Signal to noise ratio estimation in passive correlation based imaging

Adrien SEMIN
Joint work with J. Garnier, G. Papanicolaou and C. Tsogka

Institute of Applied and Computational Mathematics
Foundation for Research and Technology - Hellas

Problèmes Inverses, Contrôle et Optimisation de Formes
École Polytechnique, Palaiseau, 2-4 April 2012
Table of contents

1 Introduction

2 Mathematical model
 - Wave equation
 - Cross correlations

3 Migration imaging

4 Numerical results

5 Conclusion
We consider here the problem of imaging using passive incoherent recordings due to ambient noise sources.
We consider here the problem of imaging using passive incoherent recordings due to ambient noise sources.

Idea: use cross-correlations between pairs of sensors (receivers) to retrieve information about the Green’s function in the background medium.

We consider here the problem of imaging using passive incoherent recordings due to ambient noise sources.

Idea: use cross-correlations between pairs of sensors (receivers) to retrieve information about the Green’s function in the background medium. This can be achieved either with equi-distribution of sources or through multiple scattering.

Our goal

- Our aim is to use these cross-correlations in order to image reflectors (embedded in clutter).

Application: Structural Health Monitoring

Our goal

- Our aim is to use these cross-correlations in order to image reflectors (embedded in clutter).
- To do so we will use coherent imaging methods, such as travel time migration (and coherent interferometry (CINT)).
Our goal

- Our aim is to use these cross-correlations in order to image reflectors (embedded in clutter).
- To do so we will use coherent imaging methods, such as travel time migration (and coherent interferometry (CINT)).
- Here we will focus on Signal to Noise Ratio estimation in passive correlation based imaging.
Our goal

Our aim is to use these cross-correlations in order to image reflectors (embedded in clutter).

To do so we will use coherent imaging methods, such as travel time migration (and coherent interferometry (CINT)).

Here we will focus on Signal to Noise Ratio estimation in passive correlation based imaging.

Application : Structural Health Monitoring

We consider a domain Ω containing a reflector O.

Mathematical model
Mathematical model

- We consider a domain Ω containing a reflector \mathcal{O}
- We consider $u(t, x)$ solution of the time-dependent wave equation

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2}(t, x) - c_0^2 \Delta u = n(t, x) \quad \text{in } \Omega \setminus \mathcal{O} \\
u(t, x) = 0 \quad \text{on } \partial\mathcal{O} \\
+ \text{ PML (to model free-space problem)}
\end{cases}$$
Mathematical model

- We consider a domain Ω containing a reflector \mathcal{O}
- We consider $u(t, x)$ solution of the time-dependent wave equation

$$\begin{cases} \frac{\partial^2 u}{\partial t^2}(t, x) - c_0^2 \Delta u = n(t, x) & \text{in } \Omega \setminus \mathcal{O} \\ u(t, x) = 0 & \text{on } \partial \mathcal{O} \end{cases}$$

- c_0 is homogeneous propagation speed.
Mathematical model

- We consider a domain Ω containing a reflector \mathcal{O}
- We consider $u(t, x)$ solution of the time-dependent wave equation

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2}(t, x) - c_0^2 \Delta u &= n(t, x) \quad \text{in } \Omega \setminus \mathcal{O} \\
u(t, x) &= 0 \quad \text{on } \partial \mathcal{O} \\
\text{+ PML (to model free-space problem)}
\end{align*}
\]

- c_0 is homogeneous propagation speed.
- $n(t, x)$ models noise sources.
Noise source term

- \(n(t, x) \) is a zero mean stationary (in time) random process:

\[
E \{ n(t, x) \} = 0
\]
A noise source term

- $n(t, x)$ is a zero mean stationary (in time) random process:

$$E\{n(t, x)\} = 0$$

- $n(t, x)$ satisfies the following cross-correlation relation

$$E\{n(t_1, x_1)n(t_2, x_2)\} = \mathbb{F}(t_2 - t_1)K(x_1)\delta(x_1 - x_2)$$

$\mathbb{F}(\cdot)$ is a real-valued even function, has its maximum on $t = 0$ and has a positive Fourier transform $K(\cdot)$ characterize the spatial support of noise sources.
Noise source term

- \(n(t, x) \) is a zero mean stationary (in time) random process:
 \[
 E\{n(t, x)\} = 0
 \]

- \(n(t, x) \) satisfies the following cross-correlation relation
 \[
 E\{n(t_1, x_1)n(t_2, x_2)\} = F(t_2 - t_1)K(x_1)\delta(x_1 - x_2)
 \]

- \(F(t) \) is a real-valued even function, has its maximum on \(t = 0 \) and has a positive Fourier transform
Noise source term

- \(n(t, x) \) is a zero mean stationary (in time) random process:

\[
\mathbb{E}\{n(t, x)\} = 0
\]

- \(n(t, x) \) satisfies the following cross-correlation relation

\[
\mathbb{E}\{n(t_1, x_1)n(t_2, x_2)\} = F(t_2 - t_1)K(x_1)\delta(x_1 - x_2)
\]

- \(F(t) \) is a real-valued even function, has its maximum on \(t = 0 \) and has a positive Fourier transform
- \(K(x) \) characterize the spatial support of noise sources.
Cross correlations

- Assume that we know $u(t, x_1)$ and $u(t, x_2)$ the time-dependant wave fields recorded by two sensors at x_1 and x_2 on a time interval $[0, T]$.
Cross correlations

- assume that we know $u(t, x_1)$ and $u(t, x_2)$ the time-dependant wave fields recorded by two sensors at x_1 and x_2 on a time interval $[0, T]$

- their cross-correlation function over the time interval $[0, T]$, and with time lag τ is given by

$$C_T(\tau, x_1, x_2) = \frac{1}{T} \int u(t, x_1)u(t + \tau, x_2)dt$$
The expectation of C_T (with respect to the distribution of the sources) is independent of T:

$$E \{ C_T(\tau, x_1, x_2) \} = C^{(1)}(\tau, x_1, x_2)$$

with

$$C^{(1)}(\tau, x_1, x_2) = \frac{1}{2\pi} \int \hat{D}(\omega, x_1, x_2) \hat{F}(\omega) e^{-i\omega \tau} d\omega$$

$$\hat{D}(\omega, x_1, x_2) = \int \overline{\hat{G}(\omega, x_1, y)} \hat{G}(\omega, x_2, y) K(y) dy$$
Properties

- The expectation of \mathcal{C}_T (with respect to the distribution of the sources) is independent of T:

$$\mathbb{E}\{\mathcal{C}_T(\tau, x_1, x_2)\} = \mathcal{C}^{(1)}(\tau, x_1, x_2)$$

with

$$\mathcal{C}^{(1)}(\tau, x_1, x_2) = \frac{1}{2\pi} \int \hat{D}(\omega, x_1, x_2) \hat{F}(\omega) e^{-i\omega \tau} d\omega$$

$$\hat{D}(\omega, x_1, x_2) = \int \hat{G}(\omega, x_1, y) \hat{G}(\omega, x_2, y) K(y) dy$$

- The empirical cross correlation \mathcal{C}_T is a statistical stable self-averaging quantity, i.e.:

$$\mathcal{C}_T(\tau, x_1, x_2) \xrightarrow{T \to \infty} \mathcal{C}^{(1)}(\tau, x_1, x_2)$$
Table of contents

1 Introduction

2 Mathematical model
 - Wave equation
 - Cross correlations

3 Migration imaging

4 Numerical results

5 Conclusion
Assumptions

- noise sources are spatially localised (gray region)
- passive sensors \((x_j)_{1 \leq j \leq J}\) are located between the sources and the reflector
Stationary phase analysis

Stationary phase analysis done by J. Garnier and G. Papanicolaou shows that the cross correlation \(C^{(1)}(\tau, x_1, x_2) \) between two sensors \(x_1 \) and \(x_2 \) has two peaks

Stationary phase analysis done by J. Garnier and G. Papanicolaou shows that the cross correlation $C^{(1)}(\tau, x_1, x_2)$ between two sensors x_1 and x_2 has two peaks:

- One peak (direct arrival) at the travel time between x_1 and x_2
 \[|x_1 - x_2| \]
 \[\frac{c_0}{c_0} \]

- One peak (reflected arrival) at the sum of the travel times between x_i and the reflector
 \[|x_1 - z_O| \]
 \[c_0 \]
 \[|z_O - x_2| \]
 \[c_0 \]

Stationary phase analysis

Stationary phase analysis done by J. Garnier and G. Papanicolaou shows that the cross correlation \(C^{(1)}(\tau, x_1, x_2) \) between two sensors \(x_1 \) and \(x_2 \) has two peaks:

- one peak (direct arrival) at the travel time between \(x_1 \) and \(x_2 \)
 \[
 \frac{|x_1 - x_2|}{c_0}
 \]

- one peak (reflected arrival) at the sum of the travel times between \(x_i \) and the reflector
 \[
 \frac{|x_1 - z_O|}{c_0} + \frac{|z_O - x_2|}{c_0}
 \]

To keep only the interesting peak that concerns the reflector, the image at a search point z is computed using the following daylight imaging functional:

$$I^D(z) = \sum_{j,l=1}^{J} C^{(1),\text{sym}}_{\text{coda}}(\tau(z, x_l) + \tau(z, x_j), x_j, x_l),$$

Proposition If we consider that the reflector is far enough from the receivers and T is large enough, then we can approximate $I^D(z)$ by

$$I^D(z) \approx \sum_{j,l=1}^{J} C^{(1),\text{sym}}_{\text{coda}}(\tau(z, x_l) + \tau(z, x_j), x_j, x_l).$$
Daylight imaging functional

- To keep only the interesting peak that concerns the reflector, the image at a search point z is computed using the following daylight imaging functional:

$$I^D(z) = \sum_{j,l=1}^{J} C_{\text{coda}}^{(1),\text{sym}}(\tau(z, x_l) + \tau(z, x_j), x_j, x_l),$$

- $\tau(z, x_j)$ is the travel time between z and x_j:

$$\tau(z, x_j) = \frac{|z - x_j|}{c_0}$$
Daylight imaging functional

- To keep only the interesting peak that concerns the reflector, the image at a search point z is computed using the following daylight imaging functional:

$$I_D(z) = \sum_{j,l=1}^{J} C_{coda}^{(1),{\text{sym}}} (\tau(z, x_l) + \tau(z, x_j), x_j, x_l),$$

- $\tau(z, x_j)$ is the travel time between z and x_j:

$$\tau(z, x_j) = \frac{|z - x_j|}{c_0}$$

- $C_{T,\text{coda}}^{\text{sym}}$ is defined by

$$C_{coda}^{(1),{\text{sym}}} (t, x_j, x_l) = \left(C^{(1)}(t, x_j, x_l) + C^{(1)}(-t, x_j, x_l) \right) \mathbf{1}_{\tau(x_j, x_l), +\infty}(t).$$
Daylight imaging functional

To keep only the interesting peak that concerns the reflector, the image at a search point z is computed using the following daylight imaging functional:

$$I^D(z) = \sum_{j,l=1}^{J} C_{\text{sym coda}}^{(1)}(\tau(z, x_l) + \tau(z, x_j), x_j, x_l),$$

$C_{\text{sym coda}}^{(1)}$ is defined by

$$C_{\text{sym coda}}^{(1)}(t, x_j, x_l) = \left(C^{(1)}(t, x_j, x_l) + C^{(1)}(-t, x_j, x_l) \right) \mathbb{1}_{\tau(x_j, x_l), +\infty}(t).$$

Proposition

If we consider that the reflector is far enough from the receivers and T is large enough, then we can approximate $I^D(z)$ by

$$I^D(z) \simeq 2 \sum_{j,l=1}^{J} C_T(\tau(z, x_l) + \tau(z, x_j), x_j, x_l),$$
Table of contents

1 Introduction

2 Mathematical model
 • Wave equation
 • Cross correlations

3 Migration imaging

4 Numerical results

5 Conclusion
Simulation setup

- wave equation on the rectangle $[0, 50\lambda] \times [-15\lambda, 15\lambda]$, with a reflector located on $[44\lambda, 46\lambda] \times [-\lambda, \lambda]$,
- random distribution of sources has support on the rectangle $\Omega_S = [0, 4\lambda] \times [-15\lambda, 15\lambda]$,
- we record the solution u of the wave equation at J receivers located at $x_j = (5\lambda, (j - (J + 1)/2)\lambda/2)$, for $1 \leq j \leq J$,
- $c_0 = 3\text{km s}^{-1}$,

Figure: Geometry of the passive sensor imaging problem for a daylight illumination.
Dependence in space: \(K(x) \) is given by

\[
K(x) = \frac{1}{|\Omega_S|} \mathbb{1}_{\Omega_S}(x)
\]
Source term

- Dependence in space: \(K(x) \) is given by
 \[
 K(x) = \frac{1}{|\Omega_S|} \mathbb{1}_{\Omega_S}(x)
 \]

- Dependence in time: \(F(t) \) is given by
 \[
 F(t) = \frac{1}{3T} \int F(\tau)F(t + \tau) d\tau \\
 F(t) = \frac{\sin(B(t - T/2))}{B(t - T/2)} \cos(2\pi f(t - T/2)) \exp\left(-\frac{(t - T/2)^2}{2ct^2}\right)
 \]

- \(B = 0.3 \text{ Hz} \) is the bandwidth
- \(f = 0.3 \text{ Hz} \) is the central frequency
- \(c_t = 2.5 \text{ s} \) is the correlation time
Computation

- Space discretization is done by 8-th order mixed spectral finite elements with Gauss-Lobatto points
- Time discretization is done by 4-th order Runge-Kutta.
- We implement the source term by

\[n(t, x) = \frac{1}{\sqrt{N_s}} \sum_{s=1}^{N_s} \delta(x - x_s) \hat{F}^{-1} (r_s \mathcal{F}(F)) (t) \]

\(r_s(\omega) \) is a random distribution satisfying
\(r_s(-\omega) = r_s(\omega) \) and following expectations:
\[E \{ r_s(\omega_1) r_s(\omega_2) \} = \frac{1}{3} \delta(\omega_1 + \omega_2) \]
Computation

- Space discretization is done by 8-th order mixed spectral finite elements with Gauss-Lobatto points.
- Time discretization is done by 4-th order Runge-Kutta.
- We implement the source term by

\[n(t, x) = \frac{1}{\sqrt{N_s}} \sum_{s=1}^{N_s} \delta(x - x_s) \hat{F}^{-1} (r_s F(F))(t) \]

- \(r_s(\omega) \) is a random distribution satisfying

\[r_s(-\omega) = r_s(\omega) \]

and following expectations:

\[\mathbb{E}\{r_s(\omega)\} = 0 \] and \[\mathbb{E}\{r_s(\omega_1)r_s(\omega_2)\} = \frac{1}{3} \delta(\omega_1 + \omega_2) \]
Daylight imaging functional

Figure: Daylight imaging functional for the homogeneous medium. $J = 21$
Figure: Daylight imaging functional for the homogeneous medium. $J = 31$
Figure: Daylight imaging functional for the homogeneous medium. $J = 41$
Figure: Daylight imaging functional for the homogeneous medium. $J = 51$
A good question that naturally arise is “Under what conditions do we obtain such a good image”?
A good question that naturally arise is “Under what conditions do we obtain such a good image”?

In other words, “What are the parameters that control the quality of the image, and how”?
A good question that naturally arise is “Under what conditions do we obtain such a good image”?

In other words, “What are the parameters that control the quality of the image, and how”?

A partial answer to this question is that the signal to noise ratio (SNR) of the image increases with the number of the receivers, where

\[
\text{SNR} = \frac{|\mathcal{I}^D|({z^*})}{\max_{z \neq z^*} |\mathcal{I}^D|(z)}
\]

where \(z^*\) is the point where the image admits its maximal value and \(z \neq z^*\) means that squares of size \(2\lambda \times 2\lambda\) centered at \(z\) and \(z^*\) do not intersect.
Figure: SNR computation versus number of receivers ($B = 0.3 \, \text{Hz}, \, T = 800 \, \text{s}$)
Figure: SNR computation versus time ($J = 21, B = 0.3$ Hz)
Figure: SNR computation versus scaled bandwidth ($J = 61, T = 800$ s)
SNR interpretation

- SNR ratio is linear with respect to number of receivers
SNR interpretation

- SNR ratio is linear with respect to number of receivers
- SNR ratio is linear with respect to square root of time

SNR ratio is linear with respect to number of receivers
SNR ratio is linear with respect to square root of time
SNR ratio is linear with respect to square root of bandwidth

SNR interpretation

- SNR ratio is linear with respect to number of receivers
- SNR ratio is linear with respect to square root of time
- SNR ratio is linear with respect to square root of bandwidth
- We can summarize these results by

\[\text{SNR} \sim J \sqrt{BT} \]

Introduction

2 Mathematical model
 • Wave equation
 • Cross correlations

3 Migration imaging

4 Numerical results

5 Conclusion
Conclusion and perspectives

- SNR analysis consistent with theory
Conclusion and perspectives

- SNR analysis consistent with theory
- Exploit higher order cross-correlations to improve SNR?

Conclusion and perspectives

- SNR analysis consistent with theory
- Exploit higher order cross-correlations to improve SNR?
- Perspective: SNR analysis for inhomogeneous media.