the family of all Lipschitz vector fields.

For $V \in C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$, $\vartheta_V(t, K) = \{ T_t(x) : x \in K \}$ is the reachable set at time t associated to the solutions

$$\frac{\partial T_t(x)}{\partial t} = V(T_t(x)), \quad T_0(x) = x$$

starting from $K \subset \mathbb{R}^N$.

The map $h \mapsto \vartheta_V(h, K)$ provides a curve (a shape transition) on $\mathcal{K}(\mathbb{R}^N)$. These transitions will play the role of “directions” in $\mathcal{K}(\mathbb{R}^N)$.

Since

$$\frac{d_H(\vartheta_V(t + h, K), \vartheta_V(h, \vartheta_V(t, K)))}{h} \to 0, \quad \text{as } h \to 0,$$

we can see the field V as the “velocity at time t” of the tube $\vartheta_V(\cdot, K)$.
Shape mutations: a tool to define the evolving velocity of sets

- Let $C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ be the family of all Lipschitz vector fields.

- For $V \in C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$, $\vartheta_V(t, K) = \{ T_t(x) : x \in K \}$ is the reachable set at time t associated to the solutions

 \[
 \frac{\partial T_t(x)}{\partial t} = V(T_t(x)), \quad T_0(x) = x
 \]

 starting from $K \subset \mathbb{R}^N$.

- The map $h \mapsto \vartheta_V(h, K)$ provides a curve (a shape transition) on $\mathcal{K}(\mathbb{R}^N)$. These transitions will play the role of “directions” in $\mathcal{K}(\mathbb{R}^N)$.

- Since

 \[
 \frac{d_{\mathcal{H}}(\vartheta_V(t + h, K), \vartheta_V(h, \vartheta_V(t, K)))}{h} \to 0, \quad \text{as } h \to 0,
 \]

 we can see the field V as the “velocity at time t” of the tube $\vartheta_V(\cdot, K)$.
Shape mutations: a tool to define the evolving velocity of sets

✓ Given a tube $K : I \subset \mathbb{R} \rightarrow \mathcal{C}(\mathbb{R}^N)$, it is said that $V \in C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ belongs to the *shape mutation* of $K(\cdot)$ at t in the forward direction if

$$
\lim_{h \rightarrow 0^+} \frac{d_H(\vartheta_V(h, K(t)), K(t+h))}{h} = 0
$$

Then we will write $V \in \dot{K}(t)$.

✓ The set $\dot{K}(t) \subset C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ can be regarded as the “velocity” of $K(\cdot)$ at time t.

✓ A map $V : I \subset \mathbb{R} \rightarrow C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ will be a “shape primitive” of $K(\cdot)$ if for any t the field $V(t)$ belongs to its shape mutation at t. We will write

$$
\dot{K}(t) \ni V(t)
$$
Shape mutations: a tool to define the evolving velocity of sets

✓ Given a tube $K : I \subset \mathbb{R} \longrightarrow \mathcal{K}(\mathbb{R}^N)$, it is said that $V \in C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ belongs to the shape mutation of $K(\cdot)$ at t in the forward direction if

$$\lim_{h \to 0^+} \frac{d_H(\mathcal{V}(h, K(t)), K(t + h))}{h} = 0$$

Then we will write $V \in \overset{.}{K}(t)$.

✓ The set $\overset{.}{K}(t) \subset C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ can be regarded as the "velocity" of $K(\cdot)$ at time t.

✓ A map $V : I \subset \mathbb{R} \longrightarrow C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ will be a "shape primitive" of $K(\cdot)$ if for any t the field $V(t)$ belongs to its shape mutation at t. We will write

$$\overset{.}{K}(t) \ni V(t)$$
Shape mutations: a tool to define the evolving velocity of sets

✓ Given a tube $K: I \subset \mathbb{R} \rightarrow \mathcal{C}(\mathbb{R}^N)$, it is said that $V \in C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ belongs to the shape mutation of $K(\cdot)$ at t in the forward direction if

$$\lim_{h \to 0^+} \frac{d_H(\partial_V(h, K(t)), K(t+h))}{h} = 0$$

Then we will write $V \in \overset{\circ}{K}(t)$.

✓ The set $\overset{\circ}{K}(t) \subset C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ can be regarded as the “velocity” of $K(\cdot)$ at time t.

✓ A map $V: I \subset \mathbb{R} \rightarrow C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ will be a “shape primitive” of $K(\cdot)$ if for any t the field $V(t)$ belongs to its shape mutation at t. We will write $\overset{\circ}{K}(t) \ni V(t)$.
Remark (Doyen, 1995). The shape mutation of a tube is usually set-valued. For instance if $K(t) = B$ is constant and equal to the closed unit ball in \mathbb{R}^2, it is clear that for every t,

$$0, V(x, y) = (-y, x) \in \text{int } K(t)$$
Remark (Doyen, 1995). The shape mutation of a tube is usually set-valued. For instance if $K(t) = B$ is constant and equal to the closed unit ball in \mathbb{R}^2, it is clear that for every t,

$$0, V(x, y) = (-y, x) \in \partial K(t)$$

Remark. Every field $V : I \subset \mathbb{R} \rightarrow C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ is a shape primitive of the reachable tube $t \sim \vartheta_V(t, K), K \in \mathcal{K}(\mathbb{R}^N)$.

Shape mutations: a tool to define the evolving velocity of sets
We are ready to define *morphological shape equations* as a generalization of ordinary differential equations governing the evolution of tubes.

For a map \(V : \mathbb{R}_+ \times \mathcal{K}(\mathbb{R}^N) \rightarrow C^{0,1}(\mathbb{R}^N, \mathbb{R}^N) \), a solution of the *morphological shape equation*

\[
\circ K(t) \ni V(t, K(t))\cdot
\]

on an interval \(I \subset \mathbb{R}_+ \) will be a compact-valued Lipschitz tube, \(K(\cdot) \) such that, for all \(t \in I \), \(V(t, K(t)) \) belongs to \(\circ K(t) \), that is

\[
\lim_{h \to 0^+} \frac{d_{\mathcal{H}}(\partial_{V(t,K(t))}(h, K(t)), K(t+h))}{h} = 0
\]

Solutions of (♠) satisfy the recurrence law

\[
K(t) = \{ x(t) : \dot{x}(s) = V(s, K(s))(x(s)), \ x(0) \in K(0) \}
\]
We are ready to define \textit{morphological shape equations} as a generalization of ordinary differential equations governing the evolution of tubes.

For a map $\mathbf{V}: \mathbb{R}_+ \times \mathcal{K}(\mathbb{R}^N) \rightarrow C^{0,1}(\mathbb{R}^N, \mathbb{R}^N)$, a solution of the \textit{morphological shape equation}

$$K(t) \ni \mathbf{V}(t, K(t))(\cdot)$$ \hspace{1cm} (♠)

on an interval $I \subset \mathbb{R}_+$ will be a compact-valued Lipschitz tube, $K(\cdot)$ such that, for all $t \in I$, $\mathbf{V}(t, K(t))$ belongs to $K(t)$, that is

$$\lim_{h \rightarrow 0^+} \frac{d_{\mathcal{H}}(\partial_{\mathbf{V}(t, K(t))}(h, K(t)), K(t + h))}{h} = 0$$

Solutions of (♠) satisfy the recurrence law

$$K(t) = \{ x(t) : \dot{x}(s) = \mathbf{V}(s, K(s))(x(s)), \ x(0) \in K(0) \}$$
We are ready to define *morphological shape equations* as a generalization of ordinary differential equations governing the evolution of tubes.

For a map \(V : \mathbb{R}_+ \times K(\mathbb{R}^N) \rightarrow C^{0,1}(\mathbb{R}^N, \mathbb{R}^N) \), a solution of the *morphological shape equation*

\[
\overset{\circ}{K}(t) \ni V(t, K(t))(\cdot)
\]

on an interval \(I \subset \mathbb{R}_+ \) will be a compact-valued Lipschitz tube, \(K(\cdot) \) such that, for all \(t \in I \), \(V(t, K(t)) \) belongs to \(\overset{\circ}{K}(t) \), that is

\[
\lim_{h \to 0^+} \frac{d_H (\partial_{V(t,K(t))}(h, K(t)), K(t+h))}{h} = 0
\]

Solutions of (♠) satisfy the recurrence law

\[
K(t) = \{ x(t) : \dot{x}(s) = V(s, K(s))(x(s)), \ x(0) \in K(0) \}
\]
Morphological shape equations

Remark. The reachable tube $t \mapsto \vartheta_{V}(t, K) = \{ T_{t}(x) : x \in K \}$ with

\[
\begin{align*}
\frac{\partial T_{t}(x)}{\partial t} &= V(t, T_{t}(x)) \\
T_{0}(x) &= x
\end{align*}
\]

is the solution of the morphological shape equation $\hat{K}(t) \ni V(t, \cdot)$. Thus the family of solutions of morphological shape equations contains all the tubes described by flows of vector fields.
Morphological shape equations

Remark. The reachable tube $t \sim \vartheta_V(t, K) = \{ T_t(x) : x \in K \}$ with

$$
\begin{align*}
\frac{\partial T_t(x)}{\partial t} &= V(t, T_t(x)) \\
T_0(x) &= x
\end{align*}$$

is the solution of the morphological shape equation $K(t) \ni V(t, \cdot)$. Thus the family of solutions of morphological shape equations contains all the tubes described by flows of vector fields.

Remark. This inclusion is strict. Indeed evolutions where the velocity depends on the global shape are allowed. For instance taking

$$V(t, K) = W(t) + \varphi(K)F$$

with $W(t), F \in C^{0,1}(\mathbb{R}^N, \mathbb{R}^N)$ and

$$\varphi(K) = \begin{cases}
0, & \text{if } d_H(K, M) \geq \delta \\
\delta - d_H(K, M), & \text{otherwise}
\end{cases}$$
Existence theorem for morphological shape equations

Theorem 1 (Cauchy-Lipschitz for shape equations, Aubin, 1999)

Let $V : \mathbb{R}_+ \times \mathcal{K}([0, T]) \to C^{0,1}(\mathbb{R}_+; \mathbb{R}^N)$ be continuous with respect to the first variable t, λ-Lipschitz with respect to the second one K, that is,

$$\|V(t, K) - V(t, B)\|_\infty \leq \lambda d_H(K, B)$$

and satisfying

$$\alpha := \sup_{0 < t < T, K \in \mathcal{K}(\mathbb{R}^N)} \sup_{x \neq y} \left(\frac{|V(t, K)(x) - V(t, K)(y)|}{|x - y|} \right) < \infty$$

then for any $K \in \mathcal{K}(\mathbb{R}^N)$ there exists a unique solution of

$${^\circ}K(t) \ni V(t, K(t))$$

satisfying $K(0) = K$.

J.A. Murillo (UPCT) The heat equation in non-cylindrical domains, PICO'12 15 / 20
Existence theorem for morphological shape equations

Theorem 1 (Cauchy-Lipschitz for shape equations, Aubin, 1999)

Let $V : \mathbb{R}_+ \times \mathcal{K}(\mathbb{R}^N) \rightarrow C^{0,1}(\mathbb{R}^N; \mathbb{R}^N)$ be continuous with respect to the first variable t, λ-Lipschitz with respect to the second one K, that is,

$$\|V(t, K) - V(t, B)\|_\infty \leq \lambda d_H(K, B)$$

and satisfying

$$\alpha := \sup_{0 < t < T, K \in \mathcal{K}(\mathbb{R}^N)} \sup_{x \neq y} \left(\frac{|V(t, K)(x) - V(t, K)(y)|}{|x - y|} \right) < \infty$$

then for any $K \in \mathcal{K}(\mathbb{R}^N)$ there exists a unique solution of

$$\overset{\circ}{K}(t) \ni V(t, K(t))(\cdot)$$

satisfying $K(0) = K$. Moreover, if $K(\cdot)$ and $B(\cdot)$ are solutions starting from K and B respectively, then

$$\forall t, \quad d_H(K(t), B(t)) \leq e^{(\alpha + \lambda)t} d_H(K, B)$$
Existence theorem for morphological shape equations

Let $\phi : \mathbb{R}^N \rightarrow \mathbb{R}$ be convex and l.s.c.
Existence theorem for morphological shape equations

Let $\phi : \mathbb{R}^N \rightarrow \mathbb{R}$ be convex and l.s.c.

By means of its subdifferential $\partial \phi$ we can perturb the equation

$$K(t) \ni V(t, K(t))(\cdot)$$

(♠)
Existence theorem for morphological shape equations

Let $\phi : \mathbb{R}^N \rightarrow \mathbb{R}$ be convex and l.s.c.

By means of its subdifferential $\partial \phi$ we can perturb the equation to get the morphological shape inclusion

$$\circ K(t) \ni V(t, K(t))(\cdot)$$
Existence theorem for morphological shape equations

Let $\phi : \mathbb{R}^N \rightarrow \mathbb{R}$ be convex and l.s.c.

By means of its subdifferential $\partial \phi$ we can perturb the equation to get the morphological shape inclusion

$$\hat{K}(t) \cap (-\partial \phi(\cdot) + \mathbf{V}(t, K(t))(\cdot)) \neq \emptyset$$

(♣)
Existence theorem for morphological shape equations

Let $\phi : \mathbb{R}^N \rightarrow \mathbb{R}$ be convex and l.s.c.

By means of its subdifferential $\partial \phi$ we can perturb the equation to get the morphological shape inclusion

$$K(t) \cap (-\partial \phi(\cdot) + \mathbf{V}(t, K(t))(\cdot)) \neq \emptyset$$

(♣)

Theorem 2

Assuming hypotheses of Theorem 1, for any $K \in \mathcal{K}(\mathbb{R}^N)$, there exists a unique solution of (♣) with $K(0) = K$.
Existence theorem for morphological shape equations

Let $\phi : \mathbb{R}^N \rightarrow \mathbb{R}$ be convex and l.s.c.

By means of its subdifferential $\partial \phi$ we can perturb the equation to get the morphological shape inclusion

$$\bigcirc K(t) \cap (-\partial \phi(\cdot) + \mathbf{V}(t, K(t))(\cdot)) \neq \emptyset$$

(♣)

Theorem 2

Assuming hypotheses of Theorem 1, for any $K \in \mathcal{K}(\mathbb{R}^N)$, there exists a unique solution of (♣) with $K(0) = K$. Furthermore

$$K(t) = \{x(t) : \dot{x}(s) \in -\partial \phi(x(s)) + \mathbf{V}(s, K(s))(x(s)), \; x(0) \in K\}$$
Existence theorem for morphological shape equations

Let \(\phi : \mathbb{R}^N \to \mathbb{R} \) be convex and l.s.c.

By means of its subdifferential \(\partial \phi \) we can perturb the equation to get the morphological shape inclusion

\[
\circ \ K(t) \cap (-\partial \phi(\cdot) + V(t, K(t))(\cdot)) \neq \emptyset \tag{♣}
\]

Theorem 2

*Assuming hypotheses of Theorem 1, for any \(K \in \mathcal{K}([\mathbb{R}^N]) \), there exists a unique solution of (♣) with \(K(0) = K \). Furthermore

\[
K(t) = \{ x(t) : \dot{x}(s) \in -\partial \phi(x(s)) + V(s, K(s))(x(s)), \ x(0) \in K \}
\]

Remark. Moreau envelope \(\phi_\mu(x) = \inf_{y \in \mathbb{R}^N} \left(\phi(y) + \frac{1}{2\mu} \|y - x\|^2 \right) \) allows to prove this result.
Outline

1. The heat equation in time-varying domains.
2. Morphological shape equations: a way to describe evolving sets.
3. The heat equation in a time-varying domain described by a subdifferential inclusion.
The problem

\[
\begin{aligned}
&u_t(x, t) - \text{div} \left(a(x) \nabla u(x, t) \right) = f(x, t), \quad \text{in } Q \\
u = 0, \quad \text{on } \Sigma \\
u(x, 0) = u_0(x), \quad x \in \Omega_0
\end{aligned}
\]

(NCP)

where \(K(t) = \overline{\Omega_t} \) satisfyies

\[
K(t) \cap (-\partial \phi(\cdot) + V(t, K(t))(\cdot)) \neq \emptyset
\]

(♣)
Main result

\[u_t(x, t) - \text{div} \left(a(x) \nabla u(x, t) \right) = f(x, t), \quad \text{in } Q \]
\[u = 0, \quad \text{on } \Sigma \]
\[u(x, 0) = u_0(x), \quad x \in \Omega_0 \]

\[\left\{ \begin{array}{l}
\end{array} \right. \quad \text{(NCP)} \]

where \(K(t) = \overline{\Omega}_t \) satisfies

\[\dot{K}(t) \cap (-\partial \phi(\cdot) + \mathbf{V}(t, K(t))(\cdot)) \neq \emptyset \quad \text{(♣)} \]

Theorem 3

For any initial states \(u_0 \in L^2(\Omega_0) \), \(\Omega_0 \subset \mathbb{R}^N \) a nonempty open bounded set, there exists a unique solution of the problem, i.e. a tube \(K(\cdot) \in C^{0,1}(0, T; \mathcal{K}(\mathbb{R}^N)) \) and a map

\[u \in L^2(0, T; H^1_0(\Omega_t)) \cap C([0, T]; L^2(\Omega_t)) \]

satisfying the heat equation in a weak sense.
Conclusions

✓ Morphological shape equations provide time-evolving families of sets in a more general way than the “flows of velocities”.

✓ It is possible to consider (and solve) noncylindrical problems associated with these type of set evolutions for the heat equation, even when a subdifferential perturbation is considered.

✓ This scheme could be appropriate for problems involving different kind of PDEs.

✓ A challenging task is to consider evolutions associated to set-valued maps, where the topology of domains could be modified along time, or having velocities depending on the temperature.
Conclusions

✓ Morphological shape equations provide time-evolving families of sets in a more general way than the “flows of velocities”.

✓ It is possible to consider (and solve) noncylindrical problems associated with these type of set evolutions for the heat equation, even when a subdifferential perturbation is considered.

✓ This scheme could be appropriate for problems involving different kind of PDEs.

✓ A challenging task is to consider evolutions associated to set-valued maps, where the topology of domains could be modified along time, or having velocities depending on the temperature.
Conclusions

✓ Morphological shape equations provide time-evolving families of sets in a more general way than the “flows of velocities”.

✓ It is possible to consider (and solve) noncylindrical problems associated with these type of set evolutions for the heat equation, even when a subdifferential perturbation is considered.

✓ This scheme could be appropriate for problems involving different kind of PDEs.

✓ A challenging task is to consider evolutions associated to set-valued maps, where the topology of domains could be modified along time, or having velocities depending on the temperature.
Conclusions

✓ Morphological shape equations provide time-evolving families of sets in a more general way than the “flows of velocities”.

✓ It is possible to consider (and solve) noncylindrical problems associated with these type of set evolutions for the heat equation, even when a subdifferential perturbation is considered.

✓ This scheme could be appropriate for problems involving different kind of PDEs.

✓ A challenging task is to consider evolutions associated to set-valued maps, where the topology of domains could be modified along time, or having velocities depending on the temperature.
Conclusions

✓ Morphological shape equations provide time-evolving families of sets in a more general way than the “flows of velocities”.

✓ It is possible to consider (and solve) noncylindrical problems associated with these type of set evolutions for the heat equation, even when a subdifferential perturbation is considered.

✓ This scheme could be appropriate for problems involving different kind of PDEs.

✓ A challenging task is to consider evolutions associated to set-valued maps, where the topology of domains could be modified along time, or having velocities depending on the temperature.
Conclusions

✓ Morphological shape equations provide time-evolving families of sets in a more general way than the “flows of velocities”.

✓ It is possible to consider (and solve) noncylindrical problems associated with these type of set evolutions for the heat equation, even when a subdifferential perturbation is considered.

✓ This scheme could be appropriate for problems involving different kind of PDEs.

✓ A challenging task is to consider evolutions associated to set-valued maps, where the topology of domains could be modified along time, or having velocities depending on the temperature.
Thanks for attention!